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Abstract

Background: Autotransplantation of frozen-thawed ovarian tissue is a method to preserve ovarian function and
fertility in patients undergoing gonadotoxic therapy. In oncology patients, the safety cannot yet be guaranteed,
since current tumor detection methods can only exclude the presence of malignant cells in ovarian fragments that
are not transplanted. We determined the need for a novel detection method by studying the distribution of tumor
cells in ovaries from patients with breast cancer. Furthermore, we examined which cell-surface proteins are suitable
as a target for non-invasive tumor-specific imaging of ovarian metastases from invasive breast cancer.

Methods: Using the nationwide database of the Dutch Pathology Registry (PALGA), we identified a cohort of 46
women with primary invasive breast cancer and ovarian metastases. The localization and morphology of ovarian
metastases were determined on hematoxylin-and-eosin-stained sections. The following cell-surface markers were
immunohistochemically analyzed: E-cadherin, epithelial membrane antigen (EMA), human epidermal growth receptor
type 2 (Her2/neu), carcinoembryonic antigen (CEA), αvβ6 integrin and epithelial cell adhesion molecule (EpCAM).

Results: The majority of ovarian metastases (71%) consisted of a solitary metastasis or multiple distinct nodules
separated by uninvolved ovarian tissue, suggesting that ovarian metastases might be overlooked by the current
detection approach. Combining the targets E-cadherin, EMA and Her2/neu resulted in nearly 100% detection of ductal
ovarian metastases, whereas the combination of EMA, Her2/neu and EpCAM was most suitable to detect lobular
ovarian metastases.

Conclusions: Examination of the actual ovarian transplants is recommended. A combination of targets is most
appropriate to detect ovarian metastases by tumor-specific imaging.

Keywords: breast cancer, fertility preservation, ovarian metastases, ovarian tissue autotransplantation, tumor markers,
tumor-specific imaging

Background
Cryopreservation of ovarian tissue is the only option to
preserve fertility and restore ovarian activity in pre-
pubescent girls and women who cannot postpone the
start of adjuvant chemotherapy [1]. Although auto-
transplantation of frozen-thawed cortical ovarian tissue
has resulted in more than 86 live births worldwide [2],
this method has not yet been endorsed by the American

Society for Reproductive Medicine (ASRM) [3]. One of
the reasons that the ASRM committee has put forward
is that the safety of the procedure has not been sub-
stantiated in patients with cancer. Cortical ovarian
tissue may contain malignant cells that could lead to
reseeding of cancer upon autotransplantation. This risk
of reintroducing malignant cells cannot be eliminated,
since the current tumor detection methods (e.g. PCR,
immunohistochemistry) jeopardize the ovarian tissue’s
viability [4]. These methods can therefore only be used to
examine cortical ovarian strips that are not transplanted.
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Hence, the presence of tumor cells in the actual ovarian
autografts remains questionable.
Whether the current approach for tumor detection is

accurate depends on the distribution of metastatic
tumor cells in the ovarian tissue [5, 6]. If tumor cells are
diffusely dispersed throughout the ovary, examination of
one or two cortical ovarian strips might be sufficient. By
contrast, if tumor cells are confined to a specific area in
the ovarian cortex, this approach is inadequate. Then,
cortical ovarian strips that are examined may turn out to
be devoid of tumor cells whereas ovarian fragments that
harbor metastases may be transplanted, possibly result-
ing in cancer relapse.
The implementation of a detection method that

allows examination of the cortical ovarian strips that
will be transplanted, will significantly reduce the risk of
transferring malignant cells. Near-infrared fluorescence
(NIRF) imaging might be an appropriate approach, as
this technique discriminates malignant cells from non-
malignant tissue in real time while leaving the tissues
viable [7]. A NIRF probe consists of a fluorophore that
emits light in the near-infrared spectrum (λ = 700–
900 nm) and an antibody or peptide with high affinity
for a protein expressed specifically at the cell surface of
tumor cells [8, 9].
In order to use tumor-specific imaging to exclude

