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Abstract
Background  The identification of survival predictors is crucial for early intervention to improve outcome in acute 
myeloid leukemia (AML). This study aim to identify chest computed tomography (CT)-derived features to predict 
prognosis for acute myeloid leukemia (AML).

Methods  952 patients with pathologically-confirmed AML were retrospectively enrolled between 2010 and 2020. 
CT-derived features (including body composition and subcutaneous fat features), were obtained from the initial chest 
CT images and were used to build models to predict the prognosis. A CT-derived MSF nomogram was constructed 
using multivariate Cox regression incorporating CT-based features. The performance of the prediction models was 
assessed with discrimination, calibration, decision curves and improvements.

Results  Three CT-derived features, including myosarcopenia, spleen_CTV, and SF_CTV (MSF) were identified as the 
independent predictors for prognosis in AML (P < 0.01). A CT-MSF nomogram showed a performance with AUCs of 
0.717, 0.794, 0.796 and 0.792 for predicting the 1-, 2-, 3-, and 5-year overall survival (OS) probabilities in the validation 
cohort, which were significantly higher than the ELN risk model. Moreover, a new MSN stratification system (MSF 
nomogram plus ELN risk model) could stratify patients into new high, intermediate and low risk group. Patients with 
high MSN risk may benefit from intensive treatment (P = 0.0011).

Conclusions  In summary, the chest CT-MSF nomogram, integrating myosarcopenia, spleen_CTV, and SF_CTV 
features, could be used to predict prognosis of AML.
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Introduction
Acute myeloid leukemia (AML) is the common hema-
tological malignancy comprising approximately 15% 
of leukemia cases. AML is driven by a series of genetic 
and epigenetic events, with induction chemotherapy 
and hematopoietic stem cell transplantation remaining 
the standard treatments [1, 2]. Despite a relatively high 
response rate, the prognosis of AML patients varies. The 
risk factors for AML with poor prognosis include clinical 
demographics, blood cell counts, serum oncological indi-
cators, protein expression, and gene profiles [3, 4]. How-
ever, there is still an urgent need for new noninvasive, 
objective and time-efficient methods to identify those 
with poor prognosis and aid choice of therapy.

Chest computed tomography (CT) is the most widely 
used imaging method for routinely assessing lung con-
ditions in all malignant diseases, including AML. How-
ever, it is challenging to predict prognostic status based 
on the traditional radiological evaluation of CT images 
in AML. CT based body composition evaluation, such as 
of myosarcopenia, refers to the computational extraction 
and analysis of imaging features from clinically acquired 
radiological images. Sarcopenia (loss of lean muscle 
mass) is an important reason for longer hospital stays and 
premature mortality in patients with nonmalignant dis-
ease [5]. Recently, the preliminary prognostic impact of 
sarcopenia has also been highlighted in AML [6–8] and 
acute lymphoblastic leukemia patients [9], demonstrat-
ing the potential for imaging-based prognostic prediction 
in leukemia. Notably, these studies were all conducted 
based on abdominal CT imaging. Unfortunately, AML 
patients do not routinely undergo abdominal CT scans 
unless they have coexisting abdominal diseases. Instead, 
a pretreatment chest CT is performed for AML patients 
prior to hospitalization in many institutions. Neverthe-
less, whether it is feasible to quantify CT-derived features 
based on pretreatment chest CT for the prognosis of 
AML patients is still unknown.

Methods
Patients
Through an evaluation of our institutional medical data-
base from January 2010 to February 2020, data were 
retrospectively collected for de novo AML diagnosed in 
accordance with WHO criteria in ten participating hospi-
tals. Details of the patient recruitment process and exclu-
sion criteria are shown in Fig.  1. All 952 patients were 
randomly allocated into a training cohort (476 patients) 
and a validation cohort (476 patients). The general infor-
mation of patients in these two cohorts is presented in 
Table 1.

Acquisition and retrieval procedure of CT images and 
radiological and body composition feature extraction
CT image acquisition, the image retrieval procedure, the 
algorithms for radiological and body composition fea-
ture extraction, and intra-observer (reader 1 twice) and 
inter-observer (reader 1 vs. reader 2) reproducibility 
evaluation were performed as previously described [10]. 
Briefly, CT-derived features, including skeletal muscle 
index (SMI), skeletal muscle radiation attenuation (SM-
RA), liver CT value (liver_CTV) (Housfield units, HU), 
visceral or subcutaneous fat index (VFI or SFI), spleen 
CT value (spleen_CTV), and subcutaneous fat CT value 
(SF_CTV) evaluated by reader 1 were obtained from the 
initial chest CT images at the level of the fourth thoracic 
vertebra (T4) and were used to build models to predict 
the prognosis of AML.

