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Abstract 

Background  Clear cell renal cell carcinoma (ccRCC) is associated with a high prevalence of cancer-related deaths. 
The survival rates of patients are significantly lower in late-stage ccRCC than in early-stage ccRCC, due to the spread 
and metastasis of late-stage ccRCC, surgery has not reached the goal of radical cure, and the effect of traditional 
radiotherapy and chemotherapy is poor. Thus, it is crucial to accurately assess the prognosis and provide personalized 
treatment at an early stage in ccRCC. This study aims to develop an efficient nomogram model for stratifying and pre-
dicting the survival of ccRCC patients based on tumor stage.

Methods  We first analyzed the microarray expression data of ccRCC patients from the Gene Expression Omnibus 
(GEO) database and categorized them into two groups based on the disease stage (early and late stage). Subse-
quently, the GEO2R tool was applied to screen out the genes that were highly expressed in all GEO datasets. Finally, 
the clinicopathological data of the two patient groups were obtained from The Cancer Genome Atlas (TCGA) data-
base, and the differences were compared between groups. Survival analysis was performed to evaluate the prog-
nostic value of candidate genes (PSAT1, PRAME, and KDELR3) in ccRCC patients. Based on the screened gene PSAT1 
and clinical parameters that were significantly associated with patient prognosis, we established a new nomogram 
model, which was further optimized to a single clinical variable-based model. The expression level of PSAT1 in ccRCC 
tissues was further verified by qRT-PCR, Western blotting, and immunohistochemical analysis.

Results  The datasets GSE73731, GSE89563, and GSE150404 identified a total of 22, 89, and 120 over-expressed dif-
ferentially expressed genes (DEGs), respectively. Among these profiles, there were three genes that appeared in all 
three datasets based on different stage groups. The overall survival (OS) of late-stage patients was significantly shorter 
than that of early-stage patients. Among the three candidate genes (PSAT1, PRAME, and KDELR3), PSAT1 was shown 
to be associated with the OS of patients with late-stage ccRCC. Multivariate Cox regression analysis showed that age, 
tumor grade, neoadjuvant therapy, and PSAT1 level were significantly associated with patient prognosis. The concord-
ance indices were 0.758 and 0.725 for the 3-year and 5-year OS, respectively. The new model demonstrated superior 
discrimination and calibration compared with the single clinical variable model. The enhancer PSAT1 used in the new 
model was shown to be significantly overexpressed in tissues from patients with late-stage ccRCC, as demonstrated 
by the mRNA level, protein level, and pathological evaluation.
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Conclusion  The new prognostic prediction nomogram model of PSAT1 and clinicopathological variables combined 
was thus established, which may provide a new direction for individualized treatment for different-stage ccRCC 
patients.

Keywords  Clear cell renal cell carcinoma, PSAT1, Prognosis, Nomogram model

Introduction
Clear cell renal cell carcinoma (ccRCC) is a major his-
tological subtype of renal cell carcinoma (RCC), and 
accounts for approximately 60%-85% of RCC cases. 
ccRCC is characterized by epithelial cells of renal proxi-
mal convoluted tubules [1, 2]. The early stages of ccRCC 
typically present as asymptomatic, with approximately 
25%-30% patients exhibiting metastasis at the time of 
diagnosis [3]. The relapse or distant metastasis rate 
for ccRCC patients after radical nephrectomy exceeds 
20%. Furthermore, the resistance of ccRCC to radio-
therapy and chemotherapy results in a poor prognosis 
[4, 5]. Thus, improved prognosis prediction of advanced 
ccRCC patients will greatly assist clinicians in decision-
making. Moreover, the identification of key genetic driv-
ers for progression can aid in the development of new 
treatments.

Relevant prognostic factors have been observed in 
addition to the American Joint Committee on Can-
cer (AJCC) Tumor Node Metastasis (TNM) stage [6]. 
It is worth noting that gene expression profiling has the 
potential to classify different tumor types because of 
the significant involvement of genes in tumor devel-
opment and metastasis [7]. The rapid development of 
gene sequencing technology has made Gene Expression 
Omnibus (GEO) and The Cancer Genome Atlas (TCGA) 
databases increasingly important in bio-informatics 
analysis [8, 9]. These databases offer sequencing data for 
discovering new functional genes and analyzing their 
impact on prognosis. Thus, the analysis of the objective 
need for clinical variable gene combinations and nomo-
grams can serve as an effective tool in the development of 
individualized patient treatment strategies.

Nomograms are established based on Cox regression 
analysis results and are widely used for cancer prognosis, 
primarily because of their ability to reduce statistical pre-
dictive models to a single numerical estimate of the prob-
ability of an event, such as death or recurrence [10, 11]. 
In ccRCC patients, a nomogram combining differentia-
tion-related gene (DRG)-based risk score and prognostic 
clinicopathological variables was previously constructed 
to provide a visual method for determining prognosis 
[12]. However, another nomogram based on risk gene 
signature and clinical features may provide a practical 
method for recurrence prediction and facilitate person-
alized management of ccRCC patients after surgery [13]. 

Thus, research on the prediction model based on tumor 
stage requires further investigation.

This study found the key prognostic genes affecting dif-
ferent stages of ccRCC. Phosphoserine aminotransferase 
1 (PSAT1) is a protease of class V pyridoxal phosphate-
dependent aminotransferase family. A gene mutation in 
PSAT1 leads to metabolic and genetic disorders such as 
phosphoserine aminotransferase deficiency, serine defi-
ciency, and Neu-Laxova syndrome, wherein patients 
require postnatal serine and glycine supplementation for 
symptom alleviation. In recent years, an increasing num-
ber of investigations have shown that PSAT1 is highly 
associated with the occurrence, development, treatment, 
and prognosis of various cancers [14–18]. Therefore, the 
objective of this study was to conduct a comprehensive 
bioinformatics analysis to identify the prognostic genes 
in patients at different stages of ccRCC and to develop 
a new nomogram model for predicting overall survival 
(OS) in patients with late-stage ccRCC based on the data 
from the GEO and TCGA databases.