malignant cells in cortical ovarian autografts, tumor
markers should be identified that are present at the cell
surface of ovarian metastases. Since a substantial pro-
portion of patients who undergo ovarian tissue cryo-
preservation is diagnosed with breast cancer [10–12],
we tested a panel of cell-surface markers known to be
expressed by breast cancer cells, including E-cadherin
[13], epithelial membrane antigen (EMA, also known as
MUC1) [14, 15], human epidermal growth factor recep-
tor type 2 (Her2/neu) [16, 17], carcinoembryonic anti-
gen (CEA) [18], αvβ6 integrin [19] and epithelial cell
adhesion molecule (EpCAM) [20–22]. The markers
cytokeratin CAM 5.2, gross cystic disease fluid protein-
15 (GCDFP15), Wilms’ tumor antigen-1 (WT1), mam-
maglobin 1, and cytokeratin 7 (CK-7), which were used
by Sánchez-Serrano et al. [23] and Rosendahl et al. [6],
were excluded, as they are not expressed at the cell
surface and therefore not suitable as a target for tumor-
specific imaging.
In this study, we assessed the distribution of breast tumor

cells in ovarian tissues from patients with ovarian metasta-
ses and determined which cell-surface proteins are suitable
as a target for tumor-specific imaging of ovarian metastases
derived from invasive breast cancer. Because it is crucial to
select a target prior to the administration of the NIRF
probe, we also examined whether invasive breast cancer
tissue can be used to predict the most suitable target for
the detection of ovarian metastases in a particular patient.

Methods
Patient selection and tissue collection
Via a nationwide search performed by PALGA, the
Dutch histopathology and cytopathology network that
encompasses all pathology laboratories within the
Netherlands [24], a source population was compiled.
This source population consisted of all patients who
were diagnosed with primary invasive breast cancer at
age < 41 years in the period 2000–2010 and who subse-
quently underwent an oophorectomy for any reason.
From this source population, all patients who had histo-
logically confirmed ovarian metastases from primary
invasive breast cancer, were selected. Following this,
hematoxylin-and-eosin (H&E) stained tissue sections
and formalin-fixed paraffin-embedded (FFPE) tissue
samples from the primary invasive breast tumors and
their corresponding ovarian metastases were requested
from pathology laboratories. If patients had locally
recurrent breast cancer or a second primary invasive
breast tumor prior to oophorectomy, FFPE tissue
samples from these tumors were also requested. Clinical
data were extracted from the patient’s files after approval
by the medical ethical committee of the Leiden Univer-
sity Medical Center (protocol number P14.106) and
the local medical ethical committees of the participat-
ing hospitals.

Distribution of breast cancer cells in the ovary
The distribution of breast cancer cells in ovarian tissues
was evaluated using the original H&E-stained sections
by assessment of their localization and morphological
features. The localization of breast cancer cells was
determined as confined to the ovarian cortex and/or
medulla. With respect to morphology, breast cancer cells
were classified as a solitary metastasis, multiple distinct
nodules separated by uninvolved ovarian tissue, or
diffuse seeding without any discernable pattern.

Immunohistochemistry
Immunohistochemistry was performed on 4-μm thick
FFPE sections of primary invasive breast cancers, locally
recurrent breast cancers (if applicable) and their corre-
sponding ovarian metastases. The tissue sections were
deparaffinized in xylene, dehydrated in a stepwise series
of graded alcohol solutions, and rinsed in distilled water.
After blocking endogenous peroxidase activity with 0.3%
hydrogen peroxide for 20 min, heat-induced antigen
retrieval was performed by placing the slides in EnVision
Flex Target Retrieval Solution high pH (pH 9.0; E-
cadherin, EMA) or in the same solution but low pH
(pH 6.0; Her2/neu) in PT Link (Dako, Denmark).
EpCAM and αvβ6 integrin epitopes were unmasked by
30-min incubation with 0.125% trypsin and 0.4% pepsin,
respectively, at 37 °C. For CEA, no antigen retrieval was
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required. The sections were incubated overnight in a hu-
midified chamber at room temperature with primary
antibodies against Her2/neu (ERBB2, rabbit polyclonal,
Dako), E-cadherin (NCH38, mouse monoclonal, Dako),
EpCAM (323/A3, mouse monoclonal, provided by the
Department of Pathology, LUMC, the Netherlands),
CEA (A0115, rabbit polyclonal, Dako), αvβ6 integrin
(6.2A1, mouse monoclonal, Cell Essentials), or EMA
(E29, mouse monoclonal, Dako); all primary antibodies
were used at their predetermined optimal dilution. After
incubation with primary antibodies, the sections were
rinsed with PBS, incubated with secondary antibodies
(anti-mouse or anti-rabbit EnVision; Dako) for 30 min,
and visualized using liquid DAB+ substrate buffer
(Dako). The sections were counterstained with Mayer’s
hematoxylin solution, dehydrated, and mounted with
Pertex (Leica Microsystems, Germany). For each immu-
nostain, tissues expressing the antigen of interest were
included as a positive control. Tissue sections stained
without application of the primary antibody were used
as a negative control.

