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Abstract
Gastric cancer (GC) remains a predominant form of malignant tumor globally, necessitating innovative non-
surgical therapeutic approaches. This investigation aimed to delineate the expression landscape of macrophage-
associated genes in GC and to evaluate their prognostic significance and influence on immunotherapeutic 
responsiveness. Utilizing the CellMarker2.0 database, we identified 69 immune cell markers with prognostic 
relevance in GC, including 12 macrophage-specific genes. A Weighted Gene Co-Expression Network Analysis 
(WGCNA) isolated 3,181 genes correlated with these macrophage markers. The Cancer Genome Atlas (TCGA-STAD) 
dataset was employed as the training set, while data from the GSE62254 served as the validation cohort. 13 genes 
were shortlisted through LASSO-Cox regression to formulate a prognostic model. Multivariable Cox regression 
substantiated that the calculated risk score serves as an imperative independent predictor of overall survival (OS). 
Distinct macrophage infiltration profiles, pathway associations, treatment susceptibilities, and drug sensitivities 
were observed between high- and low-risk groups. The preliminary validation of ANXA5 in predicting the 
survival rates of GC patients at 1 year, 3 years, and 5 years, as well as its expression levels were higher and role in 
promoting tumor angiogenesis in GC through immunohistochemistry and angiogenesis experiments. In summary, 
macrophage-related genes were potentially a novel crosstalk mechanism between macrophages and endothelial 
cells in the tumor microenvironment, and the interplay between inflammation and angiogenesis might have also 
offered new therapeutic targets, providing a new avenue for personalized treatment interventions.
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Introduction
Gastric cancer (GC) is a leading global health concern, 
ranking fourth in incidence and fifth in mortality among 
all types of malignant tumors [1]. Adenocarcinoma con-
stitutes the majority of GC cases, representing over 95% 
of the total [2]. Despite advances in surgical procedures, 
cytotoxic ·treatments, and targeted therapies, the over-
all prognosis for GC remains suboptimal. Emerging evi-
dence suggests that immunotherapy holds promise for 
specific patient subgroups [3, 4].

Tumor microenvironment comprises a diverse array 
of immune cells, including macrophages, T and B lym-
phocytes, natural killer (NK) cells, mast cells, polymor-
phonuclear cells, and dendritic cells (DCs) [5]. These 
immune constituents play pivotal roles in tumor inva-
sion, metastasis, and clinical outcomes [6, 7]. Specifically, 
tumor-associated macrophages (TAMs) serve as central 
innate immune components, facilitating both tumor 
growth and dissemination [8]. TAMs exhibit dual func-
tions, promoting tumor growth through the M2 pheno-
type and suppressing it via the M1 phenotype [9]. Despite 
extensive research on TAMs in GC, studies related to the 
genes associated with TAMs in establishing prognostic 
models for GC remain limited. Genes associated with 
TAMs reshape the tumor microenvironment by modu-
lating inflammatory responses [10], potentially leading to 
increased drug resistance and promoting various cancer 
cell growth phenotypes.

The Annexin A (ANXA) family is a subset of the 
phospholipid-binding protein superfamily, categorized 
into five groups: A, B, C, D, and E [11]. Comprising 12 
members in humans, the ANXA family is involved in 
diverse cellular functions that intersect with fundamen-
tal tumor characteristics, such as cell proliferation, apop-
tosis, vesicular transport, and signal transduction [12, 
13]. Emerging research has demonstrated that dysregu-
lated expression of ANXA family members is intricately 
linked to tumorigenesis and tumor progression [14–16]. 
Although prior studies have indicated a regulatory inter-
play between ANXA5 and immune cells [17, 18], its spe-
cific molecular mechanisms in the context of GC remain 
largely unexplored.

In this study, we conducted a comprehensive analysis 
of immune cell signature genes from publicly available 
databases. A LASSO risk model was constructed based 
on macrophage signature genes, and its predictive effi-
cacy was validated. Furthermore, we analyzed the diver-
gence in immune infiltration between high- and low-risk 
groups as defined by the prognostic model. Focusing 
on the gene ANXA5, we experimentally verified its ele-
vated expression levels in GC and its contributory role in 
carcinogenesis.

Materials and methods
Access to immune cell signature genes
Specific cell type marker genes were retrieved from the 
CellMarker2.0 database [19]. The cancer types specified 
for filtering were “GC” and “Gastric Adenocarcinoma.” A 
preliminary screening yielded 551 immune cell markers, 
which were further refined to 69 immune cell signature 
genes via univariate Cox analysis. The Sankey Plot was 
employed to elucidate the associations between immune 
cells and characteristic genes.

Description of data resources
Sequencing data for mRNA and clinical information 
were sourced from The Cancer Genome Atlas (TCGA) 
and GTEx databases. Duplicate entries across all data-
sets were removed, followed by Log2(TPM + 1) trans-
formation to ensure data consistency and availability. A 
validation cohort, complete with expression profiles and 
prognostic data, was acquired from the GEO database.