Materials and methods
Acquisition of microarray data
The discovery phase involved the identification of data-
sets comparing mRNA expression in tissues of patients 
with late-stage (stage III+ stage IV) ccRCC with that 
in the tissues of patients with early-stage (stage I+ 
stage II) ccRCC. Gene expression profiles of GSE73731 
(with 256 samples), GSE89563 (with 16 samples), and 
GSE150404 (with 60 samples) were obtained from the 
National Center for Biotechnology Information (NCBI) 
GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). The 
GSE73731 dataset was based on the GPL570 platform, 
whereas GSE89563 and GSE150404 were based on the 
GPL17692 platform.

Screening for integrated differentially expressed genes 
(DEGs) at different stages
The GEO2R tool, which relies on the R package “Limma” 
provided by the GEO database, was used for identifying 
DEGs in each dataset. The cut-off criteria for screening 
over-expressed DEGs were adjusted p-values < 0.05 and 
log2FC > 1. The significantly up-regulated genes were 
separately extracted.

Genes over-expressed in all datasets were identified by 
constructing a Venn diagram using an online tool (http://​

https://www.ncbi.nlm.nih.gov/geo/
http://bioinformatics.psb.ugent.be/webtools/Venn/
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bioin​forma​tics.​psb.​ugent.​be/​webto​ols/​Venn/), which 
depicted three lists of up-regulated genes. The expression 
levels of all genes and survival analysis of selected genes 
at different stages were verified using the Assistant for 
Clinical Bioinformatics (ACBI) tool (https://​www.​aclbi.​
com). The levels of potential hub genes were determined 
using R software to create a heatmap.

Collection of clinical and bioinformatics data
The TCGA database was accessed on June 9, 2023, and 
the clinical data including tumors RNA expression data 
of 532 ccRCC patients were collected (https://​tcga-​data.​
nci.​nih.​gov/). Clinical parameters included sex, age, race, 
pathologic T stage, pathologic N stage, pathologic M 
stage, grade, neoadjuvant therapy, vital status, and fol-
low-up duration (days). Depending on the stage of ccRCC 
patients, we divided the patients into late-stage and early-
stage groups with the help of the ACBI module of TCGA 
(https://​www.​aclbi.​com/​static/​index.​html#/​tcga). The 
RNA sequencing expression profiles and corresponding 
clinical information by stage-group downloaded from the 
TCGA dataset (https://​portal.​gdc.​com) were matched 
with the TCGA-ccRCC dataset (https://​tcga-​data.​nci.​nih.​
gov/). Considering the influence of surgical factors, we 
excluded the data of patients whose follow-up time was 
less than 30 days. The median RNA expression value in 
the two groups was regarded as the cut-off to the RNA 
expression levels as high or low in each group.

Development of risk prediction model
According to the TCGA data, we developed a nomogram 
combining gene expression with clinical information 
(new model) for the prediction of 3-year and 5-year OS 
in individuals with different stages of ccRCC. Another 
nomogram only using clinical variables was developed 
for a head-to-head comparison with the first comprehen-
sive model in ccRCC patients at different stages.

Patients and tissue specimens
A total of 20 pairs of ccRCC specimens were obtained 
from patients who underwent radical nephrectomy or 
partial nephrectomy at the Affiliated Hospital of Jiang-
nan University. None of the patients in our study received 
neoadjuvant chemotherapy. In all, 20 matched fresh 
ccRCC specimens (10 pairs of late-stage cases and 10 
pairs of early-stage cases) and adjacent noncancerous 
renal tissues were selectively used for qRT-PCR, West-
ern blotting, and immunohistochemical analysis. The 
diagnosis for each patient was confirmed by histopatho-
logical analysis. Informed consent was obtained from the 
patients before inclusion in the study, and the study pro-
tocol was approved by the Ethics Committee of the Affili-
ated Hospital of Jiangnan University.

RNA extraction and qRT‑PCR assays
Total RNA was extracted by RNA-easy (RC101, 
Vazyme, Nanjing, CN) according to the reagent 
instructions. In all, 1 µg of total RNA was used for 
cDNA synthesis using a cDNA reverse transcription 
kit (R323, Vazyme, Nanjing, CN). Real-time PCR was 
performed in triplicates on a Bio-Rad CFX96 PCR 
system to detect PSAT1expression. The results were 
normalized to the expression of GAPDH. The primer 
sequences are listed below: PSAT1-F: ACA​GGA​GCT​
TGG​TCA​GCT​AAG, PSAT1-R: CAT​GCA​CCG​TCT​
CAT​TTG​CG; GAPDH-F: GGA​GCG​AGA​TCC​CTC​
CAA​AAT, GAPDH-R: GGC​TGT​TGT​CAT​ACT​TCT​
CATGG.

Immunohistochemistry analysis
The ccRCC tissue samples were obtained from the 
Affiliated Hospital of Jiangnan University according to 
institutional guidelines. Tissue paraffin blocks were sec-
tioned, and stained with antibodies specific to PSAT1 
(10501-1-AP: 1:400, Proteintech, Wuhan, CN), followed 
by scanning with a Pannoramic Scanner (3DHISTECH, 
Budapest, Hungary).

Western blotting
The kidney tissues were treated destructed and then 
lysed by boiling for 10 min in sample buffer (2% SDS, 
10% glycerol, 10% β-mercaptoethanol, bromophenol 
blue, and Tris-HCl, pH = 6.8). The lysates were fraction-
ated by SDS-PAGE and the isolates were transferred to 
PVDF membranes (Millipore, IPVH00010, NH, US). The 
blots were probed with specific primary antibodies fol-
lowed by a secondary antibody and the membranes were 
then detected by ECL (Sigma, WBULS0500, MO, US). 
PSAT1 (10501-1-AP: 1:10000) and GAPDH (66009-1-Ig; 
1:10000) antibodies were purchased from Proteintech 
Group (IL, US). Secondary antibodies were conjugated 
with HRP (Proteintech Group; SA00001-1, SA00001-2; 
1:10000). Uncropped WB are shown in Fig. S3.