Immunofluorescent triple staining
For immunofluorescent triple staining, the three most
highly expressed markers for ductal and lobular ovarian
metastases were chosen. In brief, FFPE sections of these
ovarian metastases were deparaffinized as described
above. Antigen retrieval was performed by placing the
slides in EnVision Flex Target Retrieval Solution high
pH (pH 9.0; Dako). Primary antibodies for ductal ovarian
metastases: E-cadherin, EMA and Her2/neu. Primary anti-
bodies for lobular ovarian metastases: EMA, Her2/neu and
EpCAM. Secondary antibodies were all isotype-specific
antibodies with Alexa Fluorochromes (LifeTechnologies,
USA): anti-mouse IgG1-AlexaFluor488 (E-cadherin and
EpCAM; green), anti-mouse IgG2a-AlexaFluor647 (EMA;
red) and anti-rabbit-AlexaFluor546 (Her2/neu; orange).
Sections were mounted with Vectashield containing DAPI
(Vector Laboratories, USA). Primary invasive breast tumor
samples that showed positive expression for all markers in
previous experiments were used as a positive control.
Tissue sections stained without application of primary
antibodies were used as a negative control.

Image capture and quantification of immunoreactivity
The immunohistochemically stained slides were digitized
using an IntelliSite Pathology Ultra-Fast Scanner 1.6 RA
(Philips, The Netherlands). The percentage of malignant
cells with immunohistochemically positive stained
membranes were scored by two independent observers
(I.P. and M.S.). In case of discrepancy, the observers
reached consensus regarding a final score. The tumor
cell membranes were considered positive if they showed
immunoreactivity of any intensity. The immunofluorescent

stained slides were digitized using a Pannoramic MIDI
digital slide scanner (3DHistech, Hungary). The percentage
of malignant cells with immunofluorescent positive stained
membranes were also scored by two independent observers
(I.P. and B.H.).

Statistical analysis
Statistical analysis was performed using SPSS version 23.0
(IBM, Armonk, NY). Inter-observer agreement was calcu-
lated using the Pearson correlation coefficient. Scatter
plots based on generalized estimating equations analysis
were made to determine whether invasive breast cancer
tissue can be used to predict the most suitable target for
the detection of ovarian metastases in a particular patient.

Results
Patient selection and clinicopathological characteristics
According to the PALGA registry, 2648 patients were diag-
nosed with primary invasive breast cancer at age < 41 years
in the period 2000–2010 in the Netherlands who subse-
quently underwent an oophorectomy (Fig. 1). Among
these patients, 63 patients had ovarian metastases. Of
these 63 patients, tumor tissue samples were available
from 46 patients. These 46 patients were included in this
study. The clinicopathological characteristics of the 46 pa-
tients are shown in Table 1. The median age at the time of
diagnosis was 36.5 years (range 28–40 years). Thirty-six
patients were diagnosed with invasive ductal breast cancer
and five patients were diagnosed with invasive lobular
breast cancer. The remaining five patients had invasive
ductolobular breast cancer. Almost 15% of patients had
distant metastases outside the ovary at the time of
breast cancer diagnosis. The median time between this
diagnosis and oophorectomy was 41.9 months (range
0.3–141.8 months). In the majority of cases, the
oophorectomy was done prophylactically or therapeut-
ically because of breast cancer. In only one fourth of
cases, the ovaries were removed because they ap-
peared abnormal on ultrasound. Further patient and
tumor characteristics are presented in Table 1.

