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Abstract
Background Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are the two most common 
immune checkpoints targeted in triple-negative breast cancer (BC). Refining patient selection for immunotherapy is 
non-trivial and finding an appropriate digital pathology framework for spatial analysis of theranostic biomarkers for 
PD-1/PD-L1 inhibitors remains an unmet clinical need.

Methods We describe a novel computer-assisted tool for three-dimensional (3D) imaging of PD-L1 expression in 
immunofluorescence-stained and optically cleared BC specimens (n = 20). The proposed 3D framework appeared 
to be feasible and showed a high overall agreement with traditional, clinical-grade two-dimensional (2D) staining 
techniques. Additionally, the results obtained for automated immune cell detection and analysis of PD-L1 expression 
were satisfactory.

Results The spatial distribution of PD-L1 expression was heterogeneous across various BC tissue layers in the 3D 
space. Notably, there were six cases (30%) wherein PD-L1 expression levels along different layers crossed the 1% 
threshold for admitting patients to PD-1/PD-L1 inhibitors. The average PD-L1 expression in 3D space was different 
from that of traditional immunohistochemistry (IHC) in eight cases (40%). Pending further standardization and 
optimization, we expect that our technology will become a valuable addition for assessing PD-L1 expression in 
patients with BC.

Conclusion Via a single round of immunofluorescence imaging, our approach may provide a considerable 
improvement in patient stratification for cancer immunotherapy as compared with standard techniques.
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Introduction
The global burden of breast cancer (BC) is substantial, 
with approximately 2.3  million new cases and 685,000 
deaths worldwide in 2020 [1]. BC is a heterogeneous 
malignancy that is traditionally classified by the expres-
sion of specific hormone receptors (i.e., estrogen recep-
tor [ER] and progesterone receptor [PR]), as well as the 
overexpression of human epidermal growth factor recep-
tor 2 (HER2) [2–4]. With limited therapeutic options, 
triple-negative (i.e., negative for PR, ER, and HER2 recep-
tors) BC appears to be associated with the least favorable 
outcomes among the major subtypes [4]. Under these 
circumstances, targeted therapy in search for non-endo-
crine targets is gaining attention [5, 6].

By addressing immune evasion through the acti-
vation of T cell-mediated cytotoxic responses, the 
development of immune checkpoint inhibitors (ICIs) 
has been a major breakthrough in the field of can-
cer immunotherapy [7–9]. PD-1 and PD-L1 are the 
two most common immune checkpoints targeted in 
BC [10]. Among the monoclonal antibodies that bind 
and block the PD-1/PD-L1 axis, atezolizumab (PD-
L1-binding) and pembrolizumab (PD-1-binding) have 
received approval for patients with unresectable locally 
advanced or metastatic triple-negative BC expressing 
PD-L1 [7, 8]. Currently, eligibility to treatment with 
anti-PD-1/PD-L1 antibodies relies on the IHC detec-
tion of PD-L1 in tumor specimens [11–14]. However, 
heterogeneity of PD-L1 expression still poses signifi-
cant technical challenges. The resulting risk of inaccu-
rate or incorrect patient allocation to ICIs [15] calls for 
an optimized PD-L1 detection technique.

Optical clearing has emerged as an increasingly via-
ble option to bypass the optical heterogeneity of tissue 
components and meet the growing demand for 3D tis-
sue imaging [16]. Recent advances in 3D tissue clearing 
techniques [17, 18] – coupled with high-throughput 
computational analysis of optically cleared samples 
– have provided significant opportunities to explore 
tumor heterogeneity and its clinical significance [19–
23]. While most previous 3D studies in the field have 
focused on visualizing tumor morphology in serial sec-
tions, there have been limited attempts to track single 
protein expression within the highly complex tumor 
microenvironment. In this proof-of-concept study, we 
describe a novel computer-assisted tool for 3D imaging 
of PD-L1 expression in immunofluorescence-stained 
and optically cleared BC specimens. The devised algo-
rithm has the potential to improve current stratifica-
tion schemes for allocating triple-negative BC patients 
to ICIs.