Statistical analyses
Statistical analyses were conducted using SPSS version 
27.0 (SPSS Inc., IBM Corp., Armonk, NY, USA) and R 
software for Windows, version 4.2.3. Data are presented 
as mean ± SD or median and range. Student’s t test was 
performed for normally distributed continuous variables, 
while Mann-Whitney U test was performed for non-nor-
mally distributed data. Chi square or Fisher’s exact test 
was applied to compare categorical variables.

The Cox proportional hazard regression model was 
used to estimate the hazard ratio and its 95% confidence 

http://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.aclbi.com
https://www.aclbi.com
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
https://www.aclbi.com/static/index.html#/tcga
https://portal.gdc.com
https://tcga-data.nci.nih.gov/
https://tcga-data.nci.nih.gov/
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interval (CI) for each potential risk factor, and data were 
visualized through Forest plots. The stepwise multivari-
ate Cox regression analysis included inclusion and exclu-
sion criteria of type I error = 0.1.

Discrimination reflects the ability of a model to distin-
guish events and non-events correctly, and these were 
validated using C-statistics. The Concordance index 
(C-index) is analogous to the area under the receiver 

Fig. 1  Screening and identification of differentially co-expressed genes. A Different colors represent the number of up-regulated genes in different 
datasets, and the middle intersection represents the number of co-expressed genes in the three GSE (GSE73731, GSE89563, GSE150404) datasets. 
B PSAT1 expression. C PRAME expression. D KDELR3 expression. Red dots represent the number of cases in the late-stage ccRCC group, blue dots 
represent the number of cases in the early-stage ccRCC group. Horizontal line in the middle of the box: represents the median. Top and bottom 
lines of the box: represent the upper and lower quartiles. The bin size represents the quartile spacing. G1: late-stage group; G2: early-stage 
group. ****p < 0.0001. E The heatmap illustrates the expression levels of potential 3 genes. Each row represents the expression level of each gene 
in different samples, and each column represents the expression level of all genes in each sample
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operating characteristic (ROC) curve. The predictive 
capacity of models was summarized using ROC curves 
[19]. Calibration refers to the closeness between the pre-
dicted probabilities and the actual outcomes, and this 
was validated using calibration plots [20].

A two-sided p-value of < 0.05 was considered statisti-
cally significant.

Results
Identification of DEGs in ccRCC patients at different stages
We downloaded three ccRCC gene expression profiles 
(GSE73731, GSE89563, and GSE150404) from the GEO 
database and screened 22, 89, and 120 over-expressed 
DEGs, respectively, using the GEO2R tool to differentiate 
between late-stage and early-stage patients. A Venn dia-
gram was constructed (Fig. 1A) and three genes (PSAT1, 
PRAME, and KDELR3) that were over-expressed in 
the three profiles were identified. The three selected 
genes were verified in TCGA (Fig.  1B-D), and the gene 
PSAT1 was the most significantly differentially expressed 
(Fig. 1E).

Determination of the effect of PSAT1 on the prognosis 
of late‑stage patients
The clinicopathological data were integrated with the 
expression levels of PSAT1, PRAME, and KDELR3, 
which matched the corresponding data in the two data-
bases based on row-name, and finally, we included 529 
cases. The median of hub-gene expression level was used 
to divide patients into the up-regulated and down-regu-
lated subgroups within different stage groups. Patients 
with a follow-up duration of < 30 days or those who had 
no clinical OS information were excluded. Finally, data 
of 499 ccRCC patients for OS in different disease stages 
was obtained, wherein the early-stage group included 303 
patients and late-stage group included 196 patients.

Detailed characteristics were compared between the 
two groups. The mean ages of patients in the early-stage 
and late-stage groups were 59.58 ± 12.69 and 61.59 ± 11.40 
years, respectively, which showed no statistically signifi-
cant difference (p = 0.073). Besides, no significant differ-
ence was also observed between the two groups with 
regard to gender, ethnicity, and neoadjuvant therapy 
(all p > 0.05). However, a significant difference in the 
expressions of PSAT1, PRAME, KDELR3 was observed 
between groups; these genes were highly expressed in 
patients with late-stage ccRCC than in those with early-
stage ccRCC (all p < 0.05) (Table 1).

Based on the ACBI-TCGA database, we found sig-
nificance differences in the OS curves between the two 
groups (Fig.  2A, log-rank p < 0.001). Kaplan–Meier 
curves of OS according to gene expression level for hub-
genes in the different stage groups showed that only 

PSAT1 expression exhibited statistical significance in 
terms of OS curves (Fig.  2B, log-rank p = 0.001). High 
levels of PSAT1 expression were associated with a poor 
prognosis in late-stage patients, whereas the other two 
genes did not have a prognostic value with regard to OS 
in patients with different stages of ccRCC (Fig. S1).

Confirm risk/protect factors of prognosis
To search for potentially relevant risk factors, uni-
variate Cox-regression analysis revealed that six vari-
ables, age (p < 0.001), grade (p = 0.002), neoadjuvant 
therapy (p = 0.045), PSAT1 expression (p < 0.001), 
PRAME expression (p = 0.031), and KDELR3 expression 
(p = 0.025), showed a significant correlation with OS in 
the two stage groups of patients. The remaining param-
eters did not indicate significant statistical associations 
(all p > 0.05) (Fig. 3A and Table 2).