Localization and morphology of ovarian metastases
Of the 46 patients, 29 patients had metastases in both
ovaries (Table 1). Therefore, the total number of ovaries
that contained metastases was 75. The localization and
morphology of these 75 ovarian metastases are shown in
Table 2. In 14 ovaries (19%) the metastases seemed
confined to the cortex, whereas in 53 ovaries (70%) both
the cortex and medulla were involved (Table 2). In half
of the ovaries multiple distinct nodules were seen, while
in 20% a solitary metastasis was found. Diffuse seeding
without any discernable pattern was observed in 29% of
ovaries. Figure 2 shows examples of these morpho-
logical features.
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Expression of cell-surface proteins
Immunohistochemistry was performed to determine which
cell-surface proteins are suitable as a target for tumor-
specific imaging of ovarian metastases from invasive breast
cancer. A strong correlation was observed between the
scoring results obtained by the two observers; the median
R2 was 0.846 (range: 0.640–0.960). Representative examples
of the immunohistochemical stainings of the invasive breast
tumor samples and their corresponding ovarian metastases
are shown in Additional file 1: Figure S1.
Table 3 shows the mean percentage of positive tumor

cells for the investigated markers in primary and recur-
rent invasive breast tumors and their ovarian metastases.
Since loss of expression of the cell-adhesion molecule E-
cadherin frequently occurs in invasive lobular carcin-
omas [25], the expression of markers was examined by
histological subtype. With respect to invasive ductal
carcinomas, E-cadherin, EMA and Her2/neu were most
suitable; these markers were present in 91, 84 and 81%
of metastatic breast tumor cells in the ovaries, respect-
ively. In invasive lobular carcinomas, the mean percent-
age of positively stained breast tumor cells in the ovaries
was highest for EMA, Her2/neu and EpCAM; specific-
ally, 64, 74 and 68%, respectively. In patients diagnosed
with ductolobular breast cancer, targeting EMA would
result in the detection of 99% of disseminated breast
cancer cells in the ovaries.

Correlation between the expression of cell-surface
proteins in invasive breast tumors and their corresponding
ovarian metastases
In patients diagnosed with ductolobular breast cancer,
the expression of EMA in the invasive breast tumors

was in accordance with the expression in their corre-
sponding ovarian metastases, showing small standard
deviations (Table 3). Therefore, EMA would be the most
suitable target to detect ductolobular ovarian metastases.
By contrast, in patients diagnosed with ductal or lobular
breast cancer large variations in expression among tu-
mors were found. To understand whether in these pa-
tients invasive breast tumor tissues can be used to
predict the most suitable target for the detection of ovar-
ian metastases in an individual patient, scatter plots were
made (Fig. 3). For each patient, the percentage of posi-
tive tumor cells in primary and locally recurrent breast
tumors (if applicable) was set against the percentage of
positive tumor cells in their corresponding ovarian
metastases. No correlation between these expressions
could be substantiated, showing that ductal and lobular
breast tumor tissues cannot be used to predict the most
pertinent marker for the detection of their correspond-
ing ovarian metastases.

Detection of ovarian metastases by a combination
of markers
Figure 3 also shows that the use of one marker would
not always be sufficient to detect all metastatic ductal or
lobular breast cancer cells in the ovaries. The use of one
marker (E-cadherin, EMA or Her2/neu) would result in
the detection of 100% of tumor cells in 44 out of 58
ductal ovarian metastases (data not shown). With re-
spect to the lobular subtype, EMA, Her2/neu or EpCAM
was present in 100% of tumor cells in 4 out of 10 ovar-
ian metastases. To investigate whether a combination of
markers would enable the detection of 100% of tumor
cells in all ductal and lobular ovarian metastases, an

Fig. 1 Patient selection and composition of the study population. The source population was compiled by the Dutch histopathology and
cytopathology network. The exclusion criteria are indicated in the dotted boxes
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Table 1 Clinicopathological characteristics of patients with
primary invasive breast cancer and ovarian metastases

Clinicopathological characteristics N = 46 %

Age at diagnosis of breast cancer,
years - median (range)