Weighted gene co-expression network analysis (WGCNA)
We preprocessed the raw gene expression data to elimi-
nate low-quality samples and genes. Specifically, we cal-
culated the Median Absolute Deviation (MAD) for each 
gene across all samples. The MAD values were utilized to 
estimate the variability in gene expression across differ-
ent samples. Genes with MAD values below the 50th per-
centile were excluded to minimize noise and enhance the 
accuracy of subsequent analyses. Following gene filter-
ing, we employed the “goodSamplesGenes” of WGCNA 
package to further eliminate samples that may contain 
outliers or potentially compromise the integrity of the co-
expression network. This method primarily relies on the 
coherence of samples and genes to identify and eliminate 
outliers. Next, we generated a scale-free co-expression 
network with WGCNA package. To ensure the scale-free 
nature of the network, we selected an appropriate soft-
thresholding power,β, through scale-free topology model 
fitting. This threshold was applied to transform the Pear-
son correlation coefficient matrix between genes into 
a weighted adjacency matrix, specifically Amn=|Cmn|β, 
where Amn represents the adjacency between gene m 
and gene n, and Cmn is their Pearson correlation. Fur-
thermore, we calculated the Topological Overlap Matrix 
(TOM) to assess the connectivity of each gene with all 
other genes in the network. The TOM was utilized to 
strengthen the adjacency matrix, enabling more accurate 
module identification. Using average linkage hierarchi-
cal clustering, we identified a set of gene modules and 
computed the module eigengene for each module. In 
this stage, it is customary to compute the initial principal 
component of the expression patterns of all genes within 
the module. Lastly, we employed Spearman correlation to 
estimate the associations between the module eigengenes 
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and macrophage traits. Based on the correlations and 
biological relevance of the module traits, certain highly 
similar modules were merged using a module tree cutting 
line.

Construction and validation of a macrophage feature 
gene-related prognostic signature
Genes implicated in Overall Survival (OS) were initially 
selected from a pool of 24 hub genes, identified based 
on their high connectivity within the co-expression net-
work modules. To minimize redundancy and prevent 
overfitting, a LASSO Cox regression analysis was sub-
sequently conducted on these selected genes using the 
TCGA training set via the ‘glmnet’ R package. From this, 
a risk score model was constructed using coefficients 
estimated for 13 selected genes. Patients from the TCGA 
dataset were stratified into high-risk and low-risk catego-
ries based on the calculated risk scores. Kaplan-Meier 
(K-M) survival curves were generated to visualize the 
prognostic differences between these two risk groups. 
To validate the independent predictive capability of this 
macrophage feature gene-based signature, both univari-
ate and multivariate Cox regression analyses were per-
formed. These analyses culminated in the construction 
of a nomogram that incorporated both the risk scores 
and additional clinical variables, such as age and tumor 
stage. The model’s predictive accuracy for OS was further 
evaluated using a calibration plot, which demonstrated a 
high degree of concordance between the nomogram-pre-
dicted and actual observed OS.

Signaling pathway analysis
Gene sets representing 105 key signaling pathways 
were curated from the Molecular Signatures Database 
(MsigDB). These pathways were strategically selected 
for their relevance to critical biological processes such 
as Angiogenesis, Collagen Formation, and Extracellular 
Matrix (ECM) interactions, among others. Enrichment 
scores for each selected pathway were computed using 
the Single Sample Gene Set Enrichment Analysis (ssG-
SEA) algorithm, available in the ‘GSEA’ package for R. 
This particular method was employed for its robustness 
in generating individualized pathway activity profiles 
on a per-sample basis. To substantiate the relationship 
between the risk scores—originally derived from our 
LASSO Cox regression model—and the enrichment 
scores of these pathways, we performed Spearman’s rank 
correlation analysis. The correlation metrics were subse-
quently visualized using specialized graphical representa-
tions, generated through the ‘ggplot2’ package in R.

Immune infiltration, immunotherapy response, and drug 
sensitivity assessment
We employed a comprehensive suite of 12 immune infil-
tration algorithms, utilizing R packages such as ‘GSVA’ 
for ssGSEA and ‘immunedeconv’ for algorithms includ-
ing TIMER [20], xCell [21], MCP-counter [22], CIBER-
SORT [23], EPIC [24], and quanTIseq [25]. To calculate 
immune cell enrichment scores, the ssGSEA algorithm 
was applied using immune cell markers from three dif-
ferent sets: 24 markers provided by Bindea G et al. (2013) 
[26], 13 markers from Safonov A et al. (2017) [27], and 
28 markers by Charoentong P et al. (2017) [28]. We also 
employed the TIP (Tracking Tumor Immunophenotype) 
algorithm to analyze the seven steps of the cancer-immu-
nity cycle and to infer the proportions of various tumor-
infiltrating immune cells [29]. ImmuneCellAI was used 
to estimate the proportions of 18 types of T cells and six 
other categories of immune cells, including B cells, NK 
cells, monocytes, macrophages, neutrophils, and den-
dritic cells (DCs). This algorithm also predicts patient 
responses to immune checkpoint inhibitor therapy [30]. 
The ESTIMATE algorithm was implemented to infer 
tumor purity, as well as stromal and immune cell admix-
ture within the tumor microenvironment [31]. Finally, 
the Mann-Whitney U test (also known as the Wilcoxon 
rank-sum test) was employed to ascertain the statisti-
cal significance of differences in immune cell infiltration 
between the two subgroups. Significance levels were 
denoted as follows: ns for p ≥ 0.05; * for p < 0.05; ** for 
p < 0.01; *** for p < 0.001.

The TIDE algorithm was utilized for predicting poten-
tial immunotherapy responses. Data pertaining to IC50s 
of 481 small-molecule probes and drugs, along with cor-
responding gene expression profiles, were obtained from 
the Cancer Therapeutics Response Portal (CTRP) [32]. 
Pearson correlation analysis was used to establish the 
relationship between gene expression and drug IC50 val-
ues, and the results were displayed using bubble plots.

