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Abstract
Background Pancreatic adenocarcinoma (PDAC) ranks as the fourth leading cause for cancer-related deaths 
worldwide. N6-methyladenosine (m6A) and long non-coding RNAs (lncRNAs) are closely related with poor prognosis 
and immunotherapeutic effect in PDAC. The aim of this study is to construct and validate a m6A-related lncRNAs 
signature and assess immunotherapeutic drug sensitivity in PDAC.

Methods RNA-seq data for 178 cases of PDAC patients and 167 cases of normal pancreatic tissue were obtained 
from TCGA and GTEx databases, respectively. A set of 21 m6A-related genes were downloaded based on the previous 
report. Co-expression network was conducted to identify m6A-related lncRNAs in PDAC. Cox analyses and least 
absolute shrinkage and selection operator (Lasso) regression model were used to construct a risk prognosis model. 
The relationship between signature genes and immune function was explored by single-sample GSEA (ssGSEA). The 
tumor immune dysfunction and exclusion (TIDE) score and tumor mutation burden (TMB) were utilized to evaluate 
the response to immunotherapy. Furthermore, the expression levels of 4 m6A-related lncRNAs on PDAC cell lines 
were measured by the quantitative real-time PCR (qPCR). The drug sensitivity between the high- and low-risk groups 
was validated using PDAC cell lines by Cell-Counting Kit 8 (CCK8).

Results The risk prognosis model was successfully constructed based on 4 m6A-related lncRNAs, and PDAC 
patients were divided into the high- and low-risk groups. The overall survival (OS) of the high-risk groups was more 
unfavorable compared with the low-risk groups. Receiver operating characteristic (ROC) curves demonstrated that 
the risk prognosis model reasonably predicted the 2-, 3- and 5-year OS of PDAC patients. qPCR analysis confirmed 
the decreased expression levels of 4 m6A-related lncRNAs in PDAC cells compared to the normal pancreatic cells. 
Furthermore, CCK8 assay revealed that Phenformin exhibited higher sensitivity in the high-risk groups, while 
Pyrimethamine exhibited higher sensitivity in the low-risk groups.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of 
the most prevalent gastrointestinal malignancies in the 
world and a lethal disease with extremely devastating 
cancer [1]. It is reported that an overwhelming number 
of patients with extremely aggressive PDAC in terms of 
5-year survival rate only account for 6% in the United 
State [2]. However, the traditional treatment fails to 
effectively prevent the worsening tumor and reduce the 
mortality rate of patients with PDAC [3]. Therefore, it is 
necessary to develop a novel strategy to impede the rapid 
progression of PDAC.

Long non-coding RNAs (lncRNAs) do not have the 
ability of coding protein, which account for roughly four 
fifths in the entire transcriptome [4]. It has been demon-
strated that multiple biological processes are regulated 
by numerous lncRNAs involved in tumor cell prolifera-
tion, apoptosis, invasion [5]. Wang et al. identified that 
significantly up-regulated LINC00240 were positively 
correlated with the poor prognosis, and silencing of 
the LINC00240 exhibited the decreased ability of pro-
liferation and migration in gastric cancer [6]. Another 
study demonstrated that the upregulated lncRNA JPX 
promoted lung cancer proliferation and metastasis by 
the JPX/miR-33a-5p/Twist1 axis activating Wnt/β-
catenin signaling both in vitro and in vivo [7]. Zhao et al. 
reported that the lncRNA CERS6-AS1 facilitates prolif-
eration, migration and invasion in colorectal cancer cells 
by affecting miR-15b-5p to upregulate SPTBN [8].

Epigenetic modification, gene sequence is scarcely 
influenced, is characterized by the changed gene expres-
sion derived from various modifications, including his-
tone modification, DNA methylation, the modification 
of non-coding RNA [9–11]. Particularly, N6-methyl-
adenosine (m6A) commonly participates in the variety 
of biological processes. The modification of m6A func-
tionally regulates the carcinogenesis by the three main 
proteins, such as binding protein (reader), demethylase 
(eraser), and methyltransferase (writer) [12]. The increas-
ing research have indicated that abnormal gene expres-
sion is caused by the modification of m6A in an incorrect 
manner [13]. For instance, Lin et al. demonstrated that 
YTHDF1, the m6A reader, facilitating the immune eva-
sion in skin cutaneous melanoma (SKCM) [14]. More-
over, Ban et al. identified that the stability of LNCAROD 
was augmented in a m6A modification manner and the 
ability of cell proliferation and mobility was significantly 
enhanced with the increased LNCAROD expression in 
head and neck squamous cell carcinoma (HNSC) [15]. 

Feng et al. focused on constructing an m6A-immune-
related lncRNA risk model for predicting prognosis, 
immune landscape and chemotherapeutic response in 
bladder cancer [16]. However, the relationship between 
m6A and lncRNAs has not been deeply explored in 
PDAC. Therefore, it is of vital importance to develop 
a new treatment strategy involving m6A modification 
associated with lncRNAs for improving the survival time 
in PDAC.

In the present study, we constructed a risk progno-
sis model for improving the clinical outcome of patients 
with PDAC, and validated the rationality of the risk prog-
nosis model and searched for appropriate immunother-
apy drugs that can effectively treat PDAC. Our research 
aims to explore potential molecular mechanisms and 
treatment strategies for PDAC.

