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PMA synergistically enhances apicularen A-induced
cytotoxicity by disrupting microtubule networks
in HeLa cells
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Abstract

Background: Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate
(PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces
cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we
examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells.

Methods: Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential
of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3
activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced
by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI).
The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and
α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the
effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were
visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively.

Results: We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased
cytotoxicity and apoptotic sub-G1 population induced by apicularen A. These effects were completely blocked by the
PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA
interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA
and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing
α- and β-tubulin protein levels in a PKC-dependent manner.

Conclusions: These results suggest that the synergy between PMA and apicularen A is involved by PKCα activation
and microtubule disruption, and that may inform the development of novel approaches to treat cancer.
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Background
Apicularen A is a potent cytotoxic macrolide isolated
from the myxobacterial genus Chondromyces [1] that in-
duces apoptosis in several cancer cell lines such as the
murine RAW 264.7 leukemia macrophage line and the
human HL-60 promyelocytic leukemia cell line [2-4]. In
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addition, apicularen A induces apoptotic cell death in
human HM7 colon cancer cells by up-regulating Fas lig-
and and disrupting microtubule architecture [5].
Protein kinase C (PKC) is a serine/threonine protein

kinase family; PKC family members are classified into
three major groups based on their activation pathways [6]:
classical PKC isotypes (α, βI, βII and γ) are activated by di-
acylglycerol (DAG) and calcium, novel PKC isotypes (δ, ε,
η and θ) are activated by DAG, and atypical PKC isotypes
(ζ and ι/λ) are not regulated by DAG or calcium [7]. PKCs
are associated with the regulation of cellular processes
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such as cell proliferation, differentiation and cell death [7];
however, the role of each PKC isotype in cellular pro-
cesses, especially cell death, is controversial. For example,
PKCδ and PKCθ are involved in apoptotic cell death
through caspase-3-mediated proteolytic activation [8,9],
while PKCε and PKCζ are involved in cell survival [10,11].
In addition, PKC activators such as phorbol 12-myristate
13-acetate (PMA) or bryostatin 1 can increase or decrease
anticancer drug activity depending on the drugs and cell
lines tested [12-16]. Thus, the functional significance of
PKCs in cell death mechanisms remains elusive.
Microtubules are an important cytoskeletal component

formed by the polymerization of α- and β-tubulin het-
erodimers [17]; they regulate several cellular processes
including the maintenance of cell shape, motility, trans-
port, organelle distribution and chromosome segregation
during mitosis [18]. Since cancer cells proliferate more
rapidly than normal cells, microtubules are considered a
suitable therapeutic target and several anticancer drugs
inhibit their function [19]. For example, Vinca alkaloids
inhibit tumor cell proliferation by inducing the depoly-
merizaiton of microtubules [20], and taxanes induce
apoptosis by promoting microtubule assembly [21]. Api-
cularen A disrupts microtubule networks by inhibiting
tubulin synthesis [5]. Efforts to develop more effective
cancer therapy combinations with microtubule-interfering
agents are underway. The finding that PMA increases the
antitumor activity of paclitaxel, a chemotherapeutic agent
that inhibits tubulin polymerization, in vitro and in a
xenograft model of prostate cancer [22] prompted us to
test whether PMA increases apicularen A-induced cell
death. The results of the present study demonstrate that
PMA-mediated PKCα activation strongly increases apicu-
laren A-induced apoptotic cell death and disruption of
microtubule networks in HeLa cells.

Methods
Cell culture
Human HeLa cervical cancer cells (ATCC, Rockville, MD)
were cultured in Dulbecco’s modified Eagle’s medium sup-
plemented with 10% fetal bovine serum and antibiotics.
Cells were maintained at 37°C, 5% CO2 and 95% air.

Antibodies and chemicals
Apicularen A was provided by Dr. Ahn (Division of Ocean
Science, Korea Maritime University, Busan, Korea) and
dissolved in dimethyl sulfoxide. Phorbol 12-myristate 13-
acetate (PMA), thiazolyl blue tetrazolium bromide (MTT),
anti-α-tubulin and anti-β-tubulin antibodies were pur-
chased from Sigma (St Louis, MO, USA). Anti-PARP and
anti-actin antibodies were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Anti-caspase-3
antibody was purchased from R&D Systems (Wiesbaden,
Germany). Z-VAD-fmk, Ro31-8220 and Go6983 were
purchased from Calbiochem (San Diego, CA, USA). All
other reagents were molecular biology grade.

