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Abstract
Background  Despite the utilization of immune checkpoint inhibitors (ICIs) in treating numerous types of cancers 
being approved, their efficacy in tumor control in the clinic is not satisfactory. Since adoptive cell therapy (ACT) can 
alter the tumor microenvironment, we hypothesized that ACT potentially synergized with ICI in tumor control and 
examined this hypothesis via a murine allograft model.

Methods  Female C57BL/6 mice were stimulated with interleukin 15 and granulocyte monocyte-colony stimulating 
factor, followed by collecting their bone marrow cells for murine NKDC cultivation. Then, female C57BL/6 mice, 
inoculated with lymphoma cancer cell line E.G7-OVA, were administrated with murine NKDC cells, murine anti-
program cell death ligand-1 antibody (α-mPD-L1), or both for 28 days. After 28 days of treatment, mice were sacrificed 
whose inoculated tumors, spleen, sentinel lymph nodes, and peripheral blood were collected to measure tumor size, 
lymphocyte infiltration, and change of immune cell profile.

Results  Combined treatment of NKDCs with α-mPD-L1 exhibited significantly stronger tumor control efficacy than 
treatment of NKDCs or α-mPD-L1 alone. NKDCs/α-mPD-L1 combination increased migration of dendritic cells, CD4, 
CD8 T cells, and activated CD8 T cells to the tumor-bedding site, and promoted endogenous tumor-specific cytotoxic 
T-cell response.

Conclusion  The current study confirmed our hypothesis that combining NKDC ACT with ICI therapy can potentiate 
tumor control efficacy by manipulating the tumor microenvironment. This study provided a novel circumstance on 
tumor immunotherapy.
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Introduction
Immune surveillance of tumor cells refers to the destruc-
tion of tumor cells by natural killer cells (NKs) and the 
presentation of tumor antigens to the adaptive immune 
system (T-cell response and humoral response) by anti-
gen-presenting cells (APCs, such as dendritic cells [DCs]) 
[1, 2]. However, some tumor cells form an immuno-
suppressive tumor microenvironment (TME) to avoid 
attacks from the immune system, which includes down-
regulation of tumor antigens, upregulation of inhibitory 
receptors (e.g., programmed cell death protein 1 [PD-1], 
and programmed cell death protein ligand 1 [PD-L1]), 
and stimulation of regulatory cells accumulation [3]. 
Therefore, cancer immunotherapy intends to ameliorate 
immunosuppressive TME through breaking PD-1/PD-L1 
interaction (by immune checkpoint inhibitors [ICIs]) and 
enhancing tumor-specific immune response (for exam-
ple, via adoptive cell therapy [ACT]) [4].

Although the regulatory bodies around the world 
approved the application of ICI immunotherapies in 
both solid and liquid tumors, the clinical response of ICI 
immunotherapies is still challenging owing to impaired 
tumor-antigen-presentation and tumor-specific killing [5, 
6]. To overcome the limitation of ICI immunotherapies, 
combination ICIs with ACTs, either cytotoxic cell-based 
or antigen-presenting cell-based, is proposed [7]. How-
ever, cytotoxic-cell-based ACTs can only deal with tumor 
carrying known and conserved antigens [8]. Even though 
antigen-presenting cells-based ACTs can promote tumor 
control activity via orchestrating antigen-specific adap-
tive immune response without ex vivo education, lack 
of expression of the major-histocompatibility complex 
class I upon solid tumors leads tumor cells evading from 
the antigen-presentation [9]. Previous studies revealed 
that some natural-killer cell (NK) subpopulations acted 
as antigen-presenting cells during infection [10]. Also, 
we discovered a novel NK subpopulation, antigen-pre-
senting cell-like NKs (NKDCs), which carried the phe-
notypes and displayed both activities of NKs and DCs. 
The current study intended to evaluate whether NKDC 
can synergize with ICIs in tumor control. In the study, 
we constructed an allograft murine tumor model which 
included murine lymphoma cell line E.G7-OVA (E.7, 
ELF4 lymphoma cell line transfected with ovalbumin) as 
the target, murine NKDCs cultured from bone marrow 
cells (BMs) and anti-murine PD-L1 antibody (α-mPD-L1) 
as effectors.

Methods & materials
Reagents and antibodies
Reagents and antibodies applied in this study were 
enlisted in Supplementary Tables 1 and 2. All reagents 
and antibodies were aliquoted as received and stored 

under recommended condition from manufacture until 
used.