The significant risk factors determined in the univari-
ate analysis were further evaluated via multivariate Cox-
analysis. Finally, age [HR: 1.032, 95% CI: 1.018 to 1.046, 

Table 1  Comparison of relative factors between the two groups

* Statistically significant P < 0.05

Variables Early stage Late stage t/χ2 P value

Age (years) 59.58 ± 12.69 61.59 ± 11.40 1.798 0.073

Gender 0.429 0.513

  Male 197 (65.0) 133 (67.9)

  Female 106 (35.0) 63 (32.1)

Ethnic 4.599 0.100

  White 264 (87.1) 182 (92.9) 0.036 0.850

  Asian 5 (1.7) 3 (1.5) 0.596 0.440

  Black 34 (11.2) 11 (5.6) 4.587 0.032

Grade 108.968 < 0.001*

  G1 12 (4.0) 0 (0.0) 2.793 0.131

  G2 174 (57.4) 41 (20.9) 37.089 < 0.001*

  G3 104 (34.3) 93 (47.5) 27.863 < 0.001*

  G4 13 (4.3) 62 (31.6) 34.522 < 0.001*

  G1 + G2 186 (61.4) 41 (20.9) 78.60 < 0.001*

  G3 + G4 137 (38.6) 155 (79.1)

Neoadjuvant 0.117 0.732

  Yes 11 (3.1) 6 (3.6)

  No 292 (96.9) 190 (96.4)

PSAT1 Expression 23.065 < 0.001*

  High 125 (41.3) 124 (63.3)

  Low 178 (58.7) 72 (36.7)

PRAME Expression 40.711 < 0.001*

  High 117 (38.6) 133 (67.9)

  Low 186 (61.4) 63 (32.1)

KDELR3 Expression 29.854 < 0.001*

  High 122 (40.3) 128 (65.3)

  Low 181 (59.7) 68 (34.7)
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p < 0.001], grade (HR: 1.491, 95% CI: 1.022 to 2.175, 
p = 0.038), and PSAT1 expression (HR: 1.855, 95% CI: 
1.322 to 2.604, p < 0.001) were identified as independent 
risk factors of OS in the two groups, whereas neoadju-
vant therapy (HR: 0.432, 95% CI: 0.221 to 0.827, p = 0.01) 
was identified as a protective factor (Fig. 3B and Table 2).

Development of a nomogram combining gene and clinical 
variables
Based on the abovementioned results, we developed a 
prediction model and generated a graphical nomogram 
predicting the probability of 3-year and 5-year OS in the 
late-stage compared with early-stage groups (Fig.  4A). 
PSAT1 was included in the nomogram of OS and the 
predictive accuracy of the nomogram calculated by AUC 
was 0.720 for 3-year OS and 0.719 for 5-year OS (Fig. 4B-
C), which revealed moderate discriminatory ability.

To verify the importance of PSAT1 expression in late-
stage patients, we also developed prediction models 
based on other statistically significant clinical parameters 
(Fig. S2), except PSAT1. The AUCs were 0.696 for 3-year 
OS and 0.684 for 5-year OS (Fig. 4D-E). The results dem-
onstrated that the predictive accuracy of the new model 
was significantly higher than that of model considering 
only clinical parameters. Further, the calibration plots of 
the new model suggested good agreement between the 
observed outcome and predicted probability unlike clini-
cal parameter model (Fig. 5).

Validation the expression of PSAT1 at different molecular 
levels
To validate the role of PSAT1 in ccRCC development and 
progression, we first examined PSAT1 expression status 
in ccRCC tissues. PSAT1 mRNA levels were detected in 

Fig. 2  Kaplan-Meier plots for ccRCC patients. A Overall survival in different stage groups. The mortality rates of the two groups show a downward 
trend, which decreased rapidly at the beginning and then leveled off. The red curve represents the late-stage group, blue curve represents 
the early-stage group. B PSAT1 expression level about late-stage patients for overall survival. The mortality rates of the different expression level 
showed a downward trend, which decreased rapidly at the beginning and then leveled off. The blue curve represents the high-expression, green 
curve represents the low-expression. Follow-up time for horizontal axis and vertical axis for survival rate. Survival curves were obtained by linking 
the corresponding survival rates at each time point. G1: late-stage group; G2: early-stage group. p < 0.05 was considered statistically significant
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20 ccRCC tissues and matched noncancerous adjacent 
tissues. The results demonstrated that the mRNA expres-
sion of PSAT1 was significantly increased in late-stage 
ccRCC tumor tissues (Fig.  6A).Quantitative values for 
each specific pair of tissues are described in Fig. S5A.

We further detected the protein expression levels of 
PSAT1 in 20 pairs of tumor and adjacent noncancerous 
tissues, including tissues from 10 pairs from early-stage 
and 10 pairs from late-stage cases. We observed that the 
PSAT1 expression was up-regulated in all tumor tissues 
compared with matched noncancerous tissues, and that 
the expression was higher in late-stage tumor tissues 
(Fig.  6B). Hematoxylin-Eosin (HE) staining showed that 
the tumor tissue had clear cell outline, transparent cyto-
plasm, centered nucleus, cells arranged in sheets, and 
less interstitium compared with the normal adjacent tis-
sue, and the results were more obvious in patients with 

late-stage ccRCC (Fig. 6C). Immunohistochemical stain-
ing in serial sections also confirmed a positive correlation 
between the expression levels of PSAT1 in human ccRCC 
tumor tissues and the disease stage (Fig. 6C). The expres-
sion level was also higher in late-stage cases. In Fig. S5B, 
immunohistochemical scores and quantitative values of 
the proportion of positive cells in pathologically stained 
sections are described.