Cell viability assay
Cell viability was assessed by thiazolyl blue tetrazolium
(MTT) assay. Exponentially growing cells were exposed
to apicularen A in the presence or absence of PMA for
24 and 48 hours. MTT solution was added to each well
(0.5 mg/ml) and incubated for 2 hours. Cell viability was
assessed by measuring the absorbance at 570 nm in an
ELISA plate reader.

DNA fragmentation assay
The cells were lysed using buffer containing 300 mM Tris–
HCl (pH 7.5), 100 mM NaCl, 10 mM EDTA, 200 mM su-
crose and 0.5% SDS. Intracellular DNA was extracted with
phenol/chloroform (1:1) and chloroform/isoamylalcohol
(24:1). DNA was precipitated and digested in 10 mM
Tris–HCl (pH 8.0), 1 mM EDTA and 40 μg/ml RNase A
for 1 hour at 37°C. Then, DNA (10 μg) was resolved by
electrophoresis in a 1.2% agarose gel supplemented with
ethidium bromide (0.2 μg/ml), and DNA fragmentation
was examined by ultraviolet transillumination.

Caspase-3 activity assay
Cell extracts were prepared by suspending 2 × 106 HeLa
cells in 100 μL TTE buffer [10 mM Tris–HCl (pH 8.0),
0.5% Triton X-100, 10 mM EDTA] on ice for 30 min, and
then centrifuging at 15,000 × g for 10 minutes at 4°C. Ly-
sates (30 μg total protein in 10 μl) were mixed with 90 μl
assay buffer [20 mM HEPES (pH 7.5), 10% glycerol, 2 mM
DTT] containing 40 μM Ac-DEVD-AFC. Caspase-3 activ-
ity was measured at 37°C using a spectrofluorometric
plate reader (Perkin-Elmer LS-50B., Foster City, CA, USA)
in kinetic mode using excitation and emission wavelengths
of 400 nm and 505 nm.

Western blotting analysis
HeLa cells were lysed in buffer containing 50 mM Tris–
HCl (pH 7.5), 150 mM NaCl, 1% nonidet P-40, 0.5%
deoxycholate, 0.1% SDS and protease inhibitor cocktail
(Roche Applied Science, Mannheim, Germany). Cell ly-
sates were subjected to SDS-PAGE and transferred onto
nitrocellulose (Pall Life Sciences, Port Washington, NY,
USA) or PVDF membranes (Millipore, Woburn, MA,
USA). The membranes were first probed with primary
antibodies and then with HRP-conjugated secondary
antibodies (Calbiochem), and the proteins were detected
using the ECL system (Amersham Biosciences Corp.,
Piscataway, NJ, USA).

Cell cycle analysis
HeLa cells exposed to apicularen A in the presence or
absence of PMA were washed with phosphate buffered
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saline (PBS) and fixed in 70% ethanol at −20°C over-
night. Before analysis, cells were centrifuged and incu-
bated with propidium iodide (50 μg/ml) supplemented
with RNase A (1 mg/ml) for 30 minutes at room tem-
perature. The relative DNA content was measured by
flow cytometry using a Becton-Dickinson FACSort and
by manual gating using CellQuest software.

Reverse transcription-polymerase chain reaction (RT-PCR)
The mRNA level of α-tubulin was measured by RT-PCR.
Total RNA was isolated using the TRIzol® reagent (Invi-
trogen, Karlsruhe, Germany) according to the manufac-
turer’s instructions. Complementary DNA (cDNA) was
synthesized using AMV reverse transcriptase at 42°C for
1 hour. The mixture was then boiled for 5 minutes to in-
activate reverse transcriptase and quickly chilled on ice.
The cDNAs were amplified by RT-PCR using the HiPi
Plus PCR master mix (Elpis Biotech, Korea). PCR prod-
ucts were separated on 1.2% agarose gels with ethidium
bromide (0.2 μg/mL), and amplification products were
examined by ultraviolet transillumination.