Materials and methods
The data sources of patients
RNA-seq data and relevant phenotype information for 
178 PDAC patients were obtained from TCGA database 
(https://www.cancer.gov/). Meanwhile, 167 normal pan-
creatic tissue RNA-seq data were downloaded from the 
GTEx database in the UCSC Xena database (http://xena.
ucsc.edu). PDAC Patients were put into train group and 
test group in a 1:1 ratio. The lncRNAs were annotated 
from the GENCODE website (https://www.gencode-
genes.org). 4 lncRNA m6A binding sites were calculated 
by SRAMP database (http://www.cuilab.cn/sramp/).

Establishment of m6Arelated lncRNAs signature
21 related genes were reported from previous literature 
[17], including writers (METTL3, METTL14, WTAP, 
METTL16), readers (YTHDC1, YTHDF2, YTHDC2, 
RBMX) and erasers (ALKBH5, FTO). The m6A-related 
lncRNA prognostic signature genes were designed in 
three steps. (1) Univariate Cox regression analysis iden-
tified those m6A-related lncRNAs significantly influenc-
ing the overall survival (OS) of PADC patients. (2) To 
reduce the potential for overfitting, least absolute shrink-
age and selection operator (LASSO) Cox regression was 
applied—where the penalty parameter was calculated by 
performing tenfold cross-validation on the training set at 
the minimum partial likelihood deviance. Lastly, a multi-
variate Cox regression analysis was conducted to finalize 
the selection of ideal m6A-related lncRNAs for the prog-
nostic signature. (3) lncRNA expression’s multivariate 
regression coefficients were utilized to create a prognos-
tic signature for patients. The risk score was computed 

Conclusion The prognosis of patients with PDAC were well predicted in the risk prognosis model based on m6A-
related lncRNAs, and selected immunotherapy drugs have potential values for the treatment of pancreatic cancer.
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using the formula: Risk score = β1 * Exp1 + β2 * Exp2 + βn 
* Expn [18]. Here, ‘β’ signifies the coefficient while ‘Exp’ 
symbolizes the expression value of the respective m6A-
related lncRNA. Patients were categorized into high- and 
low-risk groups based on the median risk scores. Differ-
ences in survival between these groups were illustrated 
using Kaplan-Meier analysis. Predictive abilities of the 
signature were assessed using the receiver operating 
characteristic (ROC) curves via the “SurvivalROC” R 
package. The optimal cut off point for the risk score, dis-
tinguishing patients from high- to low-risk groups, was 
determined using the previously described formula in 
the training set. The survival differences between the two 
groups were depicted using Kaplan-Meier analysis, and 
the prognostic signature’s predictive efficacy was evalu-
ated by the time-dependent ROC curve.

Clinical correlation analysis
Univariate and multifactorial COX regression analyses 
were performed to exclude the influence of other clinical 
factors (gender, age, TNM stage and so on) and deter-
mine independent elements about prognosis [19].

Principal component analysis (PCA) and Kaplan-Meier 
survival analysis
We used Principal Component Analysis (PCA) for effec-
tive dimensionality reduction, model identification, and 
grouping visualization of high-dimensional data, includ-
ing 21 m6A genes, 4 m6A-related long non-coding RNAs 
(lncRNAs), and a risk model based on the expression 
patterns of these 4 m6A-related lncRNAs. We employed 
Kaplan-Meier survival analysis to assess the differences 
in overall survival (OS) between high-risk and low-risk 
groups. The R packages were used for this process includ-
ing survMiner and survival [20].

Assessment of immune function scores and functional 
analysis
In our study, the single-sample Gene Set Enrichment 
Analysis (ssGSEA) algorithm, implemented through the 
R package ‘GSVA’, was utilized to evaluate differences in 
immune function scores between the high and low risk 
groups. Additionally, the Tumor Immune Dysfunction 
and Exclusion (TIDE) algorithm was employed to pre-
dict the efficacy of immunotherapy in these groups [21]. 
For differential analysis, we analyzed gene expression 
data from the high and low risk groups using the ‘limma’ 
package, adhering to specific criteria (log fold change 
(log FC) > 1 and a false discovery rate (fdr) < 0.05). Based 
on the findings of this differential analysis, Gene Ontol-
ogy (GO) enrichment analysis was conducted using the 
‘clusterProfiler’ package to identify and characterize 
significant GO terms associated with the differentially 
expressed genes, thereby providing insights into the 

biological processes and pathways that may underlie the 
risk stratification observed in our study [19].

Comparison of the tumor mutation burden (TMB)
The “maftools” R package’s waterfall function was 
employed to illustrate the mutation panorama in both 
the high-risk and low-risk groups [22]. This functionality 
allowed us to quantify the somatic mutation count and 
TMB, expressed as mutations per million bases, for each 
individual patient. To discern any statistical differences in 
the somatic mutation count and TMB levels between the 
high- and low-risk groups, Wilcoxon test was conducted. 
The same “maftools” R package was utilized to determine 
TMB within the high and low-risk groups. Subsequent 
to this, we employed the Kaplan-Meier methodology to 
compare survival rates. This allowed us to assess the dif-
ferences between the high and low mutation groups, and 
the risk categories. This varied approach offered a com-
prehensive view of the mutation landscape in correlation 
with patient risk level and survival rates.