Methods
Patient cohort
All procedures were in accordance with the ethical 
standards established by the Declaration of Helsinki 
and the study protocol was approved by National 
Taiwan University Hospital (IRB reference number: 
202004032RSB). Each participant provided written 
informed consent. Surgical or biopsy primary tumor 
specimens (n = 33) were prospectively collected from 
33 adult women (> 18-years old) who had been diag-
nosed with BC (including six with triple-negative BC) 
at National Taiwan University Hospital between 2020 
and 2022. Patients who had previously undergone 
treatment before specimen collection were excluded, 
as were pregnant or lactating women.

Specimen sets
Primary tumor specimens (n = 33) were randomly 
divided into three distinct sets as follows: (1) samples 
used to perform autofluorescence testing (n = 3), (2) 
samples used to train computer-assisted tumor-infil-
trating immune cell detection algorithm (n = 10), and 
(3) samples used to analyze PD-L1 expression using 
the computer-assisted algorithm (n = 20).

Sample preparation
Fresh primary tumor specimens were fixed at room 
temperature (RT) for 12 − 72  h in 10% neutral buff-
ered formalin (Leica biosystems, Richmond, IL, USA) 
and subsequently placed in phosphate-buffered saline 
(PBS)-azide buffer (0.02% sodium azide; Sigma-
Aldrich, St. Louis, MO, USA) for long-term preser-
vation at 4  °C. After tissue embedding in 3% agarose 
(Sigma-Aldrich), a vibratome was used to obtain 
200-µm-thick slices. Paired slices (n = 2) from the same 
patient were subjected to (1) paraffin embedding fol-
lowed by traditional 2D hematoxylin and eosin (H&E) 
staining and IHC (n = 1) and (2) 3D immunofluores-
cence staining (n = 1; Fig. 1A).

Hematoxylin and eosin staining and 
immunohistochemistry
H&E staining and IHC were performed on 4-µm-thick 
sections obtained from paraffin-embedded 
200-µm-thick slices. For comparison with PD-L1 
expression data obtained from 3D immunofluores-
cence, 2D PD-L1 expression was analyzed using a 
commercially available kit (PD-L1 [SP142] IHC assay; 
Ventana Medical Systems, Tucson, AZ, USA) in the 
same sample subset (n = 20). H&E and IHC sections 
were digitalized into whole-slide images using an Ape-
rio AT2 slide scanner (Leica Biosystems, Nußloch, 
Germany). Two experienced pathologists (Lee YH 
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Fig. 1 Agreement of the proposed 3D framework with traditional, clinical-grade 2D staining techniques. (A) Procedural workflow for conventional 2D 
analysis (upper row) and 3D imaging of immunofluorescence-stained, optically cleared breast cancer specimens (lower row). After tissue embedding in 
3% agarose, a vibratome was used to obtain 200-µm-thick slices. Paired slices (n = 2) from the same patient were subjected to (1) paraffin embedding 
followed by traditional 2D hematoxylin and eosin (H&E) staining and IHC (n = 1) and (2) 3D immunofluorescence staining (n = 1). PD-L1 is labeled in green 
color in immunofluorescence images, whereas nuclei and cell membranes were counterstained with SYTO-16 (blue color) and DiD (red color), respec-
tively. (B) Illustrative example of immunofluorescence images obtained from case #7 (percentage of tumor-infiltration immune cells = 10%): 3D recon-
struction (upper row) and ortho-slice visualization (lower row, left side) showing the region of interest (lower row, right side); scale bar = 2000 μm (upper 
row and lower row, left side), scale bar = 200 μm (lower row, right side). (C) Comparison of real H&E (upper row, left side) and real IHC (upper row, right side) 
images versus pseudo H&E (lower row, left side) and pseudo IHC (lower row, right side) images obtained from the conversion of immunofluorescence 
images; scale bar = 200 μm. (D) Cross-sectional images obtained from case #2 (percentage of tumor-infiltration immune cells = 90%) were characterized 
by a uniform immunofluorescence staining in the 3D space; scale bar = 1000 μm. (left), scale bar = 200 μm (right). (E) Uniform PD-L1 labeling in the top 
and bottom layers of the sample obtained from case #2; scale bar = 200 μm
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and Huang CY) independently assessed PD-L1 IHC 
staining.