Analysis of genomic heterogeneity and gene expression 
relationship
Through the use of the “Maftools” R package, we pre-
sented distinct mutational landscapes in high-risk and 
low-risk groups within STAD by analyzing the STAD 
somatic mutation data downloaded from TCGA. Tumor 
purity data for each sample were obtained from a previ-
ous study [33]. Likewise, data on homologous recombina-
tion deficiency (HRD) and loss of heterozygosity (LOH) 
for each tumor were also sourced from the same previous 
study [33]. The Mann-Whitney U test, also known as the 
Wilcoxon rank-sum test, was employed to ascertain dif-
ferences in genomic heterogeneity indicators among dif-
ferent samples.
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Survival and gene expression analysis
Given the continuous nature of gene expression data, we 
utilized the surv_cutpoint function from the survminer R 
package to define an optimal cut-off value. This enabled 
us to stratify the gene expression levels into ‘high’ and 
‘low’ categories for subsequent analyses. Kaplan-Meier 
survival curves were generated using the survfit function 
from the survival package in R. These curves depicted 
Overall Survival (OS), as well as cumulative event and 
hazard rates, offering a comprehensive view of patient 
outcomes over time. The visualization was enhanced 
using the ggsurvplot function, allowing for more intuitive 
interpretations.

To quantify the relative risks associated with the high 
and low gene expression groups, Hazard Ratios (HR) 
were computed and visualized using error line plots, 
providing a straightforward representation of the asso-
ciated uncertainties. Additionally, the Kruskal-Wallis 
test was employed to assess the statistical significance of 
differential gene expression between normal and tumor 
tissues, leveraging data from both the TCGA and GTEx 
databases.

Tissue microarray and immunohistochemistry
Following deparaffinization steps, including baking, 
xylene treatment, and a gradient alcohol series, antigen 
retrieval was conducted on tissue chip specimens (HSt-
mA160CS01, OUTDO Biotech, Shanghai, China) using 
citrate buffer. Subsequently, the samples underwent 
the following procedures: removal of hydrogen peroxi-
dase with a 3% hydrogen peroxide solution for 10  min, 
followed by blocking with goat serum for 10  min. The 
ANXA5 primary antibody (Proteintech, Wuhan, China) 
was then incubated overnight at 4 °C, and immunohisto-
chemistry staining was carried out utilizing an immuno-
histochemistry kit from Maixin Biotech (Fuzhou, China).

The staining degree was assessed by categorizing 
the percentage of stained area into four grades: Grade 
1 (≤ 25%), Grade 2 (25–50%), Grade 3 (50–75%), and 
Grade 4 (≥ 75%). Simultaneously, staining intensity was 
classified into four grades: Grade 0 (no staining), Grade 
1 (weak positivity), Grade 2 (moderate positivity), and 
Grade 3 (strong positivity). These two scores were then 
multiplied together to generate a weighted score, which 
ranged from 0 to 12. The results were independently eval-
uated by two pathologists based on both staining inten-
sity and degree.

Scratch, migration, and proliferation experiments
After digestion of SGC-7091 (Chinese Academy of Sci-
ence, Shanghai, China), they were seeded into a 6-well 
plate. When the cell density reached confluence, a 
scratch was made using a 10 µl pipette tip. Subsequently, 
the medium was changed, and photographs were taken at 

24 h, 48 h, and 72 h to record the progress. For the Tran-
swell invasion assay, 700 µl of complete culture medium 
was placed in the lower chamber of a 24-well plate. Then, 
the chamber was placed in the incubator, and the cell 
suspension with a density of 1 × 10^5 cells per 200 µl was 
added to the upper chamber. After 16  h of incubation, 
cells were fixed with paraformaldehyde and stained with 
crystal violet. For the EdU proliferation assay, you can 
refer to the specific steps outlined in the BeyoClick™ EdU 
Cell Proliferation Kit.

Angiogenesis detection
Matrigel was carefully thawed overnight at 4  °C to 
ensure uniformity. Prior to use, pipette tips and culture 
plates were preconditioned by chilling them at -20  °C. 
A precisely measured volume of 150–200 µL of Matri-
gel (Corning,Lowell, MA, USA) was then dispensed into 
each well of a 48-well culture plate. To avoid potential 
artifacts, the absence of air bubbles was meticulously 
confirmed before proceeding. The plates were subse-
quently incubated at 37 °C for a minimum of 2 h to facili-
tate complete Matrigel solidification. Endothelial cells 
were harvested using enzymatic digestion and their den-
sity meticulously adjusted to 3 × 10^5 cells/mL. A 200 
µL aliquot, containing approximately 2 × 10^4 cells, was 
seeded into each pre-coated well. Angiogenic activity was 
then assessed following an incubation period ranging 
from 8 to 16 h.

Cell culture and transfection
EA.hy 926 (Human umbilical vein cells fused cells) 
(Chinese Academy of Science, Shanghai, China) were 
cultured in DMEM/F12 (Biological Industries) supple-
mented with 10% fetal bovine serum(Sigma, St. Louis, 
MO, USA) and 100 U/ml penicillin and 100  µg/ml 
streptomycin(Biological Industries, Kibbutz Beit Hae-
mek, Israel) at 37  °C with 5% CO2. In this study, we 
employed Turbofect (Thermo Scientific, Waltham, MA, 
USA) to successfully introduce ANXA5 siRNA and 
control sequences into the EA.hy926. The following 
sequences were employed:

ANXA5-siNC:5’- U U C U C C G A A C G U G U C A C G U T 
T-3’(sense),

5’- A C G U G A C A C G U U C G G A G A A T T-3’(antisense).
ANXA5-si#1: 5’- G G A G C U G G A A C A A A U G A A A T 

T-3’(sense),
5’- U U U C A U U U G U U C C A G C U C C T T-3’(antisense).
ANXA5-si#2: 5’-  G A C C U G A A A U C A G A A C U A A T 

T-3’(sense),
5’-  U U A G U U C U G A U U U C A G G U C T T-3’(antisense).