Drug sensitivity
The R package “pRRophetic” was utilized to forecast the 
IC50 of drugs deriving from the GDSC (https://www.
cancerrxgene.org/) website site summary in patients with 
PDAC.

Cell culture
Human pancreatic adenocarcinoma cells (AsPC-1, 
PANC-1, MIA PaCa-2, Patu8988, CFPAC-1, SW1990, 
BxPC-3), and human normal pancreatic duct epithelial 
cell (HPDE) were all preserved in Shanghai Cancer Insti-
tute, Shanghai Jiao Tong University. AsPC-1, BxPC-3, 
CFPAC-1 were kept in RPMI 1640 with 10% fetal bovine 
serum (FBS), and or PANC-1, Patu8988, MIA PaCa-2, 
SW1990, HPDE were cultured by DMEM with 10% FBS. 
The ratio of cell passage is subtlety different according to 
the cell growth rate, typically ranging from 1:2 to 1:3. Cell 
passaging was performed when the cell density reached 
80-90% confluence in the bottom of culture dish. The 
old medium in the dish was discarded, and the cells were 
washed by PBS 1–2 times. Subsequently, the trypsin solu-
tion containing EDTA was added into the incubator (5% 
CO2 at 37  °C) with 2–5  min. To prevent further diges-
tion, DMEM or RPMI 1640 supplemented with 10% FBS 
was added to the dish when the 70%~80% cells appeared 
round and the enlarged cell space were observed in the 
inverted microscope. After that, the cell suspension was 
transferred to a 15mL centrifuge tube and centrifuged at 
800 rpm/min with 3–5 min. Next, supernatant was dis-
carded and the new medium was used for resuspended 
cells. Finally, cells were inoculated into a new dish 
appeared round and were suspended in the indicated 
cell culture medium. The cells gradually returned to the 
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original shape and sticked to the bottom of plate after 
4 h. All cells were cultured under the same condition (5% 
CO2 at 37 °C).

RNA extraction and qPCR
Appropriate Trizol (ShareBio, Shanghai, China) was 
added into the cells in the dish washed by PBS with 1–2 
times (10 cm dish with 2mL, 6 cm dish with 1mL). Then, 
1  ml cell suspension was transferred to the 1.5 mL EP 
tubes after placing at ice for 5  min. 200µL chloroform 
was added into cell suspension, mixed well for 15s and 
rested on ice for 3-10 min. After that, centrifugation was 
performed at 4℃, 12,000 rpm/min for 15 min. Next, the 
upper water phase was taken into a new EP tube (200–
500µL), and then added by equal volume isopropyl alco-
hol and rested on the ice for 10 min. The cell suspension 
was centrifuged at 4℃, 12,000 rpm/min for 10 min, and 
cells were kept and washed with 500µL anhydrous etha-
nol at twice. The cells were dissolved in DEPC water after 
drying 15 min. The concentration of RNA was measured 
and adjusted to 500ng/µL.

The first-strand cDNA was reverse-transcribed by 
All-in-One First-Strand Synthesis Master Mix reagent 
Kit (ShareBio, Shanghai, China). The reverse transcrip-
tion system was defined as follows: Template RNA: 50 
ng ~ 1  µg (1µL), All-in-One First-Strand Synthesis Mas-
terMix: 4 µL, dsDNase:1 µL, 10x dsDNase Buffer: 2 µL, 
Nuclease-Free Water: 12 µL. Secondly, Mix gently and 
spin briefly. Thirdly, incubate under 37℃ for 2  min to 
remove the gDNA contamination. Fourthly, Incubate 
under 55℃ for 15 min. Then, Terminate the reaction by 
incubate under 85℃ for 5 min. Finally, the cDNA was put 
on ice immediately and diluted by DEPC (1:20).

The 10µL system of qPCR per well was defined as fol-
lows: 0.5µL Forward primer, 0.5µL Reverse primer, 
5µL SYBR green qPCR Premix (ShareBio, Shanghai, 
China) and 4µL cDNA. qPCR was performed with on a 
7500 Real-time PCR system (Applied Biosystems, Inc. 
USA). The expression levels of target genes were calcu-
lated by compared to the expression of the reference 
gene 18s, and quantification was performed using the 
2-ΔΔctmethod. The related experiments were performed 
in triplicate. The primers used in this study were shown 
in Supplementary Table 1.

IC50
To identify the sensitivities of drugs for different cell 
lines, the concentration gradient (0, 1, 10, 50, 100, 200, 
500, 1000µM) was defined in the Phenformin (Selleck.cn, 
Shanghai, China) and Pyrimethamine (Selleck.cn, Shang-
hai, China). The cells were suspended in 100µL DMEM 
with 10% FBS. 3 × 103 HPDE, MIA PaCa-2 and Patu8988 
were seeded into 96-well plates in the different concen-
tration gradient and drugs treatment groups. Then, the 

96-well plates were placed into the incubator (5% CO2 at 
37 °C) for 24 h. The cells were treated by the Phenformin 
or Pyrimethamine with different concentration gradient 
(0, 1, 10, 50, 100, 200, 500, 1000µM) with 36 h. After that, 
Cell viability was measured by 10% CCK8 reagent (Share-
Bio, shanghai, China, SB-CCK8L) at the incubator (5% 
CO2 at 37  °C) with 1 h. The absorbance of each 96-well 
plates was measured at 450 and 600  nm by microplate 
reader, and the half-maximal inhibitory concentration 
(IC50) was calculated by non-linear regression using 
GraphPad Prism 9.0.

Cell-counting kit 8
In order to evaluate cell cytotoxicity, 3 × 103 MIA PaCa-2 
or Patu8988 per well in 96-well plate were plated in dif-
ferent groups with/without Phenformin or Pyrimeth-
amine treatment. The cells were cultured in the incubator 
(5% CO2 at 37  °C) with 24  h. Then, the Phenformin (0 
µM, 100 µM, 200 µM, 400 µM) or Pyrimethamine (0 µM, 
50 µM, 100 µM, 200 µM) of different concentration gra-
dient was added into MIA PaCa-2 and Patu8988 for 36 h, 
respectively. 100 µL of CCK-8 mixture (CCK-8 reagent: 
DMEM = 1:9) were added into these cells at the incuba-
tor (5% CO2 at 37℃) for 2 h. The absorbance of each well 
was observed at 450 and 600 nm. Finally, the optical den-
sity at 450  nm in different groups was calculated using 
GraphPad Prism 9.0.

Statistical analysis
Statistical analysis was performed using R 4.1.3 software 
and GraphPad Prism 9.0. The wilcoxon rank-sum test and 
Mann-Whitney U test were used to compare the continu-
ous variables and Spearman analysis to calculate correla-
tion coefficients. Kaplan-Meier method was used to draw 
survival curve, and log-rank test was used to compare 
survival differences. The IC50 was calculated by Nonlin 
fit. P < 0.05 was recognized as statistically significant.

Results
Identification of m6A-related lncRNAs in PDAC
Using a specific workflow, we retrieved numerous gene 
sets from the TCGA-PAAD database and identified 
16,876 lncRNAs from the total genes (Fig.  1). 21 m6A 
genes and 16,876 lncRNAs were matched by the utili-
zation of gene co-expression analysis. After the above 
analysis, 201 m6A-related lncRNAs were successfully 
filtered (|Pearson R| >0.3, P < 0.001) (Fig.  2A). Next, a 
univariate Cox analysis was performed based on correla-
tion between m6A-related lncRNAs and survival char-
acteristics of patients with PDAC. Then, 74 m6A-related 
lncRNAs were filtered according to statistical analysis 
(Fig.  2B). To identify potential biomarkers influencing 
clinical outcome of patients with PDAC, we proposed a 
Lasso regression model, in which regression coefficients 
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(using the penalty parameter estimated by 10-fold cross 
validation) were accurately calculated. 6 lncRNAs were 
dissociated from 74 m6A-related lncRNAs (Fig.  2C, D). 
Eventually, 4 m6A-related prognostic lncRNAs were 
yielded and validated by multivariate Cox regression 
analysis, including AC087501.4 (HR = 0.454, P = 0.1), 
AL358944.1 (HR = 0.043, P = 0.041), EMSLR (HR = 1.777, 
P = 0.009), ZNF236-DT (HR = 0.74, P = 0.116) (Fig. 2E and 
Figure S1A-D). Then, we pictured heatmap of correlation 
between m6A-related lncRNAs and m6A regulators and 
drew a significant result that there was a strong correla-
tion between screened lncRNAs and m6A-related regu-
lators (Fig.  2F). Finally, m6A modification sites of those 
4 lncRNAs were predicted by SRAMP, which further 
confirmed that those 4 lncRNAs were regulated by m6A 
modification (Fig. 2G, H and Figure S1E, F).

Validation of a risk model in PDAC patients
In order to constructed the risk prognosis model, the 
patients with PDAC (n = 178) were accurately divided 
into the high- and the low-risk groups according to the 
median cut-off point from prognostic risk scores. EMSLR 
was immensely higher in the high-risk groups com-
pared with the low-risk groups. Nevertheless, the clinical 

information from patients with PDAC and prognostic 
risk scores were considered in comprehensive analysis, 
indicating that mortality rate of patients with PDAC was 
positively correlated with the risk scores (Figure S2A, B). 
AL358944.1, ZNF236-DT, AC087501.4 exhibited rela-
tively low expression in the high-risk groups (Figure S2C-
G). Patients with PDAC who were in high-risk groups 
(n = 89) possessed lower OS than those in low-risk groups 
(n = 89) (p < 0.001) (Figure S2H). To prove rationality 
of model, we randomly separate into a training cohort 
(n = 89) and a test cohort (n = 89), the increasing risk 
scores with worse outcome was observed in the high-risk 
groups (Fig. 3A, B). Besides, the highly expressed EMSLR 
(p < 0.05) and the lowly expressed AL358944.1 (p < 0.001), 
ZNF236-DT (p < 0.05), AC087501.4 (p < 0.001) were 
identified in the high-risk groups (Fig.  3C-G). Eventu-
ally, patients in the high-risk groups obtained poor prog-
nosis (p < 0.001) (Fig.  3H). Similarly, the same tendency 
was shown in the test cohort, patients with high-risk 
scores occupied a large proportion in dead individuals 
(Figure S3A, B). Then, EMSLR was recognized as a risk 
factor and lowly expressed AL358944.1, ZNF236-DT, 
AC087501.4 exerted a profound function on contribut-
ing to development of cancer (Figure S3C-G). Finally, the 

Fig. 1 Flow chart of this study
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groups of high-risk scores tend to get shorter OS than the 
low-risk groups (p < 0.001) (Figure S3H). These results 
suggest that the risk model is reasonably constructed and 
can predict the prognosis of PDAC patients.