36.5 (28–40) -

BRCA gene mutation

No 8 17.4

Yes, BRCA 1 1 2.2

Yes, BRCA 2 0 0.0

Unknown 37 80.4

Breast tumor localization

Left 23 50.0

Right 21 45.7

Both 2 4.3

Most extensively performed breast surgery

Needle biopsy 4 8.7

Breast conserving surgery 15 32.6

Mastectomy 27 58.7

Breast tumor histological subtype

Ductal 36 78.2

Lobular 5 10.9

Ductolobular 5 10.9

Scarff-Bloom-Richardson grade

I 4 8.7

II 19 41.3

III 15 32.6

Unknown 8 17.4

Estrogen receptor

Negative 5 10.9

Positive 41 89.1

Progesterone receptor

Negative 8 17.4

Positive 38 82.6

Her2/neu receptor

Negative 38 82.6

Positive 8 17.4

Tumor stage

T1 11 23.9

T2 24 52.2

T3 7 15.2

T4 4 8.7

Nodal stage

N0 14 30.4

N1 12 26.1

N2 10 21.7

N3 10 21.7

Table 1 Clinicopathological characteristics of patients with
primary invasive breast cancer and ovarian metastases
(Continued)

Distant metastasis

cM0 39 84.8

cM1 7 15.2

Age at diagnosis of ovarian metastases,
years - median (range)

40.0 (31–51) -

Time between breast cancer and ovarian
metastases, months - median (range)

41.9 (0.3–141.8) -

Recurrent disease prior to oophorectomy

No 15 32.6

Yes, locoregional recurrence 12 26.1

Yes, distant recurrence 19 41.3

Type of ovarian surgery

Unilateral oophorectomy 0 0.0

Bilateral oophorectomy 46 100.0

Indication for oophorectomy

Prophylactic because of breast cancer 9 19.6

Therapeutic because of breast cancer 25 54.3

Abnormal ovaries on ultrasound 12 26.1

Localization of ovarian metastases

Left 4 8.7

Right 6 13.0

Both 29 63.0

Unknown 7 15.2

Table 2 Localization and morphology of ovarian metastases
derived from patients diagnosed with invasive breast cancer

Histological features Ovarian metastases

N = 75 %

Localization of ovarian metastases

Cortex 14 18.7

Medulla 8 10.7

Both 53 70.1

Morphology of ovarian metastases

Solitary metastasis 15 20.0

Multiple distinct nodules separated
by uninvolved ovarian tissue

38 50.7

Diffuse seeding without any discernable pattern 22 29.3

Fallopian tube involved

No 55 73.3

Yes 5 6.7

Unknown 15 20.0

Of the 46 patients who were diagnosed with invasive breast cancer and
ovarian metastases, 29 patients had metastases in both ovaries. The total
number of ovaries that contained metastases was 75
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immunofluorescent triple staining was performed. By
combining the three most suitable markers for the
ductal (E-cadherin, EMA and Her2/neu) and lobular
(EMA, Her2/neu and EpCAM) subtypes, 100% tumor
cell detection was accomplished in 53 out of 58 ductal
ovarian metastases and in 7 out of 10 lobular ovarian
metastases. Hence, cells within ovarian tissues that show
membranous positivity for any of the three markers
mentioned will be deemed malignant. In the remaining
five ductal and three lobular ovarian metastases, the
mean percentage of undetected metastatic cells was 5%
(no range) and 25% (range 10–40), respectively. Figure 4
shows a representative image of the immunofluorescent
triple staining in a lobular ovarian metastasis, in which
the combination of EpCAM, EMA and Her2/neu led to
the detection of all metastatic breast cancer cells.

Discussion
One of the purposes of the present study was to
examine the histological features of ovarian metastases

in breast cancer patients to evaluate the current
tumor detection approach [4] in ovarian tissues con-
sidered for autotransplantation. We found that 71%
of ovarian metastases consisted of a solitary metasta-
sis or multiple distinct nodules separated by unin-
volved ovarian tissue. These findings suggest that
tumor cells might have been missed if the current
tumor detection approach would have been used.
The patients included in this study however, under-
went oophorectomy after a median time interval of
42 months. In patients undergoing ovarian tissue
cryopreservation an oophorectomy is performed soon
after cancer diagnosis. In these patients, dissemi-
nated tumor cells may not yet have outgrown into
overt metastases and may appear as micrometastases
in the ovarian tissues [23, 26, 27]. The chance that
tumor cells will then be overlooked is presumably
greater. We therefore recommend examination of the
actual ovarian autografts on the presence of malignant
cells prior to autotransplantation.