Western blot assay
Cells were lysed using RIPA buffer (Solarbio, Beijing, 
China) with a 1:100 dilution of Cocktail (Lablead, Beijing, 
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China). Protein concentration was determined via the 
BCA method and samples were prepared for SDS-PAGE 
using 4×LDS sample buffer (Genscript, Nanjing, China). 
Following electrophoresis, proteins were transferred to 
PVDF membranes, which were then blocked and incu-
bated with primary ANXA5 antibodies with a 1:100 dilu-
tion (Cat No: 11060-1-AP, Proteintech, Wuhan, China). 
HRP-conjugated secondary antibodies were applied, and 
after the incubation with primary antibodies, the mem-
branes were washed with TBST for 30  min and then 
incubated with HRP-conjugated secondary antibodies 
at a 1:10,000 dilution for one hour at room temperature. 
Visualization was achieved using ECL kits following a 
subsequent 30-minute wash with TBST.

Statistical analysis
The entire dataset was analyzed using R software (ver-
sion 4.1.0). Pearson correlation was utilized to identify 
significant correlations between variables. Kaplan-Meier 
survival curves were compared using the log-rank test. 
The “timeROC[0.4], ggplot2[3.3.6]” R package facili-
tated ROC analyses. The significance levels were defined 
as follows: P > = 0.05; *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001.

Result
Identification of key macrophage-related genes
Based on CellMarker2.0 database, we obtained 551 cor-
responding marker genes of immune cells. Subsequently, 
using univariate Cox regression analysis, we identified 
69 marker genes significantly associated with OS of gas-
tric cancer (GC) patients from the TCGA. We visualized 
the relationship between these prognostic genes and cell 
types using a Sankey plot (Figure S1). To investigate the 
correlation between macrophage and GC prognosis, we 
selected prognostic marker genes of macrophage. After 
obtaining the transcriptomic dataset of GC, we checked 
for missing values and removed outlier samples. Subse-
quently, sample clustering was performed, the infiltra-
tion score of macrophages was evaluated (Fig. 1C). Based 
on the criterion of approximate scale-free topology, we 
selected 20 as the appropriate soft threshold by network 
topology analysis (Fig.  1A-B). Using this threshold, we 
constructed a weighted scale-free co-expression network. 
The network construction and module identification 
were performed hierarchical cluster analysis. The results 
were represented by branches of a clustering tree, which 
generated modules of different colors (Figure S2A). These 
modules were obtained based on the criteria set for cut-
ting the clustering results. We merged modules with a 
distance smaller than 0.25 and set the minimum module 
size to 30. In the end, we obtained a total of 17 co-expres-
sion modules.

Additionally, we generated a module correlation heat-
map (Figure S2B) using the GC transcriptomic data to 
depict the magnitudes of correlations between different 
co-expression modules. The color intensity in the heat-
map represents the correlation between modules. To link 
modules with phenotypes, we initially presented mac-
rophage scores from various algorithm sources (Figure 
S2C). It is evident that the high-risk group exhibits con-
sistently higher macrophage scores. We calculated the 
relationship between all modules and clinical features to 
determine the modules significantly associated with mac-
rophage characteristics. This analysis involved calculating 
the Spearman correlation between module eigengenes 
and macrophage characteristics (Fig.  1D). Finally, we 
identified three modules, black, cyan, and darkturquoise, 
that were significantly positively correlated with macro-
phage features. Genes within these three modules may 
play a key role in immune infiltration of macrophages.

Constructing a clinical predictive model with lasso 
regression based on macrophage related genes
We extracted 3181 genes from three modules and per-
formed univariate Cox regression analysis to identify 
genes significantly associated with OS of GC (p < 0.001) 
(Fig.  1E). Lasso Cox regression analysis was performed 
on the 24 identified prognostic module genes in TCGA 
training set (Fig.  1F-G). Finally, we identified 13 OS-
associated genes along with their corresponding coef-
ficients (Figure S3A). The risk score was calculated as 
follows: (0.09915 × Exp of CPNE8) + (0.08184 × Exp of 
AKR1B1) +(0.07190 × Exp of MARCKS) + (0.07070 × Exp 
of ANXA5) + (0.06839× Exp of SERPINE1) + (0.03589× 
Exp of GAMT) + (0.03384 ×Exp of SNCG) + (0.03292 × 
Exp of MATN3) + (0.03260 × Exp of SLC7A2) + (0.02664 
× Exp of CYTL1) + (0.01933 × Exp of LIN7A) + (0.00676 
× Exp of GJA1) + (0.00664 × Exp of APOD), where Exp 
represents mRNA expression.

We computed the risk score for each sample and subse-
quently stratified all samples into high-risk and low-risk 
categories. Subsequently, we conducted Kaplan-Meier 
survival analysis to examine the survival disparities 
between these high-risk and low-risk groups within the 
TCGA-STAD training dataset. Our findings indicated 
that the high-risk group exhibits a less favorable prog-
nosis (Fig.  1H). We conducted time-dependent ROC 
analysis to assess the predictive accuracy of the model. 
In training set, the AUC values for 1-, 3-, and 5-year 
OS were 0.644, 0.716, and 0.731, respectively (Fig.  1I). 
The distribution of risk scores, risk groups, survival 
outcomes, and molecular expression in training set for 
the prognostic model is displayed (Figure S3B). Based 
on Cox regression, we employ multivariate regression 
to construct a nomogram for predicting 1–5 years OS 
(Fig.  1J). By calculating the scores for variables, we can 



Page 6 of 17Hong et al. BMC Cancer          (2024) 24:141 

Fig. 1 Constructing WGCNA and prognosis model with LASSO regression. (A) The relationship between the scale-free fit index (y-axis) and the soft 
thresholding power (x-axis). (B) The relationship between average connectivity (degree, y-axis) and soft thresholding power. (C) Sample clustering and 
immune infiltration characteristics. (D) To generate a correlation heatmap illustrating the correlation between module genes and macrophage infiltration 
as well as marker genes. (E) Selecting genes associated with gastric cancer prognosis with single factor regression analysis from key module genes identi-
fied by WGCNA. (F-G) LASSO Cox regression to identify the top 13 genes associated with prognosis. (H) Comparison of median survival time between 
high-risk and low-risk groups using KM survival curves. (I) Time-dependent receiver operating characteristic (ROC) analysis for evaluating the perfor-
mance of the prognostic model. (J) Column chart depicting prognosis prediction for gastric cancer patients based on Cox regression analysis
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make predictions on the prognosis of patients. Accord-
ing to the multivariable Cox model, we have obtained the 
coefficients for each variable by integrating clinical vari-
ables and risk scores from 13 OS-associated genes (Fig-
ure S3C).