Discussion
The prognosis of ccRCC patients is closely associated 
with tumor stage, with the later stages often indicating 
a poor prognosis [21]. Treatment options for advanced 
stage are limited. Currently, there is a scarcity of effec-
tive therapeutic strategies for recurrent and metastatic 
ccRCC [22]. Thus, the development of a new prognostic 

Fig. 3  Influence factors for overall survival by Cox-regression analysis. A Univariate analysis. B Multivariate analysis. Short line parallel to the X-axis, 
the length of the line segment corresponds to the 95% CI. Abscissa values correspond on both ends of the line around 95% CI of two Numbers, 
the square line corresponding to the HR. Perpendicular to the X axis of the straight line, known as invalid. Crossing this line indicates that the results 
are not statistically significant. HR > 1 is on the right side of the line, indicating a risk factor. HR < 1 is on the left side of the line, indicating a protective 
factor. HR: Hazard Ratio; CI: Confidence internal. Statistically significant p < 0.05
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tool is crucial for identifying high-risk patients requir-
ing additional treatment and attention. Moreover, finding 
a promising therapeutic target is crucial for develop-
ing anti-tumor drugs and improving the survival rate of 
patients with advanced ccRCC.

With the advancement of bioinformatics, an increasing 
number of genes have been identified as closely associ-
ated with ccRCC occurrence and development [23, 24]. 
Accordingly, we focused on gene expression in differ-
ent stages of ccRCC using the GEO dataset and verified 
our findings with ACBI-TCGA. In our study, we found 
three DEGs (PSAT1, PRAME, and KDELR3) between 
late-stage patients and early-stage patients across three 
mRNA arrays. The post-match data included complete 
variables for comparison in both stage groups. Except 
for the stage parameter, another principal clinical fac-
tor for ccRCC prognosis is the grade parameter [25, 26]. 
We concluded that late-stage group patients also tended 
to have a higher disease grade. This further confirms 
that tumor staging and histological grading are the main 
parameters associated with ccRCC prognosis [27].

In survival analysis, we found that patients in the late 
stage of the disease showed a poor prognosis, and PSAT1 
was the only gene associated with OS in this group. How-
ever, the relative expression of the target genes may be 
involved in the prognosis [23]. The ccRCC clinicopatho-
logical information downloaded from TCGA was pro-
cessed via univariate and multivariate Cox regression 
analysis. Age, PSAT1 expression, grade, and neoadju-
vant therapy were found to be significant independent 

prognostic factors associated with OS. Neoadjuvant ther-
apy has been proved to be a protective factor. However, 
in previous studies, the benefit of neoadjuvant therapy 
for locally advanced ccRCC with currently available ther-
apeutic agents has been controversial [28]. Christopher 
et  al. [29] suggested that neoadjuvant treatment with 
pazopanib is effective in treating patients with localized 
ccRCC, which is similar to the findings of our study.

Various nomograms have been identified to determine 
the prognosis of ccRCC patients. For instance, Xia et al. 
[12] constructed a prognostic nomogram based on the 
prognostic risk signature and clinicopathological charac-
teristics, which exhibited high accuracy and a robust pre-
dictive performance. The study by Zhu et al. [30] reported 
that combining methylation risk scores with conventional 
clinical covariates improved the prediction of clinical 
prognosis in ccRCC patients. In our study, we developed 
a new graphical nomogram that combines PSAT1 expres-
sion with clinicopathological data for predicting OS in 
ccRCC patients at different stages. By assigning values to 
clinical variables and PSAT1 expression for each patient, 
we calculated a total score that predicts the OS of late-
stage patients at 3 and 5 years. The abovementioned esti-
mates can be used for patient counseling and informed 
decision-making. The C-index, AUC, and calibration 
curve indicators from the entire TCGA set confirmed the 
discriminative accuracy of our nomogram, possibly mak-
ing it a preferred predictive model. Moreover, the pre-
dictive power of our new model was higher than that of 
single clinical variable model.

Table 2  COX regression analysis factors affecting overall survival

HR Hazard Ratio, CI Confidence internal, G4 + G3 High Grade (HG), G2 + G1 Low Grade (LG)
* Statistically significant P < 0.05

Variable Univariate analysis Multivariate analysis

HR 95%CI P HR 95%CI P

Age (years) 1.030 1.016–1.044 < 0.001* 1.032 1.018–1.046 < 0.001*

Gender

  Male /Female 1.096 0.800-1.501  0.570

Ethnic

  White /Asian /Black 1.019  0.750-1.386  0.903 

Grade

  G4 + G3/G2 + G1 1.796  1.247-2.588  0.002  1.491  1.022-2.175  0.038 

Neoadjuvant

  Yes /No 0.520  0.247-0.986  0.045  0.432  0.221-0.827  0.010 

PSAT1 Expression

  High/Low 1.884 1.359-2.612  <0.001*  1.855  1.322-2.604  <0.001* 

PRAME Expression

  High/Low 1.434  1.033-1.990  0.031  1.355  0.965-1.903  0.080 

KDELR3Expression

  High/Low 1.448  1.048-2.001  0.025  1.266  0.901-1.780  0.175 
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Fig. 4  Predicting and verification of 3-year and 5-year overall survival. A The risk factors were represented by points on the axis, with each 
factor corresponding to a line drawn upward. The total points located on the axis indicated the probability of 3-year and 5-year overall survival, 
represented by a line drawn downward to the survival axis. B 3-year overall survival in new mode. C 5-year overall survival in new model. D 3-year 
overall survival in only clinical variables model. E 5-year overall survival in only clinical variables model. AUC represents the area under the ROC 
curve. AUC value is between 0.5 and 1, the closer to 1, the better the performance of model diagnosis, the higher the accuracy. (1) 0.7 < AUC < 0.9, 
indicating that the accuracy of the model is good and has certain clinical application value. (2) 0.5 < AUC < 0.7, indicating that the accuracy of this 
index/model is low and has little clinical application value. AUC: area under curve
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Of the three hub-genes identified in our study, PSAT1 
was finally included in the model to predict the survival 
of late-stage ccRCC patients. Previous research reported 
that the dysregulation of PSAT1 activity may alter glu-
cose and glutamine utilization in serine biosynthesis, 
promoting tumorigenesis and chemoresistance in colo-
rectal cancers given that PSAT1 is a metabolism-related 
gene [31, 32]. Increased transcription of PSAT1, caused 
by promoter hypomethylation, was also linked to a poor 
response to tamoxifen therapy and cancer recurrence in 
early-stage breast cancer [33, 34]. Furthermore, studies 
have shown that the up-regulation of PSAT1 promotes 
cell proliferation and is associated with a poor outcome 
in patients with non-small cell lung cancer [35, 36]. These 
studies indicate a strong correlation between PSAT1 lev-
els and tumor progression as well as prognosis.