Cell line
We obtained E.7 cell line (CVCL_3505) from Biore-
source Collection and Research Center (BCRC, Hsin-
chu, Taiwan) and maintained cells in the recommended 
medium from the vendor and renewed once 2–3 days. All 
experiments were performed within ten passages to keep 
uniformity.

Animals
We obtained C57BL/6 mice (female, 6–10 weeks old, 
n = 78) and BALB/c mice (female, 4–6 weeks old, n = 6) 
from National Laboratory Animal Center (Taipei, Tai-
wan), fed the mice in controlled conditions (21 ± 2oC, 
55 ± 10% humidity, 12/12 h day/night cycle) and ad libi-
tum food and water from the specific pathogen-free 
animal facility of Fu-Jen University laboratory animal 
center. The designation of the animal experiment com-
plied with ARRIVE guidelines and the “Guide for the 
Care and Use of Laboratory Animals” from the National 
Research Council, and the study protocol was reviewed 
and approved by The Institutional Animal Care and Use 
Committees of Fu-Jen University (approval code P10824-
修1).

Immunostaining and flow cytometry
The immunostaining and flow cytometry process fol-
lowed the description in our previous study [11]. We 
used Kaluza analysis software (V2.1, Beckman-Coulter, 
Brea, CA, USA) in the data collection of flow cytometry.

Maintenance and functional evaluation of murine NKDC
NKDC preparation and phenotypic analysis
Murine NKDC was cultured from the murine BMs col-
lected from sixty C57BL/6 mice [12]. Collected BMs were 
cultured (1 × 106 cells/mL) with complete medium, com-
prising Roswell Park Memorial Institute medium 1640, 
fetal bovine serum (10% v/v), murine interleukin 15 (12.5 
ng/mL), and murine granulocyte-macrophage colony-
stimulating factor (5 ng/mL, applied on days 3 and 6), 
for nine days. NKDC was collected through centrifuga-
tion and utilized in the following analysis. For pheno-
type determination, NKDCs were incubated with an Fc 
blocker followed by immunostaining and analysis by the 
flow cytometer (Navios, Beckman-Coulter). Identifica-
tion of NKDCs followed a gating pedigree described in 
Supplementary Fig. 1.

Cytotoxicity assay
The killing activity of NKDC was determined by the 
PanToxilux kit (OncoImmunin, Inc., Gaithersburg, MD, 
USA), which determination followed the protocol in the 
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manual. In brief, E.7 cells were stained with TFL4 (viable 
dye) and incubated with NKDC (or cultured medium; 
cell ratio: E.7: NKDC = 1: 20) for 50  min. The cultured 
cells were subsequently stained with PS (fluorescent-
labeled caspase substrate) and analyzed fluorescence by 
flow cytometry. We defined the PS fluorescence from the 
group without NKDC co-incubation as non-apoptotic 
cells, and the cells carrying stronger PS fluorescence than 
non-apoptotic cells were apoptotic cells.

Mixed lymphocyte reaction (MLR)
The antigen-presenting activity of NKDCs was assessed 
by MLR [13]. Briefly, lymphocytes were isolated from 
axillary lymph nodes of BALB/c mice [14]. Isolated lym-
phocytes were stained with CellTrace® Violet (CTV; 
Thermo-Fisher, Waltham, MA, USA) and co-cultured 
with NKDCs (or complete medium) for five days. After 
cultivation, cells were applied for CTV-fluorescence 
analysis by flow cytometry. We defined the CTV fluores-
cence from the group without NKDC co-cultivation as 
non-proliferated cells, and the cells carrying weaker CTV 
fluorescence than non-proliferated cells were proliferated 
cells.

In vivo evaluation of tumor-control of NKDC/mPD-L1
Construction of E.7 allograft model and NKDC administration
The detailed administrating schedule of the allograft 
tumor model is available in Fig.  1. In brief, eighteen 
C57BL/6 mice were randomly assigned into five groups 
and utilized in study treatment regarding their study 
grouping on Day 0. On the same day, mice were inocu-
lated with 5 × 105 cells/mice of E.7 cells or PBS. Later, 
intraperitoneal injection of α-mPD-L1 (6.25 mg/kg body 
weight) was performed on Days 3, 10, and 17. