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Abstract
Background: RAD54L (OMIM 603615, Locus Link 8438) has been proposed as a candidate
oncosupressor in tumours bearing a non-random deletion of 1p32, such as breast or colon
carcinomas, lymphomas and meningiomas. In a search for RAD54L mutations in 29 menigiomas with
allelic deletions in 1p, the only genetic change observed was a silent C/T transition at nucleotide
2290 in exon 18. In this communication the possible association of the 2290C/T polymorphism with
the risk of meningiomas was examined. In addition, the usefulness of this polymorphism as a genetic
marker within the meningioma consensus deletion region in 1p32 was also verified. The present
study comprises 287 blood control samples and 70 meningiomas from Spain and Ecuador. Matched
blood samples were only available from Spanish patients.

Results: The frequency of the rare allele-T and heterozygotes for the 2290C/T polymorphism in
the blood of Spanish meningioma patients and in the Ecuadorian meningioma tumours was higher
than in the control population (P < 0.05). Four other rare variants (2290C/G, 2299C/G, 2313G/A,
2344A/G) were found within 50 bp at the 3' end of RAD54L. Frequent loss of heterozygosity for
the 2290C/T SNP in meningiomas allowed to further narrow the 1p32 consensus region of deletion
in meningiomas to either 2.08 Mbp – within D1S2713 (44.35 Mbp) and RAD54L (46.43 Mbp) – or
to 1.47 Mbp – within RAD54L and D1S2134 (47.90 Mbp) – according to recent gene mapping
results.

Conclusion: The statistical analysis of genotypes at the 2290C/T polymorphism suggest an
association between the rare T allele and the development of meningeal tumours. This
polymorphism can be used as a genetic marker inside the consensus deletion region at 1p32 in
meningiomas.

Background
Meningiomas are slow-growing tumours derived from the
arachnoid membrane surrounding the central nervous
system. They are one of the commonest intracranial tu-

mours, accounting for 20% of all brain tumours, with an
overall incidence of 2.3/100,000 and a 2:1 female-to-male
ratio [1]. The frequent finding of asymptomatic meningi-
omas in computerised tomography and magnetic
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resonance studies [2] will probably raise these prevalence
figures. A close relationship exists between meningiomas
and neurofibromatosis type II (NF2). Meningiomas have
been found in more than 50% of patients with this com-
mon hereditary disorder and sporadic meningiomas show
frequent mutations in the NF2 oncosupressor gene [3–5].
Besides NF2, other candidate genes are suspected to be in-
volved in the multistep development of meningiomas;
among these genes are those presumably inactivated by
deletion/mutation in 1p32, a region of frequent loss of
heterozygosity (LOH) in sporadic and hereditary menin-
giomas [4,6–9]. Mapped at 1p32 and with likely functions
in mitotic and meiotic recombination, RAD54L (OMIM
603615, Locus Link 8438), a member of the SNF2/SWI2
family of DNA-dependent ATPases, has been proposed as
a candidate oncosupressor in breast tumours [10]. The
finding of mutations in a small fraction of breast carcino-
mas (1 out of 95 tumours), colon carcinomas (1 out of 13
tumours) and lymphomas (1 out of 24) supports the in-
volvement of RAD54L in tumorigenesis [11].

In a previous single strand conformation polymorphism
(SSCP) analysis of 29 meningiomas with 1 p deletions we
failed to detect any mutation in the RAD54 L gene, but
found instead a silent C/T polymorphism (Ala730Ala)
that was identified by direct sequencing of PCR-amplified
exons [12]. This polymorphism has been independently
identified (NCB SNP cluster ID: rs1048771) in chromo-
some 1 contig NT_004386 using high output methods for
SNP detection. Blast analysis has unequivocally linked the
variation to nucleotide 2290 of RAD54L mRNA (Gen
Bank accession X97795.1) or to nucleotide position 2851
in the NCBI RefSeq (accession NM_003579.2); however,
lack of information regarding population genotype and
allele frequency has precluded its validation as an SNP
marker. In this communication the possible association of
2290C/T polymorphism with the risk of meningiomas
was examined. In addition, the usefulness of this poly-
morphism as a genetic marker within the meningioma
consensus deletion region in 1p32 [6] was also
ascertained.

Methods
Tissue samples
Twenty-nine Spanish tumours with deletions in 1p and
matched blood samples were obtained from meningioma
patients as previously described [5,12]. Forty-one paraffin
archival, randomly-chosen, samples of meningiomas (20
meningothelial, 11 transitional, 5 fibroblastic, 3
psamomatose and 2 angioblastic) were obtained from the
pathology services of E. Espejo and C. Andrade Marín hos-
pitals in Quito, Ecuador. Two of them were grade II and
39 grade I, according the WHO Classification. No
matched blood samples from those patients were availa-

ble. Spanish and Ecuadorian blood control were obtained
from healthy transfusion blood donors.

DNA extraction
Genomic DNA was prepared from frozen tissues by stand-
ard methods previously described [5,12]. DNA from par-
affin-embedded samples was extracted by standardised
protocols [13]. DNA from peripheral lymphocytes was ex-
tracted using a DNA-extraction kit from Stratagene, ac-
cording to the manufacturer's protocol.

PCR based analysis of RAD54L polymorphism and 1p pol-
ymorphic markers
The allelic status of 2290 C/T polymorphism in tumour
and blood samples was ascertained by PCR amplification
of exon 18 followed by SSCP analysis as described [12].
On some occasions confirmatory direct sequencing anal-
ysis of PCR products was carried out as described [12]. The
allelic status at microsatellite loci was analysed as de-
scribed [5,12].

Statistical analysis
Epidemiological variables and genotypes were evaluated
using Tukey-Kramer comparison tests, Odds ratios and
Fisher's two-sided exact test.

Results and discussion
In order to validate the SNP status of the 2290 C/T poly-
morphism we have extended our previous observations
with the analysis of additional Spanish control popula-
tion (up to 87 healthy blood donors) and have also in-
cluded a new control group of 149 healthy blood donors
and 41 menigioma samples from Ecuador. In Table 1 we
summarise the epidemiological data of the patients in-
cluded in this study. The sex ratio in both Ecuadorian and
Spanish patients (2.7 and 3.1 female/male ratio, respec-
tively) is higher than that reported for larger populations.
The age at diagnostic is similar in the Ecuadorian sex
groups and in the Spanish male patients, but is higher in
the Spanish female group. Marked differences were also
observed in tumour histopathology. While most of the Ec-
uadorian meningiomas were of WHO grade I, the Spanish
tumours were of a predominant grade II-III histology.
These dissimilarities originate from the selection criterion
used in selecting meningioma patients – random in Ecua-
dor, LOH for 1p markers in Spain – and the well estab-
lished correlation between 1p loss and meningioma
progression [5,6].

As shown in Table 2, heterozygotes and T-allele frequen-
cies were statistically indistinguishable in control popula-
tion groups from Ecuador and. In both cases the results
conform to the Hardy and Weinberg equation. We have
also measured allele frequencies for the RAD54L 2290 C/
T polymorphism in meningioma patients from Spain and
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Ecuador. The Spanish group included. 29 tumour samples
with 22 matched peripheral blood samples from a subset
of patients with LOH for at least one marker of chromo-
some 1p and prevailing atypical/anaplastic histology (see
Table 1) as previously reported [5]. Heterozygosity and T-
allele frequencies were higher in the lymphocyte DNA
from Spanish patients (P = 0.0036 and 0.0037, respective-
ly) as compared with the Spanish control population. The
heterozygosity in the Spanish meningeal tumours (0.069)
was much lower than in the patient's peripheral blood
(0.500) and in Ecuadorian tumours (0.732). This discrep-
ancy is an expected consequence of the selection criterion
for the Spanish meningioma (LOH for at least one marker
of 1p) and the frequent loss of heterozygosity (9/11 in-
formative cases, 82%) observed for the 2290C/T polymor-
phism in this tumour group. The frequency of the rare T-
allele (0.22) in the Spanish meningioma group is similar
to the patient's blood and higher than in the healthy con-
trols. Similar frequency has been reported in a mutational
study of several tumour samples [11]. The meningeal tu-
mours from Ecuador, consisting of 41 archival paraffin
samples with a predominant WHO grade I histology (see
Table 1) showed (Figure 1 and Table 2) a very high rate of
heterozygosity, amounting to 73% of this group versus
20% in the control Ecuadorian population. Although the
predominantly typical histology would suggest a low inci-
dence of 1p deletions [5,6] in these tumour samples, the
unavailability of blood from Ecuadorian patients prevent-
ed the ascertainment of LOH and hemizygosity in the tu-
mour samples and, as a result, the frequency of the C-
allele was probably overestimated. Even with this draw-
back, the frequency of heterozygosis and T-alleles was very
high and extremely significant when compared with the

Ecuadorian control population (P = 0.0001). The simili-
tude between Ecuadorian tumours and the constitutive
Spanish patients genotypes, with higher heterozygosity
and T-allele frequency than their healthy population con-
trols are noteworthy, and suggest the presence of an asso-
ciation between the 2290T-allele and the development of
meningeal tumours.

Besides the 2290C/T polymorphism, other rare variants
were found at the 3' end of RAD54L exon 18, as summa-
rised in Figure 2, together with the mismatches (boxes 1,
4 and 5 in the figure) between genomic and mRNA se-
quences already reported in the NCBI database (Evidence
View, graphic display option) when searched for RAD54L.
Besides the 2290C/T polymorphism, a new silent 2290C/
G variant (box 1–2 in Figure 2) has been found in 1 out of
the 11 sequenced Ecuadorian meningeal tumours. Anoth-
er new 2299C/G, F733L variant (box 3 in Figure 2) has
been found with a low frequency (1/11) in Ecuadorian tu-
mours. The 2313G/A, R738H variant (box 4 in the figure
2) has already been reported as a mismatch. Finally, a new
2344A/G variation (box 6 in Figure 2) replaces the 747-
stop codon with a tryptophan and displaced the protein
termination signal to the next TAA codon in position 748.
This variation has been found in the Ecuadorian (1/11)
and Spanish (1/13) samples. The high density of varia-
tions found in exon 18 (5 in 52 nucleotides) is notewor-
thy and suggests the occurrence of a genomic instability at
the 3' end of RAD54L.

The high frequency of constitutional heterozygosity in the
2290C/T alleles found in a subset of meningioma patients
with deletions in the short arm of chromosome 1 (Table

Table 1: Stratification of menigioma patients by sex, age, grade, and histology

Patients Ecuador Spain P values a (Ecuador vs. Spain)

Total 41 29
Female
number 30 22 n.s.b

mean age (years) 50.3 62.4 P < 0.05
Male
number 11 7 n.s.

mean age (years) 48.3 49.7 n.s.
Grade

I 39 5 P < 0.0001
II-III 2 21 P < 0.0001

Histology
meningotheliomatous 20 11 n.s.

transitional 11 6 n.s.
other 10 4 n.s.
n.a.c - 3

a Tukey-Kramer Multiple Comparison Test for age and sex comparison. Fisher's Exact Test for grade and histology. b n.s., "not significant". c n.a,, 
"not available".
Page 3 of 8
(page number not for citation purposes)



BMC Cancer 2003, 3 http://www.biomedcentral.com/1471-2407/3/6
Figure 1
Status of the 2290C/T polymorphism in meningiomas from Ecuador. DNA was extracted from paraffin archival and 
2290 C/T alleles were characterised by PCR-SSCP as described in methods. The figure shows a representative SSCP of 37 
cases. Arrowhead point to T and C alleles migration in the gel.

Table 2: Heterozygotes and T-allele frequencies in population controls and meningioma patients. Alleles were identified by exon 18 
PCR amplification followed by SSCP as described [12].