Immunofluorescence assay
HeLa cells were seeded onto glass coverslips and were
exposed to apicularen A in the presence or absence of
PMA. The cells were washed twice with PBS, perme-
abilized with 0.25% triton X-100 and 0.5% glutaralde-
hyde for 1 minute at room temperature, and then fixed
with 1% glutaraldehyde for 10 minutes before overnight
incubation with anti-α-tubulin antibody diluted 1:500.
After washing three times in PBS containing 0.1% Tween-
20 (PBS/T), cells were incubated for 1 hour with second-
ary antibody (Alexa Fluor 488 goat anti-mouse IgG diluted
1:400) in the dark. After washing five times, cells were
stained with 20 μg/ml propidium iodide and 1 mg/ml
RNase A for 20 minutes at room temperature. Microtubules
and nuclei were observed using an FV-500 fluorescence
microscope (Olympus, Dulles, VA, USA). The fluores-
cence intensity was quantified using image J software.

Statistical analysis
Results are expressed as the means ± SE. Statistical sig-
nificance was assessed using the Student’s t-test and ana-
lysis of variance (ANOVA). P < 0.05 was considered to
be significant. The combined effect of PMA and apicula-
ren A (combination index) was calculated using the for-
mula %AB/%A × %B, where A and B are the effects of
each individual agent and AB is the effect of the com-
bination. When the ratio (combination index) is 1 the ef-
fect is considered additive; when the combination index
is significantly greater than or less than 1, the effect is
considered subadditive (negative synergism) or supraad-
ditive (positive synergism), respectively [23]. Statistical sig-
nificance value of the combination index was compared
with the additive combination index of 1 by one-sided
Student’s t-test.

Results
Apicularen A induces cytotoxicity in HeLa cells
The effect of apicularen A on HeLa cell growth was per-
formed. Apicularen A decreased cell viability in a con-
centration and time-dependent manner (Figure 1A). In
addition, suspended HeLa cells exposed to apicularen A
exhibited membrane blebbing, nuclear condensation and
shrinkage of the cytoplasm (Figure 1B). To investigate
whether these morphological changes were caused by
apoptosis, genomic DNA was purified and analyzed for
fragmentation. As shown in Figure 1C, apicularen A in-
duced DNA fragmentation at 48 hours. Since caspase-3
plays a crucial role in apoptotic cell death by cleaving
poly (ADP-ribose) polymerase (PARP) to suppress the
DNA repair pathway [24], we tested the potential in-
volvement of caspase-3 in apicularen A-induced cell
death by measuring caspase-3 activity and the PARP
cleavage. HeLa cells exposed to apicularen A exhibited a
3-fold increase in caspase-3 activity compared to control
cells (Figure 1D). In addition, apicularen A increased the
active form of caspase-3 and the cleaved form of PARP
(Figure 1E). Taken together, these results indicate that
apicularen A induces apoptotic cell death in HeLa cells.

PMA increases apicularen A-induced cytotoxicity in
HeLa cells
The role of PKC in the mechanism of action of antitumor
agents is controversial since PKC synergizes with some
agents and antagonizes others [12,14,15,25,26]. PMA was
used to assess the effect of PKC on apicularen A-induced
cytotoxicity. PMA has a similar chemical structure to
DAG and activates PKCs by interacting with the DAG
binding site [27]. HeLa cells were exposed to 100 nM api-
cularen A and 20 nM PMA; as shown in Figure 2A and
Table 1, PMA synergistically increased the cytotoxicity of
apicularen A in a time-dependent manner. This finding
was supported by time-lapse video microscopy, showing
that combination of PMA and apicularen A strongly in-
duced cell death to a greater extent than apicularen A
alone (Additional file 1: Movie S1). Next, flow cytometry
was used to assess the potential effect of PMA on the cell
cycle. Forty percent of apicularen A-treated cells were
apoptotic (sub-G1 peak) at 48 hours, while no apoptosis
was detected in control or PMA-treated cells (Figure 2B).
In addition, 80% of the cells exposed to the combination
of apicularen A and PMA were apoptotic at 48 hours, in-
dicating that PMA increased apicularen A-induced apop-
totic cell death. Since apicularen A induced apoptotic cell
death through caspase activation (Figure 1E), we investi-
gated whether the cytotoxicity induced by the combin-
ation of PMA and apicularen A also depended on caspase