3D immunofluorescence staining and optical clearing
Prior to immunofluorescence staining, all 
200-µm-thick slices were exposed to 2% Triton X-100 
(J.T. Baker, Radnor, PA, USA) in PBS buffer, and 
blocked using 3% hydrogen peroxide and 10% goat 
serum blocking buffer (Thermo Fisher Scientific, 
Eugene, OR, USA). For tracking PD-L1 expression on 
tumor-infiltrating immune cells, the slices were ini-
tially incubated at 37 ºC for 24  h under continuous 
shaking (100  rpm) with primary recombinant anti-
bodies (Ventana Medical Systems), followed by expo-
sure to poly-horseradish peroxidase (HRP)-linked goat 
anti-rabbit/mouse secondary antibodies (IgG; Thermo 
Fisher Scientific) at RT for 30  h (shaking speed: 
100  rpm). The Alexa Fluor™ 555 tyramide reagent 
(Thermo Fisher Scientific) was used for fluorescence 
signal amplification. Nuclei and cell membranes were 
counterstained with SYTO-16 (5 µM; Thermo Fisher 
Scientific) and DiD (20  µg/mL; Thermo Fisher Scien-
tific) labeling solutions, respectively. For optical tis-
sue clearing, the slices were incubated overnight with 
a proprietary reagent (JelloX Biotech Inc., Hsinchu, 
Taiwan) [23] – which was also used to promote tissue 
adhesion on glass slides prior to image acquisition. We 
ruled out the occurrence of autofluorescence in the 
Alexa Fluor™ 555 channel by incorporating negative 
control specimens (n = 3) that did not undergo primary 
antibody staining (Fig. S1).

Standardization of immunofluorescence staining and 
image acquisition parameters
With the goal of reaching clinical-grade reliability sim-
ilar to that provided by traditional IHC, a thorough 
standardization process of the immunofluorescence 
staining process was implemented to avoid artifacts 
and signal alterations (Fig.  1A). Staining and image 
acquisition parameters were initially fine-tuned by 
analyzing CD45 and PD-L1 expression in ten and six 
BC specimens, respectively. Following complete opti-
cal clearing, the sensitivity and offset were kept fixed 
during scanning; however, deeper signals required 
higher laser intensities to achieve excitation. There-
fore, slight adjustments of the intensity profile along a 
fixed slope were performed (Table S1).

3D image acquisition
3D image acquisition was performed in the resonant 
mode (lateral resolution = 0.621  μm) on an FV-3000 
confocal laser scanning microscope (Olympus, Tokyo, 
Japan) equipped with a 20× objective lens. Multiple 
images were captured at various depths (interval on 

the z-axis = 1.4 μm). Prior to image data export, stitch-
ing and normalization were undertaken using the 
FV31S-DT (Olympus) and Imaris 9.8 (Bitplane, Bel-
fast, UK) software packages. The pseudo-H&E/IHC 
images demonstrated in Fig.  1C were transformed 
from immunofluorescence images by the open-source 
computer software MetaLite® (JelloX Biotech Inc., 
Hsinchu, Taiwan).

Tumor-infiltrating immune cell detection algorithm
Two machine-learning models (i.e., a tumor cell 
segmentation model followed by an immune cell 
segmentation model) were integrated to devise a com-
puter-assisted algorithm for the detection of tumor-
infiltrating immune cells in 3D immunofluorescence 
images. Following SYTO-16 and DiD counterstain-
ing, the algorithm was able to identify tumor regions 
and immune cells in a stepwise fashion. Subsequently, 
relying on the Ventana PD-L1 (SP142) assay interpre-
tation guide [24], the algorithm computed the percent-
age of tumor-infiltrating immune cells by dividing the 
area of immune cells expressing PD-L1 by the total 
tumor area. The tumor and immune cell segmenta-
tion models were trained using 40 and 38 fluorescent 
images obtained from 18 to 10 BC specimens, respec-
tively. Ground-truth annotation of tumor regions was 
performed by three experienced scientists at JelloX 
Biotech Inc. followed by an independent review by a 
board-certified pathologist (Lee YH). Expression of 
CD45 by immunofluorescence staining was used for 
ground-truth annotation of immune cells. All images 
were cropped into square patches (size: 256 × 256 pix-
els) and randomly assigned to different sets for train-
ing, validation, and testing in an 8:1:1 ratio (Table 
S2A). The trained tumor-infiltrating immune cell 
detection algorithm was subsequently applied to 
images captured at different depths (interval on the 
z-axis = 7  μm). Figure  2 summarizes the workflow 
used to devise the algorithm; the detailed procedure is 
described in Supplementary Methods and Table S2D.