The confirmation of the association of PSAT1 expres-
sion levels with ccRCC indicates its involvement in 
metabolism, development, and progression. Zhang et al. 
[37] screened ccRCC-related glycolytic genes in pub-
lic databases and constructed a prediction model of 13 
genes including PSAT1, which could be valuable for diag-
nosing and predicting ccRCC. The study by Cheng et al. 
[38] introduced a new gene signature, including PSAT1, 

to determine the ccRCC prognosis in TCGA cohorts 
based on amino acid metabolism-related genes. In light 
of the GEPIA2 analysis, some other tumors (BLCA, 
CESC, COAD, DLBC, GBM, LGG, LUAD, LUSC, OV, 
PRAD, READ, STAD, THYM, UCEC, and UCS) are high 
expressed of PSAT1 (Fig. S4), which bodes well for the 
possibility of studying PSAT1 as a biomarker in other 
tumors. However, for advanced stage ccRCC patients, the 
role of PSAT1 remains elusive. In our research, PSAT1 
was found to be highly expressed in patients with late-
stage ccRCC and affected the OS of patients. Our model 
further demonstrated the application value of PSAT1 in 
accurately determining the prognosis in advanced ccRCC 
patients.

The results of mRNA and protein level validation 
may provide guidance for clinical decision making. For 
example, in clinical practice, when the clinical renal cell 
carcinoma patients after surgical treatment, the histo-
pathology suggests that the renal cell carcinoma is clear 
cell carcinoma, the expression of PSAT1 can be further 
detected by immunohistochemistry. If PSAT1 expression 
is positive, the prognosis of the patients is poor, which 
provides a reference for clinicians for the next treatment 
of the patients.

Fig. 5  The calibration curve’s accuracy represents different models’ predictions. A 3-year overall survival in new model. B 5-year overall survival 
in new model. C 3-year overall survival based solely on clinical variables model. D 5-year overall survival based solely on clinical variables model. 
Diagonal dotted lines in the figure is the reference line, the predicted probability is equal to the probability of the actual situation, the farther 
off diagonal suggests that the bigger the error of the prediction. (1) If the predicted value is equal to the actual value, the plotted fit line coincides 
with the reference line. (2) If the predicted value is greater than the actual value, that is, the risk is overestimated, the fitted line is below the 
reference lin. (3) If the predicted value is less than the actual value, that is, the risk is underestimated, the fitted line is above the reference line
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To the best of our knowledge, this is the first nomo-
gram to predict OS in patients with different stages of 
ccRCC by combining genetic information and clinical 
data. Furthermore, the significance of PSAT1 in late-
stage ccRCC was confirmed in this study, providing more 
specific and precise insights on its role.

Conclusion
The prognostic gene expression profiles of ccRCC 
patients at different stages were determined in this study. 
The high expression of PSAT1 in tumor tissues, espe-
cially late-stage tumor tissues, combined with clinical 
data, in this nomogram enhances its prognostic value in 
different-stage ccRCC patients, particularly for the pre-
diction of OS.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12885-​024-​12183-z.

Supplementary Material 1. 

Supplementary Material 2. 

Supplementary Material 3. 

Supplementary Material 4. 

Supplementary Material 5. 

Acknowledgements
We would like to thank all the members in the list for experimental materials, 
technical assistance, helpful discussions, and comments.

Authors’ contributions
Conceptualization: RW, JW, JL. Methodology: JW, RW, YYM, XMH. Investiga-
tion: RW, YYM, JW, XMH. Visualization: JW, RW. Project administration: RW, JL. 

Fig. 6  Verification of PSAT1 expression levels. A PSAT1 mRNA levels are elevated in 20 pairs of ccRCC tissues compared with matched tissues. 
B PSAT1 protein levels in 20 pairs of ccRCC tissues and matched noncancerous tissues were detected by WB. 20 pairs ccRCC samples: (10 pairs: 
late-stage; 10 pairs: early-stage). The abscissa represents the sample type, and the ordinate represents the relative expression values of mRNA 
or protein levels in tumor tissues compared with adjacent normal tissues. The level of the columns represents the level of expression. qRT-PCR 
and WB data are presented as the mean ± SD. (N: noncancerous, T: tumor; ****P < 0.0001, ***P < 0.001; ns: no significance). C The representative 
images of HE staining and PSAT1 immunohistochemistry in late-stage and early-stage ccRCC pair tissues. The scale bars indicate 100 µm

https://doi.org/10.1186/s12885-024-12183-z
https://doi.org/10.1186/s12885-024-12183-z


Page 12 of 13Wang et al. BMC Cancer          (2024) 24:463 

Supervision: RW, JL, YQC. Writing – original draft: JW. Writing – review & edit-
ing: RW, JL. All authors read and approved the final manuscript.