Groups and number of patients or tumour 
samples

Heterozygosis 
frequencya

Group comparison for heterozygotes 
vs. homozygotesb

T-allele frequencyc Group comparison for T-allele 
frequencyb

A) Control blood from Ecuador N = 149 29/149 (0.195) 31/298 (0.104)
B) Control blood from Spain N = 87 15/87 (0.172) A-B) OR = 1.160 (0.583 – 2.309) P = 

0.7313
19/174 (0.109) A-B) OR = 0.878 (0.5175 – 1.734) P 

= 0.8776
C) Patients blood from Spaind N = 22 11/22 (0.500) C-B) OR = 4.800 (1.758 – 13.103) P = 

0.0036
13/44 (0.295) C-B) OR = 3.421 (1.531 – 7.646) P 

= 0.0037
D) Meningioma tumours from Spaind,e N = 29 2/29 (0.069) D-B) OR = 0.355 (0.076 – 1.660) P = 

0.2327
11/49 (0.224) D-B) OR = 2.357 (1.081 – 5.140) P 

= 0.0455
E) Meningioma tumours from Ecuadorf N = 41 30/41 (0.732) E-A) OR = 11.285 (5.064 – 25.148) P < 

0.0001
30/82 (0.366) E-A) OR = 4.969 (2.773 – 8.905) P 

= 0.0001

a Number of heterozygotes / number of cases or tumour samples. Frequency in brackets. b Odds Ratio (OR) with 95% confidence values in brackets 
and P value (two-sided Fisher's exact test) c Number of T-alleles / total chromosomes in group. Frequency in brackets. d Patients selected for LOH 
in 1p markers in tumour samples. Blood was unavailable in 7 of the patients. Data revised from Mendiola et al. 1999 (ref. 12)e Number of chromo-
somes is reduced to 49 for LOH found in 9 samples. f Archival paraffin samples as described in the methods. Hemizygosis was not evaluable due to 
lack of patients' blood.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

GCT

GCC
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1) together with the frequent loss of heterozygosity for the
2290C/T alleles in the Spanish meningeal tumours (82%
of the informative cases), suggests that this SNP could be
used as a 1p32 marker inside the critical 1.5 cM consensus
deletion region in meningiomas [6]. Using our own pub-
lished [5,12] and unpublished (Mendiola. Chemistry MS
thesis, UAM, Madrid, 1999) data, together with recent in-
formation on the sequence map for chromosome 1 (avail-
able through the web of the NCBI, Entrez Genome and
UniSTS, updated as of September 2002), we were able to
identify 2 tumour samples (numbers 13 and 14 in figure
3) in which the LOH for the 2290C/T SNP marker further
reduced the 1p32 consensus region for deletion in meni-

giomas (3.55 Mbp) within D1S2713 (44.35 Mpb) and
D1S2134 (47.90 Mbp), to either the 2.08 Mbp between
D1S2713 and RAD54L (46.43 Mpb) or the 1.47 Mbp be-
tween RAD54L and D1S2134 (see Figure 3). This nar-
rowed definition of the minimal region of allelic loss
excludes candidate genes telomeric to D1S211 (44.07
Mbp), such as GROS1 [15], mapped at 43.3 Mbp, or genes
centromeric to D1S197 (51,70 Mbp), such as CDKN2C
[16]. The exclusion of CDKNC2 as a candidate oncosu-
pressor in meningiomas has also been suggested in recent
molecular studies [9]. TAL1 [17] and SIL [18], which map
at 50.20 Mbp within the consensus deletion region (Fig-
ure 3), have proto-oncogen functions in leukaemia, and

Figure 2
Variants and mismatches in exon 18 of RAD54L and molecular linkage of RAD54L and MUF1 through an inverse 
overlapping of untranslated mRNA. In the upper side of the figure, variants found in meningiomas (numbered 1–2, 3, 4, 5 
and 6) and mismatches reported in the NCBI (Evidence Viewer, graphic display for RAD54L) (1, 4 and 5) are shown in bold 
within green boxes. The figure displays from top to bottom: the reference protein (Rp) and mRNA (Rs) at the 3' end of 
RAD54L, the variants and mismatches (Vr) and their corresponding protein sequences (Vp). In the lower part of the figure the 
inverse overlapping 70 bp sequence shared by RAD54L and MUF1 3'UTR is shown. Figures in brackets correspond to nucle-
otide positions in the NT_004386 contig.