Development of an individualized prediction model
The multivariable Cox regression method, which is suit-
able for the regression of medical data, was performed 
based on the candidate clinical and radiological predic-
tors. Briefly, LASSO regression and clinical experience 
was used to screen for correlation factors [11]. Then, a 
prognostic model for predicting the 1-, 2-, 3-, and 5-year 
OS probabilities was developed by Cox regression. A pre-
dictive model was also constructed by using an ensemble 
machine learning method or deep learning algorithm. 
Details of machine learning and deep learning methods 
can be found in the supplementary methods.

Performance, validation and clinical use of the nomogram
The calibration of the nomogram was evaluated by cali-
bration curves, and the diagnostic efficiency was quanti-
fied with Harrell’s C-index.

The performance of the nomogram was tested in the 
validation cohort with a series of indicators [12]. The con-
cordance index (C-index) and the area under the time-
dependent receiver operating characteristic (ROC) curve 
(AUC) were used to evaluate the differentiation ability of 
the new model. The performance of the new nomogram 
was further supplemented with two more indicators (net 
reclassification improvement [NRI] and integrated dis-
crimination improvement [IDI]) to increase the accuracy 
and comprehensiveness of the comparisons. The consis-
tency between the survival probabilities predicted using 
the nomogram and the actual result was evaluated by 
drawing calibration plots. Finally, decision-curve analy-
sis (DCA) was performed to evaluate the clinical valid-
ity of the model. The total scores on the nomogram were 
divided into high-, and low- risk groups by X-Tile soft-
ware. The MSN risk groups were identified by combining 
the CT-MSF nomogram risk and the ELN risk.
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Table 1  Clinical and body composition status data of 952 leukemia cases
Characteristics All samples (n = 952) Training (n = 476) Validation (n = 476) P Value
Sex (n, %) 0.696
Female 438 (46.01) 222 (46.6) 216 (45.4)
Male 514 (53.99) 254 (53.4) 260 (54.6)
Subtype (n, %) 0.547
M0 12 (1.26) 7 (1.50) 5 (1.10)
M1 56 (5.88) 23 (4.80) 33 (6.90)
M2 465 (48.84) 234 (49.20) 231 (48.50)
M3 36 (3.78) 21 (4.40) 15 (3.20)
M4 217 (22.79) 114 (23.90) 103 (21.60)
M5 161 (16.91) 74 (15.50) 87 (18.30)
M6 5 (0.53) 3 (0.60) 2 (0.40)
Treatment (n, %) 0.105