Funding
Research was supported by the National Natural Science Foundation of China 
(No. 31771539 & 31471128); by the Key Research and Development Program 
of Jiangsu Province Grant (No. BE2018624); by the Medical Research Program 
of Affiliated Hospital of Jiangnan University (No.YJY202306).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Patient tissues were collected from the Affiliated Hospital of Jiangnan Univer-
sity. This study was undertaken with the understanding and written consent 
of each subject, with approval of the Affiliated Hospital of Jiangnan University 
ethics committee (Wuxi, China). All patients signed written informed consent. 
(Approval document number: LS2023098).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Urology, First Affiliated Hospital of Nanjing Medical University, 
Nanjing Medical University, Nanjing 210008, China. 2 Department of Urology, 
Affiliated Hospital of Jiangnan University, Jiangnan University, Wuxi 214122, 
China. 3 Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, 
Jiangnan University, Jiangsu 214002, China. 4 Wuxi School of Medicine, Jiang-
nan University, Wuxi 214122, China. 

Received: 7 November 2023   Accepted: 26 March 2024

References
	1.	 Sanchez DJ, Simon MC. Genetic and metabolic hallmarks of 

clear cell renal cell carcinoma. Biochim Biophys Acta Rev Cancer. 
2018;1870(1):23–31.

	2.	 Hakimi AA, Pham CG, Hsieh JJ. A clear picture of renal cell carcinoma. Nat 
Genet. 2013;45(8):849–50.

	3.	 Karakiewicz PI, Briganti A, Chun FK, Trinh QD, Perrotte P, Ficarra V, Cindolo 
L, De la Taille A, Tostain J, Mulders PF, et al. Multi-institutional valida-
tion of a new renal cancer-specific survival nomogram. J Clin Oncol. 
2007;25(11):1316–22.

	4.	 Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, 
Fernandez-Pello S, Giles RH, Hofmann F, Hora M, Kuczyk MA, et al. Euro-
pean Association of Urology guidelines on renal cell carcinoma: the 2019 
update. Eur Urol. 2019;75(5):799–810.

	5.	 Wood CG. Multimodal approaches in the management of locally 
advanced and metastatic renal cell carcinoma: combining surgery 
and systemic therapies to improve patient outcome. Clin Cancer Res. 
2007;13(2 Pt 2):697s–702s.

	6.	 Kanao K, Mizuno R, Kikuchi E, Miyajima A, Nakagawa K, Ohigashi T, 
Nakashima J, Oya M. Preoperative prognostic nomogram (probabil-
ity table) for renal cell carcinoma based on TNM classification. J Urol. 
2009;181(2):480–5; discussion 485.

	7.	 Rahimi A, Gonen M. Discriminating early- and late-stage can-
cers using multiple kernel learning on gene sets. Bioinformatics. 
2018;34(13):i412–21.

	8.	 Rau A, Flister M, Rui H, Auer PL. Exploring drivers of gene expression in 
the Cancer Genome Atlas. Bioinformatics. 2019;35(1):62–8.

	9.	 Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Mar-
shall KA, Phillippy KH, Sherman PM, Holko M, et al. NCBI GEO: archive for 

functional genomics data sets--update. Nucleic Acids Res. 2013;41(Data-
base issue):D991-995.

	10.	 Mariani L, Miceli R, Kattan MW, Brennan MF, Colecchia M, Fiore M, Casali 
PG, Gronchi A. Validation and adaptation of a nomogram for predicting 
the survival of patients with extremity soft tissue sarcoma using a three-
grade system. Cancer. 2005;103(2):402–8.

	11.	 Kattan MW. Nomograms are superior to staging and risk grouping 
systems for identifying high-risk patients: preoperative application in 
prostate cancer. Curr Opin Urol. 2003;13(2):111–6.

	12.	 Xia ZN, Wu JG, Yao WH, Meng YY, Jian WG, Wang TD, Xue W, Yu YP, Cai 
LC, Wang XY, et al. Identification of a differentiation-related prognostic 
nomogram based on single-cell RNA sequencing in clear cell renal cell 
carcinoma. Sci Rep. 2022;12(1):10973.

	13.	 Chen L, Luo Y, Wang G, Qian K, Qian G, Wu CL, Dan HC, Wang X, Xiao Y. 
Prognostic value of a gene signature in clear cell renal cell carcinoma. J 
Cell Physiol. 2019;234(7):10324–35.

	14.	 Debs S, Ferreira CR, Groden C, Kim HJ, King KA, King MC, Lehky T, Cowen 
EW, Brown LH, Merideth M, et al. Adult diagnosis of congenital serine 
biosynthesis defect: a treatable cause of progressive neuropathy. Am J 
Med Genet A. 2021;185(7):2102–7.

	15.	 Shapira Zaltsberg G, McMillan HJ, Miller E. Phosphoserine aminotrans-
ferase deficiency: imaging findings in a child with congenital microceph-
aly. J Matern Fetal Neonatal Med. 2020;33(6):1033–5.

	16.	 Jin HO, Hong SE, Kim JY, Jang SK, Kim YS, Sim JH, Oh AC, Kim H, Hong YJ, 
Lee JK, et al. Knock-down of PSAT1 enhances sensitivity of NSCLC cells to 
glutamine-limiting conditions. Anticancer Res. 2019;39(12):6723–30.

	17.	 Liu B, Jia Y, Cao Y, Wu S, Jiang H, Sun X, Ma J, Yin X, Mao A, Shang 
M. Overexpression of phosphoserine aminotransferase 1 (PSAT1) 
predicts poor prognosis and associates with tumor progression in 
human esophageal squamous cell carcinoma. Cell Physiol Biochem. 
2016;39(1):395–406.

	18.	 Hart CE, Race V, Achouri Y, Wiame E, Sharrard M, Olpin SE, Watkinson J, 
Bonham JR, Jaeken J, Matthijs G, et al. Phosphoserine aminotransferase 
deficiency: a novel disorder of the serine biosynthesis pathway. Am J 
Hum Genet. 2007;80(5):931–7.

	19.	 Cao R, Lopez-de-Ullibarri I. ROC curves for the statistical analysis of micro-
array data. Methods Mol Biol. 2019;1986:245–53.