Definition of positive PD-L1 expression
PD-L1-expressing tumor-infiltrating immune cells 
covering ≥ 1% tumor area of invasive ductal carcinoma 
(IDC) were considered positive for PD-L1 expres-
sion, independent of the staining intensity. Samples 
stained within the > 0–1% interval were considered as 
borderline, whereas those with a percentage of 0% as 
negative. The 1% threshold was selected for its clini-
cal significance in the selection of candidates for ICIs. 
Scoring was performed according to the VENTANA 
PD-L1 (SP142) assay interpretation guide.
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Outcome measures
The outcome measures for this study included the con-
cordance of the devised methodologies (i.e., 3D immuno-
fluorescence staining and computer-assisted assessment 
tool) with the traditional 2D techniques (H&E and 
IHC), assessed using overall percentage agreement, with 
respect to (1) morphological characteristics ( RGB-col-
ored digital image of immunofluorescence staining ver-
sus digital image of traditional techniques), (2) detection 

and phenotypic characterization of immune cells (3D 
immunofluorescence staining and computer-assisted 
assessment tool versus traditional techniques), and (3) 
assessment of PD-L1 expression (3D immunofluores-
cence staining and computer-assisted assessment tool 
versus traditional techniques). Finally, the inter-layer het-
erogeneity of PD-L1 expression was analyzed in the 3D 
space.

Fig. 2 Computer-assisted algorithm for the detection of tumor-infiltrating immune cells in immunofluorescence images. (A) The ground truth annota-
tion mask (white) and the tumor cell segmentation model mask (cyan) were visually compared for the detection of tumor areas. (B) The ground truth 
annotation mask (CD45, green fluorescence) and the immune cell segmentation model mask (yellow mask) were visually compared for the detection 
of tumor-infiltrating immune cells. (C) Workflow of the computer-assisted algorithm for the detection of PD-L1 expression. Cyan: tumor segmentation 
model mask; yellow: immune cell segmentation model mask; white: merged tumor area mask; magenta: CD45-positive tumor-infiltrating immune cells 
mask. Nuclei and cell membranes were counterstained with SYTO-16 (blue color) and DiD (red color), respectively. Scale bar = 2000 μm (whole view), 
scale bar = 200 μm (region of interest)
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Results
Concordance between 3D immunofluorescence staining 
and traditional staining techniques
After standardization, 3D immunofluorescence images 
were assessed by two independent pathologists (Table 
S3) and found to be visually similar to those obtained 
with the traditional 2D staining protocols (H&E and IHC; 
Fig. 1B and C). Among multiple layers of 3D fluorescent 
images, the most superficial one (adjacent to H&E/IHC 
sections) was selected for comparison purposes. In the 
vast majority of cases (95%, 19/20), the morphological 
characteristics of immunofluorescence-stained samples – 
as reflected by the presence of ductal carcinoma in situ 
(DCIS) or IDC – were consistent with those observed 
in H&E-stained specimens. A high concordance (80%, 
16/20) between H&E/IHC and adjacent fluorescent 
images was also found for classifying PD-L1 expression 
as either positive or negative (Table S3). Collectively, 
these results indicated that PD-L1 expression patterns 
within the tumor immune microenvironment appeared 
to be consistent across different methodologies. In addi-
tion, the fluorescent images showed a high inter-observer 
reliability, with the two pathologists (Lee YH and Huang 
CY) classifying PD-L1 expression as identical in all cases 
(100%, 20/20; Table S3).

When tumor-infiltrating immune cells with PD-L1 
expression were abundantly present, a uniform immu-
nofluorescence staining was observed in different lay-
ers (Fig. 1D and E). PD-L1 had a prominent cell surface 
expression detectable at various depths, confirming 
the consistency of both fluorescent staining and image 
acquisition.