Fig. 2 Localization of ovarian metastases derived from patients diagnosed with invasive breast cancer. Three examples are shown: (a) a solitary
metastasis, (b) multiple distinct nodules separated by uninvolved ovarian tissue and (c) diffuse seeding without any discernable pattern. In order
to clearly display the solitary metastasis in (a) and the multiple distinct nodules in (b), a green line is drawn that delineates the metastases in the
ovary. Scale bars represent 5 mm

Table 3 Immunohistochemical expression of the investigated markers in invasive breast tumors and their corresponding ovarian
metastases

Marker % of positive tumor cells in
invasive ductal carcinoma

% of positive tumor cells in
invasive lobular carcinoma

% of positive tumor cells in
invasive ductolobular carcinoma

Breast tumors
(n = 44)

Ovarian metastases
(n = 58)

Breast tumors
(n = 7)

Ovarian metastases
(n = 10)

Breast tumors (n = 7) Ovarian metastases
(n = 7)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

E-cadherin 91 18 91 20 9 23 0 0 73 35 51 41

EMA 86 23 84 24 86 32 64 32 97 6 99 2

Her2/neu 76 35 81 31 88 26 74 26 80 34 67 38

CEA 56 40 57 39 73 32 59 26 62 32 56 33

αvβ6 integrin 51 40 45 39 54 35 38 28 45 30 29 35

EpCAM 36 42 38 39 38 46 68 26 19 29 35 29

SD = standard deviation

The mean percentages of immunohistochemically positive stained tumor cells are subdivided by histological subtype. Tumor cell membranes were considered
positive if they showed immunoreactivity of any intensity. EMA, epithelial membrane antigen; Her2/neu, human epidermal growth receptor type 2; CEA,
carcinoembryonic antigen; EpCAM, epithelial cell adhesion molecule
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In our study, merely 63 out of 2648 patients (2.4%)
who were diagnosed with primary invasive breast cancer
at age < 41 years had ovarian metastases. For the
determination of suitable targets for NIRF imaging, it
might have been relevant to focus on malignancies with
a higher risk of ovarian contamination in the actual
patient population, for instance leukemia [28–30]. None-
theless, breast cancer can be perfectly used as a starting
point to investigate whether NIRF imaging is feasible for
the detection of ovarian metastases.
Considering the expression of Her2/neu in primary

invasive breast cancers and ovarian metastases a high
percentage of Her2/neu positive tumor cells (67–88%)
was found, as we considered tumor cell membranes
positive if they showed immunoreactivity of any inten-
sity. This is in contrast to the diagnostic setting, where
Her2/neu overexpression is determined because of its
potential prognostic value [17, 31]. We applied a lower
cut-off point, because for NIRF imaging the staining
intensity is less important as long as a significant
tumor-to-background-ratio can be achieved. In the NIR
spectrum, non-specific fluorescence background signal

is substantially decreased compared to wavelengths
lower than NIR [8]. Hence, since ovarian stromal cells
do not immunohistochemically express Her2/neu [32],
Her2/neu-targeting NIRF probes will detect metastatic
breast cancer cells within ovarian tissues if these cells
show immunohistochemical reactivity.
In individual patients, no correlation was found

between the expression of the investigated markers in
breast tumors and their corresponding metastases in the
ovary. This might be due to the fact that breast cancer is
known as a heterogeneous disease [17] or be in line with
the hypothesis that disseminated tumor cells autono-
mously evolve from the primary tumor [33]. For the
clinical application of these markers there should not be
an obstacle, since a combination of three markers en-
hances the ability to detect breast tumor cells in ductal
and lobular ovarian metastases. Furthermore, only the
histological subtype of the invasive breast tumor needs
to be known to determine which combination of
markers is pertinent for the detection of the correspond-
ing ovarian metastases, making the selection of suitable
NIRF probes simple and straightforward. For the non-