Standard-dose 762 (80.04) 371 (77.90) 391 (82.10)
Low-intensity 190 (19.96) 105 (22.10) 85 (17.90)
ELN 2022 Risk (n, %) 0.743
Adverse 398 (41.81) 202 (42.44) 196 (41.18)
Intermediate 385 (40.44) 194 (40.76) 191 (40.12)
Favorable 169 (17.75) 80 (16.8) 89 (18.70)
BMT 0.81
Non- Transplantation 755 (79.31) 379 (79.60) 376 (79.00)
Transplantation 197 (20.69) 97 (20.40) 100 (21.00)
Age (median, range) 45 (32, 55) 46 (33, 56) 44 (32, 55) 0.649
BMI 22 (19.98, 24.23) 22.03 (20.1, 24.30) 21.97 (19.82, 24.11) 0.306
SP (mmHg) 115.50 (107.00, 125.00) 115.0 (107.0, 124.75) 116.0 (107.0, 125.00) 0.812
DP (mmHg) 72 (65, 79) 71 (65, 78) 72 (66, 79) 0.587
WBC (×109/L) 16.39 (5.51, 46.29) 16.42 (4.93, 45.29) 16.32 (5.88, 48.68) 0.646
HGB(g/L) 74.00 (62.00, 92.00) 73.50 (62.0, 91.75) 74.00 (61.00,92.00) 0.904
PLT (×109/L) 43.00 (22.00, 80.00) 43.50 (21.00, 86.75) 42.00(23.00, 76.75) 0.924
Neu (×109/L) 2.10 (0.57, 7.79) 2.00 (0.56, 7.60) 2.1 ( 0.55, 8.72) 0.95
Lym (×109/L) 3.63 (1.40, 10.16) 3.53 (1.37, 10.48) 3.79 (1.40, 9.36) 0.928
Mono (×109/L) 4.11 (0.5, 19.4) 3.83 (0.50, 19.40) 4.34 (0.51, 19.55) 0.871
NLR (%) 0.64 (0.19, 1.76) 0.61 (0.19, 1.76) 0.65 (0.18, 1.80) 0.977
LMR (%) 0.91 (0.34, 4.76) 0.89 (0.34, 4.80) 0.93 (0.34, 4.55) 0.922
PLR (%) 10.93 (3.68, 38.97) 10.96 (3.63, 41.20) 10.85 (3.72, 35.79) 0.749
RDW (fl.) 60.40 (50.70, 88.20) 60.70 (50.80, 88.28) 59.95 (50.63, 88.15) 0.548
MPV (fl.) 10.30 (9.20, 11.90) 10.20 (9.04, 11.80) 10.50 (9.30, 12.00) 0.133
Albumin (g/L) 37.20 (33.30, 41.00) 36.85 (33.05, 40.60) 37.60 (3.40, 41.68) 0.121
Globulin (g/L) 28.50 (24.60, 33.20) 28.40 (24.65, 32.88) 28.50 (24.45, 33.28) 0.59
AGR 1.31 (1.07, 1.57) 1.30 (1.07, 1.56) 1.30 (1.07, 1.58) 0.521
HDL (mmol/L) 0.84 (0.71, 0.97) 0.85 (0.72, 0.98) 0.83 (0.68, 0.97) 0.074
LDL (mmol/L) 1.92 (1.50, 2.50) 1.93 (1.52, 2.52) 1.91 (1.48, 2.47) 0.527
TG (mmol/L) 1.46 (1.07, 2.06) 1.46 (1.08, 2.03) 1.43 (1.02, 2.12) 0.934
TC (mmol/L) 3.32 (2.75, 4.15) 3.34 (2.77, 4.14) 3.31 (2.70, 4.18) 0.882
BUN(mmol/L) 4.34 (3.30, 5.59) 4.38 (3.38, 5.60) 4.30 (3.25, 5.51) 0.277
Scr (umol/L) 71.00 (59.00,86.00) 73.00 (60.00, 87.00) 70.00 (58.00, 85.00) 0.085
BG 5.67 (5.10, 6.76) 5.67 (5.10, 6.75) 5.67 (5.10, 6.77) 0.937
LDH(U/L) 511.00 (296.80, 862.00) 519.10 (307.00, 872.00) 497.50 (285.53, 846.00) 0.395
BM(blast) 0.61 (0.39, 0.79) 0.61 (0.41, 0.77) 0.61 (0.37, 0.81) 0.989
Note—Unless otherwise indicated, data are numbers of patients, and data in parentheses are