Concordance between computer-assisted immune cell 
detection algorithm and traditional staining techniques
We next examined the ability of the computer-assisted 
algorithm to detect tumor-infiltrating immune cells in 
3D immunofluorescence images (Supplementary Meth-
ods). The initial tumor cell segmentation model suc-
cessfully generated a tumor cell mask (Fig.  2A) with 
a > 80% accuracy (Table S2B and S2E) for the detection 
of tumor areas. Thereafter, the immune cell segmenta-
tion model achieved 90% classification accuracy (Fig. 2B 
and Table S2C) for identifying immune cells. The subse-
quent use of tumor cell and immune cell masks allowed 
detecting immune cells within the tumor area (i.e., cells 
identified by the immune cell mask within the area delin-
eated by the tumor cell mask) as well as in the adjacent 
peritumoral stroma (i.e., cells identified by the immune 
cell mask outside the area delineated by the tumor cell 
mask). The percentages of tumor areas occupied by PD-
L1-positive cells, calculated by the algorithm for each 
layer (Fig.  2C), were compared with the results of IHC. 
On analyzing PD-L1 expression levels on immune cells 

according to three different categories (≥ 1%, > 0–1%, and 
0%), we found a concordance rate of 90% (18/20) between 
the prediction algorithm and traditional IHC (Table S4). 
In one of the two misclassified cases (case #13), there was 
an underestimation of PD-L1 expression level due to the 
presence of a large DCIS area included by the tumor cell 
segmentation model.

Heterogeneous PD-L1 expression patterns in 3D 
immunofluorescence images
With the detection of the computer-assisted algorithm, 
the areas of tumor cells showed uniformity in each case 
(Fig.  3A). The immune cell density of most cases was 
slightly different between each consecutive plane in 3D 
space, as shown by the smooth curve of quantified areas 
of immune cells in different depths (Fig.  3B). However, 
the difference between the maximal and minimal area of 
immune cells may be significant (> 10%) in a given case 
when we increase the depth examined. Figure 3C depicts 
the variation in the immune cell score, as predicted by 
the algorithm, at different depths of the 3D space. The 
maximum difference in the immune cell score between 
different layers was observed in case #16 (Fig. 3D).

On analyzing 3D immunofluorescence images, eight 
of the 20 examined cases (40%) showed a heterogeneous 
PD-L1 expression pattern. Among which, seven had 
some layers wherein PD-L1 was expressed (expression 
levels ≥ 1% or > 0–1%) along with others in which PD-L1 
was undetectable. Figure  4A illustrates the most strik-
ing example of a heterogeneously expressed PD-L1 (case 
#18). A consistent lack of expression across all layers was 
found in five cases only (25%). Notably, there were six 
cases (30%) wherein PD-L1 expression levels along differ-
ent layers crossed the 1% threshold for admitting patients 
to ICIs (Fig. 4B).

Discrepancy between average PD-L1 expression in 3D 
immunofluorescence images and immunohistochemistry
For each case, we subsequently calculated the average 
PD-L1 immune cell score predicted by the algorithm for 
all layers of the 3D fluorescence image (Table S5). 3D 
immunofluorescence images and IHC showed discrep-
ant results with respect to PD-L1 expression in 8 of the 
20 cases (40%). PD-L1 expression was found to be higher 
in 3D immunofluorescence images in half of such cases, 
whereas the opposite was evident for the remaining four 
(Fig. 4C).

Subgroup analysis of triple-negative breast cancer
Of the six cases with triple-negative BC included in the 
study, three were identified by the algorithm as showing 
inter-layer heterogeneity in terms of PD-L1 expression 
– with certain layers crossing the 1% threshold. Nota-
bly, the algorithm classified as positive one case (Fig. 4B, 



Page 7 of 11Lee et al. BMC Cancer          (2024) 24:121 

case #17) originally deemed negative according to IHC. 
Detailed information for each case is provided in Table 
S5.

Discussion
In this proof-of-concept study, we describe a novel 
computer-assisted algorithm for the 3D assessment of 
PD-L1 expression in BC specimens using immunofluo-
rescence staining and optical clearing methodologies, 
and report three principal findings. First, the proposed 
framework was feasible and showed a high overall agree-
ment with traditional, clinical-grade 2D staining tech-
niques. Second, the results obtained for automated 
immune cell detection and analysis of PD-L1 expression 

were satisfactory. Third, the spatial distribution of PD-L1 
expression was heterogeneous across various BC tissue 
layers in the 3D space, and the average expression was 
different from the results of traditional IHC in a signifi-
cant proportion (40%) of cases.