Comprehensive analysis of a risk model in clinical 
subgroup
The clinical phenotype information of patients with 
PDAC were initially obtained from TCGA-PAAD. Then, 
patients with PDAC were layered by clinicopathologic 

Fig. 2 Identification of m6A-related lncRNAs in patients with PDAC. (A) Sankey diagram demonstrating co-expression relationship between 21 m6A 
genes and 201 m6A-related lncRNAs. (B) Univariate Cox regression analysis were applied to recognize m6A-related lncRNAs associated with prognosis. 
(C) Optimal prognosis model was constructed by Lasso regression analysis with tenfold cross validation. (D) Lasso coefficient curve. (E) Multivariate Cox 
regression analysis was utilized for m6A-related lncRNAs. (F) Heatmap displaying the correlation between 4 lncRNAs and gene associated with m6A. A 
sequence-based N6-methyladenosine (m6A) modification site predictor of ZNF236-DT (G) and EMSLR (H)
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characteristics, such as age (≤ 65 vs. >65), gender (male 
vs. female), tumor grade (G1-2, G3-4), N stage (N0, N1), 
T stage (T1–2, T3-4), stage (I-II, III-IV) and M stage (M0, 
M1). The K-M survival curve indicated that OS for the 
high-risk groups was significantly lower than that those 
in the low-risk groups no matter age over 65 (P = 0.03) 
or under 65 (P < 0.001) (Fig.  4A, B). Similarly, the high-
risk groups possessed worse prognosis compared with 
the low-risk groups in both male (P = 0.001) and female 
(P < 0.001) patients (Fig. 4C, D). In addition, patients with 
the high-risk groups showed more unfavorable clini-
cal outcome than those in the low-risk groups in T1–2 
(P = 0.001), T3-4 (P < 0.001), N0 (P = 0.008), N1 (P < 0.001), 
stage I-II (P < 0.001) (Fig.  4E-H and Figure S4A). How-
ever, there is no significant difference to prognostic 

survival between the high- and low-risk groups in stage 
III-IV (P = 0.228) (Figure S4B), M0 (P = 0.073) (Figure 
S4C), M1 (P = 0.564) (Figure S4D). In brief, the prediction 
of clinical prognosis of patients with PDAC was greatly 
performed in the most subgroups.

PCA analysis related with risk prognosis model
To investigate distribution between the high- and the 
low-risk groups, PCA was mainly utilized to further 
make distinct samples independent from each other. 
m6A genes, m6A-related lncRNAs and lncRNAs related 
with risk model were respectively evaluated. In the three-
dimensional space, m6A gene and m6A-related lncRNAs 
between the high and the low-risk groups were mixed 
together (Fig.  5A-B). However, lncRNAs related with 

Fig. 3 Prognostic validation of m6A-realted lncRNAs in risk model in the training sets. (A) Difference of survival status and survival time in the high- and 
the low-risk groups in the training sets. (B) Aggregation of m6A-realted lncRNAs based on distinct risk scores in the training sets. (C) A heat map of 4 
prognostic lncRNAs related m6A gene in the training sets. The expression differences of EMSLR (D), AL358944.1 (E), ZNF236-DT (F), AC087501.4 (G) in 
high- and low-risk groups in the training sets. (H) Kaplan-Meier survival curves demonstrating different OS of patients with PDAC in the high- and the 
low-risk groups in the training sets
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risk model were effectively distinguished in the high- and 
low- risk groups (Fig. 5C). Therefore, this indicates that 
the risk model has the capability to accurately distinguish 
between different expression groups and has potential 
clinical relevance for PDAC patients.

Validation of influencing tumor immune therapy and 
tumor mutation burden
Currently, the increasing research have indicated that 
the function of immune cell is disturbed by the abnor-
mal tumor microenvironment caused by tumor cells 
[23]. Consequently, enrichment analysis was performed 
from differential genes (DEGs) between the high- and 
low-risk groups. Intriguingly, immune-related cells and 
immune components, including Type-I-IFN-Response, 
MHC-class-I, APC-co-inhibitor, were extremely different 

at the expression level in the high- and low-risk groups 
(Fig.  6A). To go deeply into potential pathways the 
m6A-related lncRNAs predominantly participate in, 
ssGSEA was utilized to evaluate differences in immune 
function between the high- and low-risk groups. GO 
enrichment analysis suggested that a host of biologi-
cal processes associated with immune were involved 
in the development of PDAC, such as T cell receptor 
complex (Fig. 6B). To explore sensibility of patients with 
PDAC accepting immune checkpoint blockade therapy, 
tumor immune dysfunction and exclusion (TIDE) was 
utilized in the low- and high-risk groups. The lower 
TIDE scores were obtained in the high-risk groups than 
the low-risk groups, which illustrated that patients in 
the high-risk groups were prone to gain more favor-
able immune checkpoint blockade (ICB) efficiency than 