Utilizing this model, we computed fresh risk scores for 
each sample and subsequently carried out Kaplan-Meier 
survival analysis as well as ROC analysis. The outcomes 
consistently demonstrate that the high-risk group exhib-
its a less favorable prognosis (Figure S3E). The corre-
sponding AUC values for predicting the prognosis at 1, 3, 
and 5 years are 0.667, 0.750, and 0.745, respectively (Fig-
ure S3D). We conducted univariate and multivariate Cox 
regression analyses on TCGA data to explore the asso-
ciation between clinical characteristics and risk scores 
(Figure S3F-G). Based on the above, the incorporation of 
clinical variables along with a 13-gene risk score into the 
multivariate Cox model showcases a strong predictive 
capacity.

Following this, we applied a Lasso-risk score to our val-
idation set (GSE62254_ACRG), utilizing a comprehensive 
multivariate Cox regression framework that amalgam-
ated the Lasso-derived risk score with relevant clinical 
parameters. The ensuing outcomes were graphically rep-
resented through a forest plot and complemented by a 
calibration curve, serving to substantiate the reliability 
and robustness of our predictive model (Figures S4A-
B). A subsequent re-evaluation of each clinical variable 
led to the assignment of revised coefficients, which are 
illustrated in Figure S4C. To facilitate a more nuanced 
understanding, both univariate (Figure S4D) and multi-
variate (Figure S4E) Cox regression analyses relative to 
these clinical variables were elucidated via corresponding 
forest plots. Capitalizing on these newly derived coeffi-
cients, we proceeded to recalibrate individual risk scores 
within the validation cohort. The refined model dis-
played noteworthy predictive potency, as corroborated 
by its performance indicators for forecasting 1-, 3-, and 
5-year overall survival (OS) rates, which stood at 0.884, 
0.801, and 0.774, respectively (Figure S4F). Congruent 
with these metrics, the subset of the cohort earmarked 
as high-risk exhibited a markedly adverse prognostic out-
come (Figure S4G). In an endeavor to rigorously assess 
the prognostic fidelity of our constructed model, partic-
ularly in juxtaposition with clinical variables, we under-
took Decision Curve Analysis (DCA) for the 1-, 3-, and 
5-year survival estimations. The composite model, which 
synergized “Clinical Variables + RiskScore,” outperformed 
alternative models in prognostic precision, as evidenced 
in Figures S4H-J.

Evaluating immune infiltration patterns and mutation 
analysis in high- and low-risk groups
To evaluate the macrophage infiltration between the 
high-risk group and the low-risk group, 12 algorithms 
were employed to assess immune infiltration pattern. 
The algorithms employed include xCell, CIBERSORT, 
ssGSEA (3 gene sets), ImmuneCellAI, ESTIMATE, TIP, 
MCP-counter, quanTIseq, TIMER, and EPIC. Using all 
of the algorithms mentioned, significant differences has 
been found in the immune infiltration patterns between 
the high-risk group and the low-risk group (Figure S5A-
L). Specifically, when analyzing the immune infiltra-
tion cell types, the algorithms ssGSEA, CIBERSORT, 
ImmuneCellAI, xCell, quanTIseq, TIMER, EPIC and TIP 
have revealed significant variations in macrophage infil-
tration when comparing the high- and low-risk groups. 
It was quite apparent that across all algorithms, the 
high-risk group exhibited higher macrophage infiltration 
scores. Furthermore, in the ImmuneCellAI, 24-ssGSEA, 
28-ssGSEA, MCP-counter, and xCell algorithms, it could 
be observed that various immune cell types such as mast 
cells, T cells, and others had higher infiltration scores 
in the high-risk group compared to the low-risk group. 
This observation is consistent with the previous analysis 
results, which indicates a significant association between 
the 13 OS-associated genes and the functional role of 
macrophages in GC.