2290      2300      2310      2320      2330      2340
S  T  A I  T  F V  F  H  Q  R S  H  E  E Q  R  G  L  R  X

TCCACTGCCATCACCTTCGTCTTCCACCAGCGTTCTCATGAGGAGCAGCGGGGCCTCCGCTGATAACCA
.......T-G......G.............A............A.................G......
S  T  A I  T  L V  F H  Q  H S  H  E  E Q  R  G  L  R  W X

730                           740                         750

1-2 3 4 65

Rp
Rs
Vr
Vp

RAD54L exon 18
Contig NT_004386 (448706-448774)

RAD54L
MUF1

2290C/T

Exon 11
Exon 18

(448885)

(448954)
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Figure 3
Summary of LOH analysis and map information. A. Sequence maps of 1p markers and genes were obtained from NCBI 
gene maps and UniSTS records (updated as of September 2002). Salmon coloured horizontal lines delimit the smallest overlap-
ping region flanked by D1S2713 and D1S2134 [6]. LOH results for 11 RAD54L polymorphism informative cases are taken from 
previous published and unpublished results (see the text). Open and closed circles correspond to retention and loss of hetero-
zygosity respectively. The horizontal bar represents uninformative constitutional homozygosis. Patient identification as in ref. 5. 
B. SSCP of constitutive (C) and tumoral (T) DNA from patients 13 and 14, showing LOH of RAD54L and retention of hetero-
zygosity for D1S197 and D1S232 markers.
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are unlikely oncosupressor candidates. Besides RAD54L,
other oncosupressor candidates mapping within the
smallest region of overlap (D1S2713-RAD54L) are
PTCH2, MUTYH and MUF1. PTCH2 (OMIM 603673, Lo-
cus Link 8643), the human homologue of Drosophila
patched-hedgehog, has been implicated in malignancies
such as medulloblastoma and basal cell carcinoma [19].
MUTYH (OMIM 604933, Locus Link 4595), a homologue
of the yeast mutY gene, is an oxidative mismatch repair
protein [20] which could be involved with MUTL in sus-
ceptibility to hereditary nonpolyposis colon cancer (HN-
PCC, OMIM 120535). MUF1 (Locus Link 10489) has
recently been characterised as an Elongin BC-interacting
protein, akin to the Von Hippel Landau (VHL) tumour su-
pressor protein in its ability to assemble with Cul5 and
Rbx1 and reconstitute a ubiquitin ligase [21]. To our
knowledge none of these putative candidate genes has
been studied in meningiomas.

The statistical association between the rare T allele in the
2290C/T polymorphism and the risk of meningioma de-
velopment (Table 1) requires some attention. It is unlike-
ly that the 2290C/T silent variation (Ala730Ala) could
result in functionally different alleles, and there is no evi-
dence for any plausible effect on mRNA transcription. Al-
ternatively, it is possible that the T-allele is in linkage
disequilibrium with another sequence of DNA directly
implicated in tumour development. According to the draft
chromosome 1 sequence (accession NT_004386, in
Entrez Nucleotide from NCBI web), RAD54L and MUF1
share 69 bp of a convergent and inverted untranslated
mRNA that contains the poly (A+) signal and the site for
polyadenylation for both genes (Figure 2). This is a condi-
tion for dsRNA production that could initiate a chain re-
action of gene silencing through degradation of
homologous messenger RNA molecules [22,23]. Whether
the 2290T-allele is actually linked to a gene silencing
mechanism through homologous antisense dsRNA of ei-
ther the RAD54L mRNA or MUF1 mRNA would require
dilucidation in further studies, which also have to consid-
er the genomic instability observed at the 3' end of
RAD54L.

Conclusions
The statistical analysis of genotype (2290C/T) distribu-
tion among meningioma patients and healthy controls
suggests that the rare T allele is associated with the risk of
meningioma development. In addition, this study also
shows  that the 2290C/T variation can succesfully be ex-
ploited as a polymorphic marker inside the consensus de-
letion at 1p32 in meningiomas.
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