Fig. 5 Desperation patients from TCGA-PAAD sets based on m6A-related lncRNAs. (A) PCA map of genes related to m6A. (B) Distribution of m6A-related 
lncRNAs using PCA map. (C) lncRNAs PCA plot according to risk scores

 

Fig. 4 Kaplan-Meier curves of OS differences layered by age (A, B), gender (C, D), tumor grade (E, F), or TNM stage (G, H) between the high- and low-risk 
groups from TCGA data set
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those in the low-risk groups (Fig.  6C). In recent years, 
ICB has gradually become an emerging cancer immu-
notherapy [24, 25]. The infiltration degree of cytotoxic 
lymphocyte(CTL)may be immensely enhanced by com-
bination with ICB, such as programmed death-ligand 1 
(PD-L1), programmed death 1 (PD-1) and cytotoxic T 
lymphocyte-associated protein 4 (CTLA4) for those with 

the high-risk groups. In this way, the OS of patients with 
PDAC is expected to be further improved. To gain insight 
into relationship between tumorigenesis of pancreatic 
cancer and gene mutation, gene alteration frequency was 
calculated at length in the low- and high-risk groups sep-
arately. The top 20 gene mutation was shown using the R 
package (Fig. 6D, E). It is universally acknowledged that 

Fig. 6 Validation of influence tumor immune therapy and tumor Mutation Burden exert using the m6A-related lncRNA model in TCGA sets. (A) A heat 
map indicating expression of immune molecules in the high- and the low-risk groups. (B) GO enrichment analysis. (C) TIDE differences between the high- 
and the low-risk groups. (D and E) Waterfall plot showing different mutation frequencies in the high-risk groups (D) and the low-risk groups (E). (F) TMB 
differences in the high- and the low-risk groups. (G) Kaplan-Meier curve analysis indicates relationship between prognosis of patients with PDAC and TMB 
level. (H) Outcome of patients with different TMB level influenced by risk scores
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tumor mutation burden (TMB) is positively correlated 
with efficiency of tumor immunotherapy. Thus, TMB 
scores was counted based on Neoplastic antigen predic-
tion software, indicating that TMB scores was higher in 
the high-risk groups than the low- risk groups (Fig. 6F). 
Kaplan-Meier demonstrated that high-TMB patients 
with PDAC obtained poor overall survival. Simultane-
ously, OS of patients with high-TMB was drastically 
worse in high-risk groups (Fig.  6G, H). Briefly, these 
findings show that the m6A-related lncRNA model play 
an indispensable role in predicting prognostic value of 
patients with PDAC.

Estimation of the relationship between the risk model and 
clinical characteristics
To explore whether m6A-related lncRNAs in the risk 
model were significantly correlated with prognosis of 
patients with PDAC, univariate Cox regression analyses 
was performed. In univariate Cox regression model, The 
HR of the risk score and 95% confidence interval (CI) 
were 1.112 and 1.043–1.187 (p = 0.001) separately. Thus, 
the risk scores in m6A-related lncRNAs are considered 

as an independent prognostic risk factor (Fig. 7A). Then, 
multivariate Cox analysis, including risk scores and other 
Clinicopathological parameters, further demonstrated 
that the risk scores are the only independent prognos-
tic characteristics for PDAC (Fig. 7B). The conformance 
index of the risk scores was seriously calculated to evalu-
ate specificity and sensitivity of risk scores in predict-
ing prognostic value with PDAC patients. These results 
indicated that the concordance index of the risk score 
was higher compared with other clinical parameters 
(Fig. 7C). Similarly, the area under the ROC curve (AUC) 
was larger in the risk grade (AUC = 0.728) than other 
clinical characteristics, including age (AUC = 0.640), 
gender (AUC = 0.476), grade (AUC = 0.0.624), stage 
(AUC = 0.0.576), indicating that the risk model of m6A-
related lncRNAs applied for predicting prognosis of 
patients with PDAC is greatly reliable (Fig.  7D). Finally, 
ROC curve was performed to predict the 2 (AUC = 0.728), 
3 (AUC = 0.0.762) and 5 (AUC = 0.840) year OS with 
patients of PDAC, indicating that the 4 m6A-lncRNAs 
have good prognostic value (Fig. 7E).

Fig. 7 Estimation of the relationship between the risk model of m6A-related lncRNAs and clinical characteristics in TCGA data. Univariate (A) and mul-
tivariate (B) Cox regression analyses were utilized to assess OS of patients influenced by clinical characteristics and risk score. (C) Concordance indexes 
of the risk score and clinical characteristics. (D) ROC curves of the clinical parameters and risk score. (E) ROC analysis for predicting the 2, 3 and 5year OS.
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Identification of sensitive drugs in PDAC patients
To recognize effective immunotherapy drugs for patients 
with PDAC, 12 immunotherapy drugs were identified. 
(5Z)-7-Oxozeaenol (p = 0.00015), ATRA (p = 0.00086), 
EHT 1864 (p = 0.00051), GDC0449 (p = 0.00049), JNJ-
26,854,165 (p = 0.000077), Phenformin (p = 0.0000054), 
TW 37 (p = 0.00099) were higher in the high-risk groups 
as targeted treatment drugs (Fig.  8A-G). However, in 
the high-risk groups, 17-AAG (p = 0.00012), LY317615 
(p = 0.00028), PD-0325901 (p = 0.000035), Pyrimethamine 
(p = 0.00058), VX-11e (p = 0.00005) were discovered in 
low level (Fig. 8H-L). Therefore, distinct immunotherapy 
drugs in suitable doses were used for different patients 
with PDAC based on the risk scores.