percentages. # age is presented as median (minimum ∼ maximum)
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Statistical analysis
All of the statistical analysis were performed using IBM 
SPSS Statistics software (version 27.0, SPSS, Chicago, IL, 
USA), R software (version 4.0.3; http://www.Rproject.
org) and X-tile software (version 3.6.1; http://tissuearray.
org/). A bilateral probability value of p < 0.05 was consid-
ered indicative of statistical significance. *, P < 0.05. **, 
P < 0.01. ***, P < 0.001.

Data availability
The data and code of this study are available from the 
corresponding author upon request.

Results
Enrollment, characteristics and CT-derived features of the 
AML patients
A total of 952 AML patients at ten different hospitals 
(H1-10), were retrospectively included in this study. 
These patients were randomly assigned into the train-
ing cohort and validation cohort (Fig.  1A). Characteris-
tics of these patients were presented in Fig. 1B; Table 1. 
No significant difference was observed in any param-
eters. Image pre-processing and analysis, prediction 
model construction process were performed as shown in 
Fig. 1C.

Establishment and evaluation of the CT-MSF model
To identify prognostic factors for AML, we performed 
LASSO regression analysis with clinicopathological 
characteristics and CT-derived features as variables. The 

Fig. 1  Enrollment, clinicopathological characteristics and body composition assessment of AML patients. (A) Flow-chart demonstrating the exclusion 
criteria and the patient recruitment process with the reason for exclusion. (B) Sankey diagram showing the scmap cluster projection of the key character-
istics of 952 patients used in this study, including hospital, gender, age composition, risk, treatment response and BMT status. (C) Workflow of the body 
composition feature- and image-based analysis in this study. VFA, visceral fat area; MFA, muscle fat area; SMA, skeletal muscle area; SFA, subcutaneous 
fat area; Liver_CTV, CT value of liver parenchyma; VFI, visceral fat index; MFI, muscle fat index; SMI, skeletal muscle index; Spleen_CTV, spleen CT value; 
SF_CTV, subcutaneous fat CT value; myosarco, myosarcopenia. Risk, ELN risk; BMT, bone marrow transplantation; OS, overall survival; CR, Cox proportional-
hazards regression; RSF, random survival forest; DL, deep learning.
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LASSO regression analysis indicated that myosarcope-
nia, bone marrow transplantation (BMT), risk, BMT, 
spleen CT value (spleen_CTV), subcutaneous fat CT 
value (SF_CTV), age, red blood cell distribution width 
(RDW), high-density lipoprotein (HDL) and triglyceride 
(TG) were independent predictors for overall survival 
(OS) (Fig.  2A, supplementary Table 1). By multivariate 
Cox regression analysis, we established a new model inte-
grating myosarcopenia, spleen_CTV and SF_CTV (CT-
MSF). The CT-MSF nomogram showed a performance 
with a C index of 0.735 and 0.690 for the training and val-
idation cohort, which were significantly higher than the C 
index of 0.557 and 0.557 for the ELN risk model (P < 0.05). 
Moreover, this predictive model achieved AUCs of 0.717, 
0.794, 0.796 and 0.792 for predicting the 1-, 2-, 3- and 
5-year OS probabilities in the validation cohort, respec-
tively. When compared to the traditional ELN risk model 
(blue), the prediction performance of CT-MSF model 
(red) had significantly better predictive performance 
(Fig. 2B-E). Interestingly, the CT-MSF nomogram (cyan) 
added more benefit than the ELN risk model (purple) 
(Figure S1). The calibration curves of the nomogram for 
the probability of OS showed good agreement between 
prediction and observation in the validation cohort 
(Figure S2). The net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) also 
indicated that the CT-MSF model achieved satisfactory 
efficiency (supplementary Table 2). Machine learning 
and deep learning models were also constructed but did 

not show better performance than the traditional Cox 
method included above (data not shown). Collectively, 
we have identified independent predictors and developed 
a CT-MSF nomogram to predict prognosis of AML with 
high accuracy.

We next assessed whether the CT-MSF model could 
be used to predict overall survival by applying the model 
to the whole dataset. Based on the scores generated by 
our model, all cases were classified into the CT-MSF 
high-risk and CT-MSF low-risk groups (CT-MSF risk), 
by using the X-title method. As expected, patients within 
the high-risk group had shorter survival than that of the 
low-risk patients (p < 0.0001, log-rank test) (Figure S3A, 
supplementary Table 3). We also observed that the CT-
MSF high-risk patients demonstrated higher cumulative 
hazard than the low-risk group (Figure S3B).

Stratification of AML patients by a combination of CT-MSF 
and ELN model
Next, we plotted the overall survival of this cohort with 
the combination of risk subgroups determined by the 
CT-MSF model and the ELN risk model to stratify these 
952 patients. Interestingly, the survival curves fell mainly 
into 3 new groups. The CT-MSF low-risk and ELN low- 
and intermediate-risk groups formed a new MSN low-
risk group with better survival. The CT-MSF low-risk/
ELN high-risk group composed the new MSN intermedi-
ate-risk group, which had a medium survival time. Nota-
bly, all the CT-MSF high-risk group patients fell into the 

Fig. 2  Development and validation of CT-MSF Prediction Model. (A) CT-based MSF nomogram for the prognosis of AML. The CT-based MSF model was 
developed in the training cohort, incorporating the CT-derived parameters including myosarco, Spleen_CTV, and SF-CTV. Myosarco, myosarcopenia. 
Spleen_CTV, spleen CT value. SF-CTV, subcutaneous fat CT value. RDW, red blood cell distribution width. HDL, high-density lipoproteins. TG, triacylglycer-
ide. Risk1, ELN high risk. Risk2, ELN intermediate risk. Risk3, ELN low risk. BMT 0, no BMT. BMT 1,with BMT. Myosarco 0, no sarcopenia. Myosarco 1, myosar-
copenia. Myosarco 2, myosteatosis. Myosarco 3, sarcopenia. (B-E) Receiver operating characteristic (ROC) curves for validation of the CT-MSF model (red) 
and ELN risk model (blue) at 1 year (B), 2 years (C), 3 years (D) and 5 years(E). The area under curves (AUCs) for both models in the validation cohort of 476 
patients are shown. Nomogram, the CT-MSF model. Risk, the ELN risk model.
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new MSF-ELN (MSN) high-risk group and had worse 
survival, regardless of their ELN risk (Fig.  3). Taken 
together, these results indicate that our CT-MSF model 
could further stratify patients when combined with the 
ELN risk model.