	20.	 Zhang D, Hu J, Liu Z, Wu H, Cheng H, Li C. Prognostic nomogram in 
patients with epithelioid sarcoma: a SEER-based study. Cancer Med. 
2023;12(3):3079–88.

	21.	 Rossi SH, Klatte T, Usher-Smith J, Stewart GD. Epidemiology and screening 
for renal cancer. World J Urol. 2018;36(9):1341–53.

	22.	 Motzer RJ, McDermott DF, Escudier B, Burotto M, Choueiri TK, Ham-
mers HJ, Barthelemy P, Plimack ER, Porta C, George S, et al. Conditional 
survival and long-term efficacy with nivolumab plus ipilimumab versus 
sunitinib in patients with advanced renal cell carcinoma. Cancer. 
2022;128(11):2085–97.

	23.	 Roldan FL, Izquierdo L, Ingelmo-Torres M, Lozano JJ, Carrasco R, Cunado 
A, Reig O, Mengual L, Alcaraz A. Prognostic gene expression-based signa-
ture in clear-cell renal cell carcinoma. Cancers (Basel). 2022;14(15):3754.

	24.	 Klasson TD, LaGory EL, Zhao H, Huynh SK, Papandreou I, Moon EJ, Giaccia 
AJ. ACSL3 regulates lipid droplet biogenesis and ferroptosis sensitivity in 
clear cell renal cell carcinoma. Cancer Metab. 2022;10(1):14.

	25.	 Delahunt B, Eble JN, Egevad L, Samaratunga H. Grading of renal cell 
carcinoma. Histopathology. 2019;74(1):4–17.

	26.	 Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic 
parameters in renal cell carcinoma. Am J Surg Pathol. 1982;6(7):655–63.

	27.	 Lewis G, Maxwell AP. Early diagnosis improves survival in kidney cancer. 
Practitioner. 2012;256(1748):13–6, 12.

	28.	 Bindayi A, Hamilton ZA, McDonald ML, Yim K, Millard F, McKay RR, 
Campbell SC, Rini BI, Derweesh IH. Neoadjuvant therapy for localized and 
locally advanced renal cell carcinoma. Urol Oncol. 2018;36(1):31–7.

	29.	 Wood CG, Ferguson JE 3rd, Parker JS, Moore DT, Whisenant JG, Maygar-
den SJ, Wallen EM, Kim WY, Milowsky MI, Beckermann KE, et al. Neoad-
juvant pazopanib and molecular analysis of tissue response in renal cell 
carcinoma. JCI Insight. 2020;5(22):e132852.

	30.	 Zhu X, Ma X, Wu C. A methylomics-correlated nomogram predicts the 
recurrence free survival risk of kidney renal clear cell carcinoma. Math 
Biosci Eng. 2021;18(6):8559–76.



Page 13 of 13Wang et al. BMC Cancer          (2024) 24:463 	

	31.	 Ma L, Tao Y, Duran A, Llado V, Galvez A, Barger JF, Castilla EA, Chen J, 
Yajima T, Porollo A, et al. Control of nutrient stress-induced metabolic 
reprogramming by PKCzeta in tumorigenesis. Cell. 2013;152(3):599–611.

	32.	 Vie N, Copois V, Bascoul-Mollevi C, Denis V, Bec N, Robert B, Fraslon C, 
Conseiller E, Molina F, Larroque C, et al. Overexpression of phosphoserine 
aminotransferase PSAT1 stimulates cell growth and increases chemore-
sistance of colon cancer cells. Mol Cancer. 2008;7:14.

	33.	 Noh S, Kim DH, Jung WH, Koo JS. Expression levels of serine/glycine 
metabolism-related proteins in triple negative breast cancer tissues. 
Tumour Biol. 2014;35(5):4457–68.

	34.	 Pollari S, Kakonen SM, Edgren H, Wolf M, Kohonen P, Sara H, Guise T, 
Nees M, Kallioniemi O. Enhanced serine production by bone metastatic 
breast cancer cells stimulates osteoclastogenesis. Breast Cancer Res Treat. 
2011;125(2):421–30.

	35.	 Yang Y, Wu J, Cai J, He Z, Yuan J, Zhu X, Li Y, Li M, Guan H. PSAT1 regulates 
cyclin D1 degradation and sustains proliferation of non-small cell lung 
cancer cells. Int J Cancer. 2015;136(4):E39-50.

	36.	 Zhang WC, Shyh-Chang N, Yang H, Rai A, Umashankar S, Ma S, Soh 
BS, Sun LL, Tai BC, Nga ME, et al. Glycine decarboxylase activity drives 
non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell. 
2012;148(1–2):259–72.

	37.	 Zhang Y, Chen M, Liu M, Xu Y, Wu G. Glycolysis-related genes serve as 
potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid 
Med Cell Longev. 2021;2021:6699808.

	38.	 Cheng X, Deng W, Zhang Z, Zeng Z, Liu Y, Zhou X, Zhang C, Wang G. 
Novel amino acid metabolism-related gene signature to predict progno-
sis in clear cell renal cell carcinoma. Front Genet. 2022;13:982162.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	PSAT1 enhances the efficacy of the prognosis estimation nomogram model in stage-based clear cell renal cell carcinoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Acquisition of microarray data
	Screening for integrated differentially expressed genes (DEGs) at different stages
	Collection of clinical and bioinformatics data
	Development of risk prediction model
	Patients and tissue specimens
	RNA extraction and qRT-PCR assays
	Immunohistochemistry analysis
	Western blotting
	Statistical analyses

	Results
	Identification of DEGs in ccRCC patients at different stages
	Determination of the effect of PSAT1 on the prognosis of late-stage patients
	Confirm riskprotect factors of prognosis
	Development of a nomogram combining gene and clinical variables
	Validation the expression of PSAT1 at different molecular levels

	Discussion
	Conclusion
	Acknowledgements
	References