Different sensitive immunotherapy drugs in the high- and 
the low-risk groups inhibited proliferation of PDAC cells
The expression level of EMSLR, ZNF236-DT, 
AC087501.4, AL358944.1 were lower than normal 
group by TCGA-GTEx (Fig.  9A). Furthermore, qPCR 
results showed that the four lncRNAs were significantly 
decreased in MIA PaCa-2, AsPC-1, PANC-1, CFPAC-1, 

BxPC-3, Patu8988, SW1990 cells compared with normal 
pancreatic HPDE cells (The degree of decline in differ-
ent PDAC cell lines: AL358944.1 (31.67-99.87%), EMSLR 
(38.86-95.37%), ZNF236-DT (92.71-99.46%), AC087501.4 
(87.17-99.45%)) (Fig.  9B). Furthermore, qPCR results 
demonstrated that the expression level of MIA PaCa-2 
is relatively higher and Patu8988 is lower in EMSLR than 
other cell lines. Thus, MIA PaCa-2 and Patu8988 were 
respectively considered as reasonable representatives of 
the high- and low-risk groups. In order to find effective 
immunotherapeutic drugs to inhibit the proliferation of 
PDAC, Phenformin and Pyrimethamine were selected 
as highly sensitive drugs targeting the high- and the low- 
risk groups, respectively.Then, HPDE, MIA PaCa-2 and 
Patu8988 were respectively treated with Phenformin and 
Pyrimethamine by a defined concentration gradient (0, 1, 
10, 50, 100, 200, 500, 1000µM) for 36  h. The drug sen-
sitivities of Phenformin and Pyrimethamine for each the 
cell line were obtained by calculating their values of IC50 
(1041µM for HPDE in Phenformin, 364.8µM for MIA 
PaCa-2 in Phenformin, 796.9µM for Patu8988 in Phenfor-
min, 461.7µM for HPDE in Pyrimethamine, 336.2µM for 

Fig. 8 IC50 of different immunotherapy drugs according to distinct risk score. (A) (5Z)-7-Oxozeaenol, (B) ATRA, (C) EHT 1864, (D) GDC0449, (E) Phenformin, 
(F) JNJ-26,854,165, (G) TW 37, (H) 17-AAG were more sensitive in the high-risk groups. (I) LY317615, (J) PD-0325901, (K) Pyrimethamine, (L) VX-11e were 
more sensitive in the low-risk groups
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MIA PaCa-2 in Pyrimethamine, 193.9µM for Patu8988 in 
Pyrimethamine), displaying that MIA PaCa-2 was more 
sensitive for Phenformin than Patu8988 and HPDE and 
Patu8988 had stronger sensitivity for Pyrimethamine 
compared with MIA PaCa-2 and HPDE (Fig.  10A, B). 
Next, the inhibition of MIA PaCa-2 treated with Phen-
formin was gradually increasing in a dose-dependent 
manner by CCK8 assay (Fig.  10C). Intriguingly, CCK8 
assay revealed that Pyrimethamine facilitated the prolif-
eration of Patu8988 at low concentration. However, the 
proliferation of Patu8988 was obviously inhibited when it 
was intervened using Pyrimethamine at a relatively high 
dose (Fig. 10D). Collectively, appropriate immunotherapy 
drugs effectively inhibit the proliferation of PDAC, dem-
onstrating their potential as therapeutic agents.

Discussion
In order to explore the role of lncRNAs and m6A in the 
development of PDAC, m6A-related lncRNAs were 
screened by matching m6A and lncRNAs using co-
expression analysis. The patients with PDAC were clas-
sified into the high- and low-risk groups by univariate 
Cox analysis and Lasso regression model. The survival 
of patients with PDAC was excellently predicted by ROC 
curves of the clinical parameters and risk scores in the 
risk prognosis model.

As a kind of commonly chemical modification in 
eukaryotic mRNAs and lncRNAs, abnormal expres-
sion of m6A influence cell self-renewal, differentiation, 

apoptosis, invasion [26, 27]. Zhang H et al. found that the 
highly expressed SNHG17 modified by METTL3 aggra-
vated the malignant phenotypes in Lung adenocarcinoma 
(LUAD) gefitinib resistance cells [28]. Li B et al. demon-
strated that lncRNA WEE2-AS post-transcriptionally 
stabilized by IGF2BP3 promotes Glioblastoma (GBM) 
progression [29]. However, little research focused on 
pathogenic mechanism of lncRNAs and m6A in PDAC 
were identified. Therefore, it is essential to explore the 
prognostic signature about m6A-related lncRNAs in the 
PDAC.