To clarify whether the effect of intensive and low-
intensity treatment could be predicted by this new MSN 
risk score, we conducted prognostic analysis of patients 
who underwent different treatment choice. The results 
showed that the overall survival of patients with low and 
intermediate MSN risk was not affected by the choice of 
chemotherapy (Figure S4A and B). In contrast, among 
the MSN high-risk patients, the survival time of patients 
receiving intensive treatment was significantly longer 
than the low-intensity group (P <0.05, Figure S4C). Our 
data indicated that the new MSN stratification system 
combining the CT-MSF model and ELN risk model aid in 
choosing the therapy.

Discussion
Our findings provide preliminary data to support the 
inclusion of CT-derived body composition parameters, 
sarcopenia for example, as biomarkers of prognosis in 
AML. Recent studies have reported that sarcopenia had 
adverse implications, including the increased severity of 
the disease, longer hospital stays, more complications, 
earlier postoperative recurrence, and poor prognosis 

[6–8]. Our findings were generally in line with these prior 
studies. Moreover, our model included Spleen_CTV and 
SF_CTV in addition to sarcopenic features. Consistently, 
these parameters are known to be related to prognosis 
in AML. A lower Spleen_CTV reflects decreased spleen 
density due to multiple complex reasons, including sys-
temic inflammation, abnormal fat deposition, tumor 
cell infiltration, and spleen tissue cell damage [13]. The 
increased SF_CTV may be caused by various reasons, 
with systemic inflammation as the most common con-
tributor. Therefore, myosarcopenia, spleen-CTV and 
SF-CTV can be used to predict the overall treatment 
response, representing multiscale biological character-
istics associated with metabolic status, gene status, and 
various pathological conditions, which could potentially 
predict prognosis in patients with AML.

Our model could predict prognosis better than 
ELN risk model alone, as evidenced by our AUC val-
ues, C-index, NRI, IDI as well as DCA in the validation 
cohorts. We speculate that the improved model perfor-
mance in our study may be due to our research strategy. 
First, we enrolled 952 patients from ten hospitals and 
pretreatment chest CT images is commonly available in 
all hospitals in China. Moreover, the CT images used in 
our cohort were obtained from different scanners with 
the same non-enhanced scanning protocol, which largely 
considered imaging variability. Finally, in addition to Cox 

Fig. 3  Overall survival of 952 patients stratified with the combination CT-MSF model and ELN risk model. Low, low risk. Inter, intermediate risk. Hi, high 
risk. *, P < 0.05. ***, P < 0.001
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regression, we also tried the other algorithms includ-
ing ensemble machine learning classification method 
and deep learning to select the best method. Our study 
showed that the Cox model with optimization algorithm 
has better expressiveness and is not inferior to all the rest 
models in performance.

In addition to CT-derived features, our MSF nomo-
gram also includes clinical characteristics that yet to 
be included in prognostic prediction models of AML, 
including RDW, HDL and TG. RDW is traditionally con-
sidered as a marker of the differential diagnosis of ane-
mia, and it has been reported as a prognostic factor in 
AML [14]. Increased RDW is related to oxidative stress, 
poor nutritional status and older age and may also sug-
gest a proinflammatory state [15]. HDL and TG are both 
indicators of lipid metabolism and HDL levels have been 
implied to be associated with the pathogenesis of AML 
[16]. Dysregulated lipid metabolism has been reported to 
be involved in the pathogenesis of AML, and several key 
enzymes involved in lipid synthesis have been studied 
and explored as the targets to treat cancers, HMGCR for 
example [16–18]. Consistently, these three traits serve as 
independent factors and important contributing factors 
in our nomogram.

However, there were limitations to this study. First, 
though we adopted a multicenter design in the present 
study, potential selection bias was unavoidable. In addi-
tion, the retrospective nature limits our exploration of 
the imaging and pathological correlation. Moreover, our 
sample size was still modest. In the future, a larger inde-
pendent, prospective, multicenter study is needed for 
validation.

Conclusions
In summary, we presented an MSF nomogram utilizing 
chest CT images to predict prognosis in patients with 
AML. The combination of the MSF nomogram and ELN 
risk yielded an MSN stratification system that could 
stratify AML patients. Moreover, this MSN stratification 
system could be used to assist in the choice of therapy to 
achieve better outcomes. The information from the cur-
rent study could be used to assist clinicians in selecting 
optimal therapies for personalized treatment of AML.
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