High TMB (Tumor Mutational Burden) is associated 
with immune therapy response and sustained clinical 
benefits. Therefore, we investigated the discriminatory 
ability of the macrophage signature genes in the somatic 
mutation data of TCGA-STAD cohort. Firstly, we iden-
tified the genes with the most differential mutations 
among different risk groups, including TTN, TP53, 
MUC16, LPR1B, etc. (Figure S6A). Subsequently, we fur-
ther investigated the single nucleotide variants (SNV) 
and mutation frequencies of these feature genes. LIN7A, 
GJA1, and SLC7A2 are the three genes with the most fre-
quent SNV mutations and overall gene mutations in the 
STAD data (Figure S6B-C). Finally, our analysis revealed 
that the high-risk group exhibited lower tumor purity, 
along with a higher frequency of homologous recombina-
tion deficiency (HRD) and loss of heterozygosity (LOH) 
events (Figure S6D-F). More diverse immune microen-
vironment and lower tumor purity were associated with 
increased mutation rates [34]. Higher HRD was linked to 
germline mutations in GC [35], and higher LOH events 
served as predictive markers for neoadjuvant therapy 
[36].
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Comprehensive analysis of risk stratification, pathway 
enrichment, immune signatures, and drug sensitivity in 
gastric cancer
Performing analysis with the R package “GSVA” on a 
set of 105 common tumor pathway gene sets with the 
method parameter set to “ssgsea”. We calculated the 
enrichment scores for each sample across the 105 com-
mon tumor pathway gene sets and then assessed the 
correlation between the risk score and pathway enrich-
ment scores using Pearson correlation (Fig. 2A). It can be 
observed that there is a significant correlation between 
the high-risk group and pathways such as Angiogen-
esis, Collagen formation, and ECM-related genes. High 
expression of immune checkpoint genes generally cor-
relates with a better response to immunotherapy. 
Therefore, we analyzed the expression of immune check-
point genes between the high-risk and low-risk groups 
(Fig. 2B). As seen in the figure, immune checkpoint genes 
marked in red showed higher expression in the low-risk 
group, suggesting that these genes might be potential 
targets for immunotherapy in the low-risk group. We 
conducted Tumor Immune Dysfunction and Exclusion 
(TIDE) analysis and found that the low-risk group had 
lower scores (Fig. 2C). The TIDE score reflects sensitiv-
ity to immune checkpoint inhibitors, indicating that the 
low-risk group is more likely to benefit from immune-
based therapeutic approaches. We investigated the rela-
tionship between mRNA expression of the core genes in 
prognostic model and the sensitivity of drugs measured 
by IC50 values. The results revealed that ANXA5, GJA1, 
MARCKS, MATN3, and SERPINE1 exhibit sensitivity to 
multiple drugs (Fig. 2D). Specifically, ANXA5 shows sen-
sitivity to drugs such as BRD-K99006945, VAF-347, lov-
astatin, simvastatin, and vemurafenib.

ANXA5 as a prognostic marker and therapeutic target 
in gastric cancer based on insights from comprehensive 
analysis
Further analysis revealed that each of the 13 prognostic 
model genes individually correlates with the prognosis 
of GC, OS was selected as the prognosis type. More-
over, high expression of each gene is positively associated 
with poor prognosis (Figure S7A-M). We visualized the 
Hazard Ratio (HR) values (Figure S7N). We conducted 
expression analysis of these 13 genes based on TCGA 
and TCGA-GTEx data. It is evident that most of them 
are highly expressed in cancer, with ANXA5, SERPINE1, 
MARCKS, and MATN3 being particularly significant in 
their expression levels (Figure S7O). Based on risk fac-
tors, drug sensitivity screening, and the degree of dif-
ferential expression between cancer and normal tissues, 
we have identified ANXA5, MARCKS, and SERPINE1 as 
candidates warranting further research. MARCKS has 
been found to exhibit significant pro-cancer effects in 

various cancers [37, 38]. Similarly, SERPINE1 has been 
extensively studied in the context of tumors and has 
been confirmed to play a substantial role in promoting 
angiogenesis [39, 40]. However, the role of ANXA5 in the 
development of GC is unclear. Therefore, we have chosen 
ANXA5 as the focus of our next research endeavor.

In the Shiny framework of the interactive website, 
we employed the scTIME portal developed by Hong 
F and colleagues [41] to analyze the single-cell dataset 
GSE134520 sourced from GEO. We annotated various 
cell types, ultimately generating a single-cell landscape 
of GC (Fig.  3A). We also analyzed the expression levels 
of ANXA5 in different cell types within the microen-
vironment (Fig.  3B). It could be observed that ANXA5 
is widely expressed, with higher abundance in fibro-
blasts and macrophages. Furthermore, we subdivided 
macrophages into various subgroups (Fig.  3C) and ana-
lyzed the expression of ANXA5 within these subgroups 
(Fig.  3D). Notably, among macrophages, the subgroups 
Macrophage − C1QC − PLTP, Macrophage − AREG, 
Macrophage − IL1B, and Macrophage − SPP1 − CLEC5A 
exhibited the highest levels of ANXA5 expression 
(Fig. 3E).

In the Human Protein Atlas (HPA) database, ANXA5 
was found to be expressed at a higher level in GC com-
pared to adjacent tissue, and this result was validated 
with tissue microarray analysis (Fig.  4A). The tissue 
microarray comprises 80 cancer specimens and 80 
paired adjacent specimens. The immunohistochemis-
try score for ANXA5 in GC was higher than that in the 
adjacent non-cancerous tissue. In GC cell lines, includ-
ing SGC-7901, BGC-823, XGC-1, XGC-2 and MGC-803, 
the expression levels of ANXA5 were higher than those 
in GES-1 (Human Gastric Epithelial Cells) (Fig. 4B). The 
HGC-27 and MKN-45 cell lines, which exhibited lower 
differentiation, had lower ANXA5 expression. This sug-
gests a correlation between ANXA5 expression and the 
degree of differentiation of gastric cancer cells. Subse-
quently, in order to explore the potential functions of 
ANXA5, we conducted ANXA5 siRNA interference in 
SGC-7901 (Fig.  4C) and EA.hy 926 (Human umbilical 
vein cells fused cells) (Fig.  4G). The scratch assay and 
transwell migration assay were performed to evaluate 
silencing of ANXA5 impact on the migration ability of 
SGC-7901. It can be observed that silencing of ANXA5 
significantly inhibited the migration ability of SGC-7901 
(Fig. 4D-E). Reduced expression of ANXA5 also inhibits 
the proliferation ability of SGC-7901 (Fig. 4F). After the 
suppression of ANXA5 expression, the EA.hy 926’s abil-
ity of angiogenesis was significantly inhibited (Fig.  4H). 
Anti-angiogenic therapy presents an exciting approach to 
cancer treatment, particularly when combined with strat-
egies to overcome immune tolerance. The combination of 
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Fig. 2 Comprehensive analysis of risk stratification, pathway enrichment, immune signatures, and drug sensitivity in gastric cancer. (A) risk score assess-
ment of tumor-related pathway scores. (B) Correlation between different risk groups and the expression of immune-related genes. (C) Tumor immune 
dysfunction and exclusion (TIDE) scores in different risk groups. (D) prediction of drug sensitivity of prognostic-related genes
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intratumoral vasculature and inflammation could be used 
as predictors of immunotherapy [42].