While the applications of fluorescence microscopy 
in the field of BC diagnostic pathology remain limited 
[25], immunofluorescence staining combined with opti-
cal clearing has been increasingly used to establish novel 
3D tumor marker models for guiding clinical decisions 
in oncology [19, 26]. We briefly compared the benefits 
and drawbacks of traditional IHC assessment and the 
3D approach in Table  1 [22]. Although the processing 
time and cost of the 3D approach were higher than IHC 

Fig. 3 Variation in the predicted immune cell score at different depths of the 3D space. (A) Variation of tumor area calculated by the computer-assisted 
algorithm at different depths of the 3D space. (B) Variation of immune cells calculated by the computer-assisted algorithm at different depths of the 3D 
space. (C) Variation in the PD-L1 immune cell score calculated by the computer-assisted algorithm at different depths of the 3D space. (D) Maximum 
observed difference in the immune cell score for different layers (case #16); scale bar = 1000 μm (whole specimen image), scale bar = 200 μm (region of 
interest image)
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assessment, it is still a viable option for most patients 
compared to other pathological examinations. The 3D 
approach has the capacity to ensure the integrity and 
precision of pathological diagnoses, thereby facilitating 
precision medicine for both pathologists and patients 
through the effective utilization of medical resources. 
Furthermore, the specimens utilized in the 3D approach 
can be repurposed for downstream assays in previous 
studies [23, 27].

However, due to substantial differences between 2D 
and 3D techniques with respect to sample preparation 
and imaging approaches, direct comparisons are nec-
essary to ensure that reliable theranostic information 

can be captured. In addition, overcoming potential 
artifacts arising from fluorescence cross-talk requires 
standardization of different technical parameters (e.g., 
staining time, dye concentration, laser intensity, and 
contrast regulation) [28, 29]. In a previous report focus-
ing on non-small cell lung cancer [23], we described 
a novel technology for quantifying PD-L1 expression 
and tumor proportion score in 3D space. In the current 
study, the procedural workflow has been further refined 
to avoid misclassification through the standardization of 
different technical phases (i.e., fixation, staining, imag-
ing, and image export). Compared with traditional 2D 
techniques (H&E and IHC) applied to different sections, 

Fig. 4 Heterogeneous PD-L1 expression patterns in the 3D space. (A) In 7 of 20 cases (35%), PD-L1 SP142 at different depth levels illustrated absence 
immunofluroescence change to signal expression (left). Case #18 showed no PD-L1 expression at a 20-µm depth (middle) and change into positive PD-L1 
expression at a 100-µm depth (right). (B) In 6 of 20 cases (30%), PD-L1 SP142 at different depth levels illustrated PD-L1 category (cross 1%) change. Case 
#17 showed above 1% PD-L1 expression at a 15-µm depth (middle) and change into negative expression at a 140-µm depth (right). (C) Eight of 20 cases 
(40%) illustrated immune cell scores for all levels of 3D fluorescence images were difference from original IHC. Case #5 showed the different PD-L1 expres-
sion level in IHC and 3D fluorescent image. Scalebar, 1000-µm (whole specimen image), scale bar = 100-µm (region of interest image)
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immunofluorescence imaging of optically cleared sec-
tions allows increasing coverage of the specimen and 
producing high-resolution 3D images. The analysis of BC 
specimens using the method devised in our study dem-
onstrated high concordance with traditional 2D tech-
niques, suggesting that pathologists can be provided 
with accurate biomarker information for potential usage 
to guide treatment decisions (Table S3). However, future 
quality control studies examining potential hardware-
related effects (e.g., laser diode lifetime, charge-coupled 
device characteristics) [30] are required before clini-
cal application. With strict regulation of a standardized 
workflow and modifications to the hardware’s quality 
control, it will be possible to implement the pipeline of 
3D approach in other medical centers that possess simi-
lar high-quality 3D imaging capabilities.