Figure 1 Apicularen A induces apoptotic cell death in HeLa cells. A. HeLa cells were exposed to 10 or 100 nM apicularen A. Cell viability was
analyzed by MTT assay. B. HeLa cells were exposed to 100 nM apicularen A for 24 and 48 hours. Phase contrast images (X200) were acquired
using an inverted microscope. C. Total genomic DNA of apicularen A-treated HeLa cells was extracted and analyzed by agarose gel electrophoresis.
D. Caspase-3 activity of apicularen A-treated HeLa cells was assessed at 48 hours using the caspase-3 fluorogenic peptide substrate DEVD-AFC. E. HeLa
cells were exposed to 100 nM apicularen A. Cell lysates were subjected to Western blotting with anti-caspase-3 and anti-PARP antibodies. All error bars
indicate ± SEM. ***P < 0.001.
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activation. The pan-caspase inhibitor Z-VAD-fmk did
not block the cytotoxicity induced by the drug combin-
ation (Figure 2C), indicating that the synergy is
caspase-independent. Since PMA is involved in several
PKC-independent cellular processes associated with cell
proliferation and differentiation [28-30], the role of PKC
activation on the synergy with apicularen A was tested
by exposing cells to PKC inhibitor Ro31-8220 before
adding PMA and apicularen A. Ro31-8220 showed no
cytotoxicity in HeLa cells at 48 hours, and pretreatment
with Ro31-8220 completely blocked the synergistic
apoptotic activity of PMA and apicularen A (Figure 2D
and 2E). The PKC inhibitor Go6983 also suppressed
the effect of PMA on apicularen A-induced cytotoxicity
(Figure 2F). These results suggest that PKC activation
increases apicularen A-induced apoptotic cell death.

PKCα mediates the effect of PMA on apicularen
A-induced cytotoxicity
To identify which PKC isotype is involved in the in-
crease in apicularen A-induced cell death observed in
the presence of PMA, cells were pretreated with siRNAs
specific for individual PKCs and exposed to PMA and
apicularen A. Since PMA activates the classical and
novel PKC isotypes and Go6983 inhibits PKCα, β, δ, γ
and ζ [27,31], specific siRNAs against PKCα, β and γ
were needed; the isotype-specificity of the knockdown
was confirmed by transient transfection and Western blot-
ting in HeLa cells (Figure 3A). As shown in Figure 3B,
knockdown of PKCα, but not that PKCβ or PKCγ,
significantly decreased the apoptosis induced by the
combination of PMA and apicularen A. These results
demonstrate that PKCα mediates the synergistic effect of
PMA on apicularen A-induced cell death in HeLa cells.

PMA increases apicularen A-mediated tubulin
down-regulation
We previously reported that the mechanism of apicularen
A-induced apoptotic cell death in human HM7 colon can-
cer cells partially involved a decrease in intracellular
tubulin levels [5]. Thus, we investigated whether PMA in-
creases apicularen A-induced apoptotic cell death by fur-
ther down-regulating tubulin. Apicularen A decreased
total α-tubulin protein levels in a time-dependent manner
(Figure 4A). At 48 hours, the combination of PMA and
apicularen A decreased α-tubulin protein levels to a
greater extent than apicularen A alone, while PMA alone
had no effect. Similar results were obtained for β-tubulin
(Figure 4B). Since apicularen A down-regulates tubulin
levels by decreasing tubulin mRNA levels in HM7 cells
[5], tubulin mRNA levels were assessed by RT-PCR in
cells exposed to PMA and apicularen A. PMA did not
affect α-tubulin mRNA levels in apicularen A-treated cells
(Figure 4C). Microtubule architecture was assessed by