In both the TCGA-STAD and GSE29272 datas-
ets, ANXA5 was found to be highly expressed in GC 
(Fig. 5A-B). Subsequently, through the analysis of 10 GC 
datasets from GEO, we discovered a significant correla-
tion between high expression of ANXA5 and adverse 
prognosis in GC, including OS, disease-free survival 
(DFS), recurrence-free survival (RFS), disease-specific 
survival (DSS), and progression-free survival (PFS) 
(Fig.  5C-M). Pan-cancer analysis revealed widespread 
high expression of ANXA5 in various types of tumors 
(Fig. 5N). To assess the correlation between ANXA5 and 
immunotherapy in the GC dataset mentioned above, we 
evaluated the expression correlation of ANXA5 with five 
types of immunomodulators in STAD cohorts (Fig. 6A). 
These immunomodulators include antigen presenta-
tion, receptors, immune stimulators, immune inhibitors, 

and chemokines. Such correlations suggest that ANXA5 
may regulate the tumor microenvironment by influenc-
ing these immunomodulators. Conversely, we also noted 
some significant negative correlations, which may indi-
cate that ANXA5 plays a role in inhibiting the function of 
immunomodulators in certain circumstances. We found 
that ANXA5 expression was higher in the non-responder 
group in anti-PD-1/CTLA − 4 therapy of Riaz cohort 
2018 (Fig.  6B). The ROC curve was then plotted with 
ANXA5 expression value as the independent variable and 
clinical information (immunotherapy response or not) as 
the dependent variable. AXA5 was found to have diag-
nostic efficacy in predicting immunotherapy response in 
multiple cohorts (Fig. 6C-G).

Fig. 3 The expression landscape of ANXA5 at the single-cell level. (A) The gastric cancer single-cell dataset GSE134520 underwent dimension reduction 
and clustering using the scTIME portal. (B) Expression levels of ANXA5 across different cell types. (C) Subclassification of macrophage subtypes. (D-E) 
Expression levels of ANXA5 in macrophage subtypes
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Fig. 4 High expression of ANXA5 promotes the progression of gastric cancer. (A) Immunohistochemistry results of ANXA5 in the Human Protein Atlas 
(HPA) database and tissue chips. (B) Expression levels of ANXA5 in gastric cancer cell lines and normal gastric mucosal epithelium (GES-1). (C) Silencing 
ANXA5 with small interfering RNA (siRNA) in SGC-7901. Scratch assay (D) and migration assay (E) as well as proliferation assay (F) results of SGC-7901 cells 
after ANXA5 silencing. (G) Silencing ANXA5 with small siRNA in EA.hy926 cells. (H) ANXA5 silencing inhibits angiogenesis. i: Quantitative statistical results 
of the corresponding experimental outcomes. **p < 0.01; ***p < 0.001. Full-length gels are presented in Supplementary Fig. 5
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Fig. 5 Expression Analysis of ANXA5. (A-B) Expression profiles of ANXA5 in GSE29272 (A) and TCGA-STAD (B). (C) Cox regression analysis across multiple 
datasets to assess the impact of ANXA5 on the prognosis of gastric cancer patients; (D-M) Evaluation of the effect of ANXA5 expression on the OS of 
gastric cancer patients in 10 GEO datasets with Kaplan-Meier (KM) curves; (N) Pan-cancer analysis of ANXA5 expression in TCGA
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Fig. 6 Predicting the Impact of ANXA5 Expression on Immunotherapy Response in Gastric Cancer Patients. (A) Analyzing the correlation between ANXA5 
and the expression of immune-related genes in 17 public datasets; (B) Assessing the correlation between ANXA5 expression and the response to anti-
PD-1/CTLA-4 therapy in the Riaz cohort 2018; (C-G) Evaluating the diagnostic performance of ANXA5 expression in predicting immunotherapy response 
in five cohorts
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Discussion
Macrophages, as participants in innate immune 
responses, constitute a major component of leuko-
cyte infiltration in solid tumors. Tumor-associated 
macrophages (TAMs) play a dominant role in cancer-
related inflammation and serve as crucial regulators in 
tumorigenesis. In GC, especially in diffuse GC, a high 
abundance of M2 macrophages may contribute to an 
immunosuppressive phenotype [43, 44]. Currently, there 
are no effective therapeutic targets and predictive indica-
tors for TAMs. Therefore, we aim to identify key genes 
associated with TAM and discover macrophage-related 
targets for treatment and clinical prediction. We firstly 
screened for macrophage markers associated with GC 
prognosis. Subsequently, we identified gene modules 
related to these markers and established a prognostic 
model using these module genes with Weighted Corre-
lation Network Analysis (WGCNA). Through LASSO 
analysis, we identified 13 macrophage-associated genes 
that are significantly correlated with GC clinical out-
comes, including CPNE8, AKR1B1, MARCKS, ANXA5, 
SERPINE1, GAMT, SNCG, MATN3, SLC7A2, CYTL1, 
LIN7A, GJA1, APOD.