In our research, 4 m6A-related lncRNAs (including 
EMSLR, AL358944.1, ZNF236-DT, AC087501.4) were 
selected to construct a prognosis model. It is reported 
that the highly expressed EMSLR facilitates prolifera-
tion of lung cancer by interacting with target gene Lnc-
PRESS [30]. AL358944.1 is a prognostic indicator in the 
PDAC in the cuproptosis-related lncRNAs signature [31]. 
Moreover, the numerous evidences showed that tumor 
cells not only accelerate growth but also inhibit TMB 
by interacting the infiltered immune cell around tumor 
cells [32]. GO analysis revealed that immune function 
between the high- and the low-risk groups were widely 
disparate. For example, Type-I-IFN Response, MHC-I, T 
cell receptor complex (TCR) and so on. IFNs, a kind of 
cytokines, affect the growth, migration and presentation 
of neonatal antigens. cytotoxic lymphocyte can be stimu-
lated by IFNs, thus, the disturbed IFN responses leading 
to the loss of tumor immune surveillance [33]. Cytotoxic 

Fig. 9 The expression levels of m6A-related LncRNAs in PDAC. (A)The boxplot showing that differential expression of EMSLR, ZNF236-DT, AC087501.4, 
AL358944.1 in PDAC using TCGA-GTEx. (B) The mRNA expression levels of EMSLR, ZNF236-DT, AC087501.4, AL358944.1 were detected by qPCR in PDAC 
cell lines
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T lymphocytes can recognize and bind the antigenic pep-
tide-MHC-I complex through TCR receptors to initiate 
anti-tumor immune function. However, the downregula-
tion of MHC-I leads to the inability of CD8 + T cells to 
recognize tumor antigen peptides [34], which is closely 
related to the immunosuppression and poor prognosis 
of many malignant tumors. Yamamoto K et al. demon-
strated that MHC-I is degraded by binding with NBR1 in 
the autophagy process, promoting immune escape from 
pancreatic cancer [35].

TIDE (Tumor Immune Dysfunction and Exclusion) is 
a computational method used to assess the efficacy of 
immune checkpoint blockade therapy. In general, a lower 
TIDE score indicates a higher possibility for the response 
to immunotherapy. In our study, lower TIDE scores were 
obtained in patients from the high-risk groups com-
pared to those from the low-risk groups, suggesting that 
those patients with lower TIDE scores may have reduced 
immune dysfunction and exclusion, a better response to 
immunotherapy. In the future research, a novel treatment 
strategy may be found by the research based on TIDE 
scores, and more options are offered for personalized 
treatment.

Besides, 12 immunotherapy drugs about PDAC from 
GDSC websites were filtered, which paves the way for 
patients with PDAC in medical treatments. Pyrimeth-
amine (2,4-diamino-5-p-chlorophenyl-6-ethylpyrimi-
dine), a dihydrofolate reductase (DHFR) inhibitor, is used 
for treating malaria by inhibiting the proliferation of plas-
modium and toxoplasma and also applied to anti-tumor 
field [36]. Furthermore, Phenformin, a common bigu-
anide drug, can effectively treat diabetes. Currently, it has 
been widely used to resist the development of cancers 
[37]. The proliferation of MIA PaCa-2 treated with Phen-
formin and Patu8988 treated with Pyrimethamine was 
inhibited, indicating Phenformin and Pyrimethamine 
may be potential highly sensitive immunotherapy drugs. 
In this way, patients with PDAC in the high- and low-risk 
groups are more likely to be effectively treated when they 
receive suitable immunotherapy drugs. The established 
m6A-related lncRNAs model provides a new strategy for 
clinical outcome in PDAC.

Nevertheless, there are some limitations to our study 
that need to be addressed. Firstly, although we validated 
the risk model using separate training and test cohorts, 
further validation with larger patient cohorts is needed to 

Fig. 10 MIA PaCa-2 and Patu8988, which were treated with Phenformin and Pyrimethamine respectively, displayed slow proliferation. IC50 was evalu-
ated by CCK8 in HPDE, MIA PaCa-2 and Patu8988 cells treated with Phenformin (A) and Pyrimethamine (B) Cell proliferation was measured by CCK8 assay 
in MIA PaCa-2 treated with Phenformin (C) and Patu8988 treated with Pyrimethamine (D) at different doses for 4 days
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confirm its reliability and generalizability. Secondly, the 
underlying molecular mechanisms linking the identified 
m6A-related lncRNAs to PDAC pathogenesis and pro-
gression remain largely unknown. Future studies should 
focus on elucidating these mechanisms to gain a deeper 
understanding of the role of m6A-related lncRNAs in 
PDAC. Lastly, while our study identified potential immu-
notherapy drugs based on the risk model, further preclin-
ical and clinical investigations are required to evaluate 
their efficacy and safety in PDAC patients.

Conclusions
In a word, we successfully constructed and validated 
a promising risk prognosis model about m6A-related 
lncRNAs in PDAC. Furthermore, we filtered highly sen-
sitive immunotherapeutic drugs according to the high- 
and the low-risk groups and validated them in vitro. Our 
findings are expected to provide effective biomarkers, 
immunotherapy drugs and a novel method for the diag-
nosis and treatment of pancreatic cancer. The research 
laid a solid foundation for further exploration of patho-
logical mechanism and clinical therapeutic schedule.
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