Figure 2 PMA increases apicularen A-induced cytotoxicity in HeLa cells. A. HeLa cells were exposed to 20 nM PMA and 100 nM apicularen
A for 24 and 48 hours. Cell viability was analyzed by MTT assay. B. HeLa cells were exposed to 100 nM apicularen A in the presence or absence of
20 nM PMA. DNA content was analyzed by flow cytometry. C. HeLa cells were pretreated with 10 μM Z-VAD-fmk and then exposed to 100 nM apicularen
A in the presence or absence of 20 nM PMA for 48 hours. Cell viability was analyzed by MTT assays. D. HeLa cells were pretreated with 10 μM Ro31-
8220 and then treated with 100 nM apicularen A in the presence or absence of 20 nM PMA for 48 hours. MTT assays were performed to evaluate cell
viability. E. DNA content described in D was measured by flow cytometry. F. HeLa cells were pretreated with 2 μM Go6983 and then exposed to 100
nM apicularen A in the presence or absence of 20 nM PMA for 48 hours. All error bars indicate ± SEM. **P < 0.01, ***P < 0.001.
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Table 1 Analysis of the interaction between the inhibitory
effect of PMA in combination with apicularen A on the
viability of HeLa cells

Combination index p value Interaction

0.113 ± 0.004 0.001 Synergy

The combination index was calculated using the formula %AB/%A ×%B, as
described under “Methods”. The value indicate ± SEM.
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immunofluorescence using anti-α-tubulin antibody and
propidium iodide (PI). PMA-treated cells exhibited similar
microtubule architecture to control cells. By contrast, api-
cularen A induced irregular microtubule networks and
nuclear localization, and reduced α-tubulin protein levels.
In addition, PMA further increased the effect of apicula-
ren A on the microtubule networks and on α-tubulin
levels (Figure 4D). Given that PMA increases apicularen
A-induced cell death by increasing PKC activity, the
Figure 3 PMA increases apicularen A-induced cell death in HeLa
cells by activating PKCα. A. HeLa cells were transfected with siRNAs
against PKCα, PKCβ and PKCγ, and incubated for 48 hours. PKCα, PKCβ
and PKCγ protein levels were assessed by Western blotting. B. HeLa
cells expressing siRNAs against PKCα, PKCβ and PKCγ were exposed to
20 nM PMA and 100 nM apicularen A for 36 hours. DNA content was
analyzed by flow cytometry. Error bars indicate ± SEM. ***P < 0.001.
possibility that PKC activation might also be responsible
for the effect of PMA and apicularen A on tubulin protein
levels was considered. HeLa cells were pretreated with
Ro31-8220 and then exposed to apicularen A in the pres-
ence or absence of PMA. As expected, inhibition of PKC
activity by Ro31-8220 partially restored tubulin levels
(Figure 4E). Taken together, these results suggest that the
potentiation of apicularen A-induced apoptotic cell death
by PMA is associated with decreased tubulin protein levels.

Discussion
The present study shows that PMA increases the cyto-
toxicity of apicularen A in HeLa cells. PKC inhibition
completely blocked the synergistic effect of PMA on
apicularen A-induced cytotoxicity and tubulin down-
regulation. Specific knockdown of PKC isotypes revealed
that PKCα is the unique mediator of that effect among
PKC family members.
PMA induces apoptotic cell death in several kinds of

cells [32,33]. In addition, the combination of PMA and
anticancer drugs increases cytotoxicity [12,34], suggest-
ing that PMA may be suitable as an anticancer agent
within a drug combination regimen. In this study, al-
though PMA alone did not induce cell death, it increased
the cell death induced by apicularen A synergistically. This
effect was completely blocked by the PKC inhibitor Ro31-
8220, indicating that PKC is involved in the synergistic
mechanism. Among PKC isotypes, PKCδ mainly promotes
apoptosis [35]; however, since Ro31-8220 does not inhibit
PKCδ [36], we had to consider that other PKC isotype(s)
may be involved in the synergy. Specific knockdown of in-
dividual PKC isotypes demonstrated that PKCα is the
mediator of the PMA-stimulated increase in apicularen A-
induced apoptotic cell death in HeLa cells. Whether PKCα
also mediates the synergistic effect of PMA with other an-
ticancer drugs requires further investigation.
PMA is known to induce G2/M phase arrest in several

cell lines [37,38], and PKCα activation is involved in the
accumulation of cells in G2/M phase [38]. Our results
show that the combination of PMA and apicularen A ar-
rests cells in the G2/M phase, whereas exposure of cells to
PMA alone only transiently increases the number of cells
in the G2/M phase. The number of cells arrested in the
G2/M phase in the presence of both PMA and apicularen
A decreases in a time-dependent manner and leads to an
increase in the number of cells in the sub-G1 phase. These
results are consistent with previous findings showing that
prolonged arrest in G2/M phase causes apoptotic cell
death by blocking cell cycle progression [39].
We previously reported that apicularen A decreases

tubulin protein levels and disrupts microtubule networks
in human HM7 colon cancer cells by decreasing tubulin
mRNA levels [5]. The present study reveals that apicularen
A also promotes the disruption of microtubule networks