In the theory of immune surveillance, immune cells 
are believed to have the ability to recognize and elimi-
nate tumor cells [45]. However, tumor can also evade 
immune system attacks through a series of immune 
escape mechanisms [46, 47]. The high-risk group com-
posed of these 13 genes was significantly associated with 
macrophage immune infiltration in GC, as revealed by 
various immune infiltration analyses. This suggests that 
these 13 genes might impact the polarization of mac-
rophages and influence the prognosis of GC patients. 
In existing research, macrophages expressing AKR1B1 
promoted GC progression by regulating the microenvi-
ronment [48]; MARCKS was involved in macrophage 
infiltration and polarization through Ca2+ and PIP3 sig-
naling [49, 50]; low expression of SLC7A2 was correlated 
with reduced immune infiltration [51];CYTL1 acted as a 
potential cell factor capable of recruiting macrophages 
[52]; GJA1 could serve as an M2 macrophage-associated 
prognostic gene in GC [53]; APOD was found to be a 
component that could predict overall survival and M2 
macrophage infiltration in GC [54]; ANXA5 promoted 
the transition of macrophages from M1 to M2 through 
PKM2 [18]. These research findings confirm our analy-
sis results, showing a significant correlation between the 
selected genes and TAM infiltration and polarization.

Gene mutations and tumor mutation burden play a 
crucial role in predicting immune therapy responses [55, 
56]. In our study, we analyzed the relationship between 
the gene set of 13 prognostic genes and gene muta-
tions. Additionally, we investigated the somatic SNV 
and mutation frequencies of these 13 genes. The analysis 

results are consistent with subsequent immune therapy 
response, where the high-risk group exhibited lower 
responsiveness to immune therapy. AKR1B1, functioning 
as a TNF-α downstream gene, could stratify GC patients 
and predict immune therapy responses [57]. ANXA5, 
serving as a marker for macrophage subsets, could pre-
dict immune therapy responses in endometrial cancer 
[58]. GAMT served as one of the components to predict 
the sensitivity of colorectal adenocarcinoma patients to 
immune therapy targeting PD-1 and CTLA-4 [59]. The 
downregulation of SLC7A2 upregulated CXCL1 through 
the PI3K/Akt/NF-κB pathway, recruiting bone marrow-
derived suppressor cells and exerted a tumor immune 
inhibitory effect [60]. Upregulation of CYTL1 was asso-
ciated with M2 macrophage infiltration and immune 
exhaustion in GC [61]. GJA1 was considered to poten-
tially play a significant role in melanoma and could pre-
dict patients’ response to PD-1 immunotherapy [62]. 
APOD was used to construct a risk model for predict-
ing immune infiltration and immunotherapy in cervical 
cancer [63]. In various studies, distinct immunotherapy 
drugs have demonstrated varying efficacy among GC 
patients at different stages. This diversity makes predict-
ing the clinical effectiveness of ICIs challenging. Con-
sequently, it has become essential to explore potential 
markers that can help assess patients who are likely to 
respond positively to ICIs therapy.

In various analyses encompassing disease progression, 
drug resistance development, and immunotherapeutic 
response prediction, the ANXA5 molecule stands out 
due to its prominent role. In light of this, we postulated 
that ANXA5 holds the potential to emerge as a pivotal 
predictive indicator. To substantiate this hypothesis, we 
conducted experiments involving the downregulation of 
ANXA5 expression, revealing a substantial impact on the 
process of angiogenesis. Notably, this observation aligns 
seamlessly with the pathway enrichment analysis findings 
within the high-risk group. The aforementioned research 
outcomes robustly endorse the latent predictive value 
of ANXA5. The impact of ANXA5 on angiogenesis may 
be mediated through the facilitation of AKT and ERK 
phosphorylation pathways [64]. This mechanistic insight 
could shed light on novel therapeutic avenues for modu-
lating angiogenesis-related processes.

The occurrence of tumors is intricately linked to the 
generation of new blood vessels [65]. Antibodies and 
inhibitors targeting VEGF and VEGFR have undergone 
testing in GC. Contrary to standalone chemotherapy, the 
combination of Bevacizumab (anti-VEGF) and chemo-
therapy did not confer a survival advantage for advanced 
GC patients [66]. In contrast, Ramucirumab (a selective 
VEGFR2 monoclonal antibody) demonstrated the ability 
to improve clinical outcomes in advanced GC [67]. The 
impact of Ramucirumab on TAM has been observed, 
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with its inhibition of VEGFR2 potentially leading to 
reduced TAM immune infiltration, as well as decreased 
release of cytokines and chemokines, thereby restrain-
ing tumor growth and proliferation [68]. The specific 
role of ANXA5 in the process of treating advanced GC 
with Ramucirumab remains unclear and warrants further 
investigation for confirmation.

Phosphatidylserine (PS) is located in the inner layer 
of the cytoplasmic membrane of healthy cells. During 
apoptosis, PS is translocated to the outer layer of the cell 
membrane, facilitating the clearance of apoptotic cells by 
phagocytes. Despite elevated levels of PS in tumor cells, 
they do not undergo apoptosis. ANXA5 binds to PS with 
high affinity, mediating the clearance of PS + apoptotic 
cells by immune cells [69]. Exploiting these features, 
Kang et al. designed ANXA5-peptide fusion to enhance 
the immunogenicity of tumor cells, thereby strengthen-
ing the ability of immune cells to recognize tumor cells 
[70]. Previous studies have also shown that ANXA5, 
in a synergistic manner, promotes the TCR signaling of 
homologous peptide-major histocompatibility complex 
(pMHC), leading to enhanced activation of lymphocytes 
[71]. Therefore, ANXA5 may serve as a potential target 
for immunotherapy as an immune checkpoint inhibitor 
responsive to treatment.

Our study has the potential to provide novel insights 
into unraveling mechanisms of action of macrophage-
related genes in GC and to furnish substantive ground-
work for the construction of predictive models of GC. 
This achievement could feasibly exert a significant impact 
on prognostic markers and immune resistance gene pre-
dictions, offering fresh avenues for the formulation of 
personalized therapeutic strategies. Finally, it is worth 
noting that ANXA5 may potentially impact the prognosis 
of GC patients and immune therapy response through its 
influence on the angiogenesis phenotype.
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