Fig. 3 The correlation between tumor marker expression in breast tumors and ovarian metastases for individual patients. Upper panel (a) shows
invasive ductal breast cancer and lower panel (b) represents invasive lobular breast cancer. For each patient, the percentage of positive tumor
cells in primary and locally recurrent breast tumors (if applicable) was set against the percentage of positive tumor cells in their corresponding
ovarian metastases. EMA, epithelial membrane antigen; Her2/neu, human epidermal growth receptor type 2; EpCAM, epithelial cell
adhesion molecule
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invasive detection of metastases in the actual ovarian au-
tografts by tumor-specific imaging, NIRF probes could
be administered intravenously, after which the removed
ovary is dissected into cortical ovarian strips. Subcellular
detailed fluorescent images of tumor cells within ovarian
autografts could then be obtained by multiphoton mi-
croscopy [34]. Beside breast cancer cells, inclusion cysts
will likely also be illuminated by NIRF imaging, as we
previously showed that in normal ovaries, all markers
(except CEA) were expressed on epithelial cells in
inclusion cysts [32]. Nevertheless, we additionally dem-
onstrated that full-field optical coherence tomography
(FF-OCT), which creates histology-like images without
the need for tissue manipulation, can be perfectly used
to differentiate between inclusion cysts and metastases
in the ovary [35]. On a tomographic FF-OCT image, an
inclusion cyst is characterized by a thin dark outer layer
and lack of interior structure, whereas micrometastatic
lesions from primary invasive ductal carcinomas
present as ‘web-like’ structures in which tumor cells ap-
pear light gray. Metastatic lesions derived from primary
invasive lobular carcinomas often show an Indian file
pattern, defined as infiltrating single rows of cells [36].
Since ovarian inclusion cysts are separately identifiable

within the ovarian parenchyma [32], a distinction be-
tween these structures can also be made. In addition,
FF-OCT and NIRF imaging might be combined to en-
hance their sensitivity and specificity rates, as both
methods are noninvasive. The a priori probability that
other benign epithelial ovarian abnormalities will be
detected by our panel of cell-surface markers is low,
since ovaries that present as an adnexal mass on
preoperative ultrasonography are generally not used for
ovarian tissue cryopreservation. In case primary ovarian
cancer cells are present, these cells will be detected as
E-cadherin [37], EMA [38], and EpCAM [39] are
virtually always expressed in ovarian cancer, and ap-
proximately 33% of primary ovarian carcinomas show
Her2/neu amplification [40].

Conclusions
In conclusion, we showed that in young breast cancer
patients with ovarian metastases, metastatic breast
tumor cells may be confined to a specific area in the
ovarian cortex. A non-invasive tumor detection tech-
nique by which cortical ovarian fragments that are trans-
planted can be examined, is recommended to minimize
the risk of reintroducing metastatic tumor cells by

Fig. 4 Detection of ovarian metastases by a combination of markers. Representative image of a lobular ovarian metastasis stained with DAPI
counterstain and triple immunofluorescence for EpCAM (a), EMA (b), Her2/neu (c), and the three stainings combined (d). The solid arrow
indicates tumor cells that are positive for EpCAM, but negative for EMA and Her2/neu. The dashed arrow indicates tumor cells that are positive
for Her2/neu, but negative for EpCAM and EMA. Scale bars represent 100 μm. EpCAM, epithelial cell adhesion molecule; EMA, epithelial
membrane antigen; Her2/neu, human epidermal growth receptor type 2
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ovarian tissue autotransplantation in breast cancer
patients. NIRF imaging is a promising technique to
discriminate malignant from benign tissues while leaving
the examined tissues vital. Our research opens a new
avenue for the development of tumor-specific NIRF probes
that can be used for non-invasive detection of breast cancer
metastases in ovarian tissues prior to autotransplantation.

Additional files

Additional file 1: Figure S1. Immunohistochemical expression of
tumor markers in invasive breast tumors and their corresponding ovarian
metastases. Arrows indicate tumor cells that show heterogeneous
expression of markers. Scale bars represent 100 μm. EMA, epithelial
membrane antigen; Her2/neu, human epidermal growth receptor type 2;
CEA, carcinoembryonic antigen; EpCAM, epithelial cell adhesion molecule.
(TIFF 5316 kb)

Additional file 2: Table S2. List of participating hospitals. An overview
is given of the treatment hospitals that approved the study design.
(DOCX 14 kb)
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Pathology Registry; PBS: Phosphate buffered saline; PCR: Polymerase chain
reaction; pH: Potential hydrogen; PT: Pre-treatment; SPSS: Statistical package
for the social sciences; WT1: Wilms’ tumor antigen-1
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