In recent years, computer-assisted prediction algo-
rithms have been gaining increasing attention in the 
field of diagnostic pathology [28, 31]. However, obtain-
ing highly specific signals for each channel is a key pre-
requisite to devise diagnostically reliable algorithms for 
use with fluorescence imaging. Herein, the integration 
of a tumor cell segmentation model with an immune 
cell segmentation model allowed detecting tumor-infil-
trating immune cells in 3D immunofluorescence images 
in an effective and automated fashion. On analyzing the 
3D spatial patterns of PD-L1 expression, the algorithm 
showed a significant inter-layer heterogeneity which was 
undetectable within the framework of traditional 2D IHC 
analysis. Notably, the PD-L1 expression level should only 
include IDC regions according to the assay interpretation 
guide. The presence of a large DCIS area – which consists 
of tumor cells – was included by the tumor cell segmen-
tation model, causing an overestimation of IDC tumor 
area and leading to an erroneous underestimation of 
PD-L1 expression level. It points out the need to optimize 
the computer-assisted algorithm in the future due to the 

limited training database, as the exclusion of tissue mor-
phology from the database may result in inaccurate pre-
dictions of IDC regions, including DCIS areas. This issue 
may be addressed in future studies by training the tumor 
cell segmentation model to specifically recognize DCIS 
areas and exclude them from the calculation. Recognition 
can be accomplished either by morphological analysis or 
with the use of myoepithelial markers (e.g., p63, CK5/6, 
or calponin). Moreover, advanced analyses, such as the 
variation of tumor growth patterns or the distribution of 
intra- and extra-tumoral immune infiltrate, can also be 
considered in the future work of the computer-assisted 
algorithm [32].

Published data from clinical trials showed that patients 
with low or negligible PD-L1 tumor expression may still 
respond to anti-PD-L1 blockade treatments [31]. The 
heterogeneous expression of PD-L1 in malignant cells 
[15, 33] may account for this unexpected finding. Here, 
we provided direct proof that PD-L1 expression varies 
across different tumor layers with smooth transformation 
of the distribution of immune cells when 3D structures 
are thoroughly examined, indicating the approach has the 
potential to provide more accurate diagnosis of PD-L1 in 
TNBC. Considering that some, but not all, layers crossed 
the 1% threshold for identifying patients who may truly 
benefit from ICIs, further research is necessary to iden-
tify the most suitable cutoff value for PD-L1 expression 
in the 3D context. Additional studies are also required to 
compare its clinical utility with that of other biomarkers 
for predicting response to immunotherapy [13, 15, 34].

Conclusion
In conclusion, this original proof-of-concept study has 
set the stage for assessing the heterogeneity of PD-L1 
expression in immunofluorescence-stained and optically 
cleared BC specimens. Pending further standardization 
and optimization, we expect that our technology will 
become a valuable addition for assessing PD-L1 expres-
sion in patients with triple-negative BC. Via a single 
round of immunofluorescence imaging, our approach 
may provide a considerable improvement in patient strat-
ification for cancer immunotherapy as compared with 
standard techniques.

List of abbreviations
2D  Two-dimensional
3D  Three-dimensional
BC  Breast cancer
DCIS  Ductal carcinoma in situ
ER  Estrogen receptor
H&E  Hematoxylin and eosin
HER2  Human epidermal growth factor receptor 2
HRP  Poly-horseradish peroxidase
ICIs  Immune checkpoint inhibitors
IDC  Invasive ductal carcinoma
IHC  Immunohistochemistry
PBS  Phosphate-buffered saline

Table 1 Traditional IHC vs. 3D approach
Traditional IHC 3D approach

Processing cost 3D approach costs 10 times 
more than IHC per case

Capital equipment 
cost

The cost is nearly similar in 
IHC and 3D approach

Structural/Molecular 
information

3D approach provides 45 
times more information 
than a single-section IHC

Processing time 3 working days 7 working days
Histological 
information

Fragmentary Continuous

Image pre-process Required Not required
Diagnostic 
stratification

Less accurate More accurate

Utilization for down-
stream assays

Not applicable since 
destructive

Applicable since 
non-destructive
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PD-1  Programmed death-1
PD-L1  Programmed death-ligand 1
PR  Progesterone receptor
RT  Room temperature
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