Figure 4 PMA increases apicularen A-mediated tubulin down-regulation. A. HeLa cells were exposed to 100 nM apicularen A in the
presence or absence of 20 nM PMA. α-tubulin protein levels were analyzed by Western blotting. B. HeLa cells were exposed to 100 nM apicularen
A in the presence or absence of 20 nM PMA for 48 hours. β-tubulin protein levels were analyzed by Western blotting. C. HeLa cells were exposed
to 100 nM apicularen A in the presence or absence of 20 nM PMA for 48 hours. α-tubulin mRNA levels were analyzed by RT-PCR. D. HeLa cells were
exposed to 100 nM apicularen A in the presence or absence of 20 nM PMA. Cellular microtubule networks and nuclei were observed using an
Olympus FV-500 fluorescence microscope. The quantified levels of α-tubulin under each of the indicated conditions are shown in the histograms on
the right. Error bars indicate ± SD. *P < 0.05; **P < 0.01; ***P < 0.001. E. HeLa cells were pretreated with 10 μM Ro31-8220 and then exposed to 100 nM
apicularen A in the presence or absence of 20 nM PMA for 48 hours. α-tubulin protein levels were analyzed by Western blotting.
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through down-regulation of tubulin protein expression in
HeLa cells, and that this phenomenon increased by PMA;
however, PMA did not affect tubulin mRNA levels in the
presence of apicularen A. The tubulin protein levels of
cells exposed to the combination of PMA and apicularen
A decreased slowly for 36 hours, and were decreased se-
verely at the final time point (48 hours). Since a critical
concentration of soluble tubulin is required for conserva-
tion of polymerized tubulin [40], and since PMA induces
tubulin polymerization by regulating microtubule kinetics
[41], it is possible that the microtubule polymerization in-
duced by PMA may be initially resistant to apicularen A-
induced tubulin down-regulation but finally collapses
when soluble tubulin levels fall below the critical thresh-
old required to support the polymerized networks. Since
a decrease in tubulin protein levels and suppression of
tubulin polymerization inhibit cell survival [42,43], lower
tubulin protein levels in cells exposed to both PMA and
apicularen A may explain the increased cytotoxicity ob-
served in the presence of the two drugs. By contrast, since
interference with microtubule dynamics decreases cell mi-
gration [44], the migration of cells exposed to the combin-
ation of PMA and apicularen A is expected to be lower
than that of control cells; however, PMA regulates actin
cytoskeleton reorganization and induces cell migration
[45]. In addition, the combination of PMA and apicularen
A did not change actin protein levels. Thus, we speculate
that, although the combination of PMA and apicularen A
induces G2/M phase arrest by disrupting microtubule net-
works, increased actin reorganization may contribute to
increased cell migration (Additional file 1: Movie S1).

Conclusions
In summary, this study shows that the combination of
PMA and apicularen A synergistically induces apoptotic
cell death in HeLa cells by mediating PKCα activation
and disrupting intracellular microtubule networks. Since
combination therapy is key to improving cancer treat-
ment efficacy, these results may guide the development
of novel therapeutic approaches to cancer.

Additional file

Additional file 1: Movie S1. HeLa cells were exposed to 20 nM PMA in
the presence or absence of 100 nM apicularen A for 48 hours.
Time-dependent cell morphology was visualized using time-lapse video
microscopy; control (upper left), PMA (upper right), apicularen A (lower
right), combination of PMA and apicularen A (lower left). One second in
the movie = 1 hour 18 minutes in real time.

http://www.biomedcentral.com/content/supplementary/1471-2407-14-36-S1.mp4
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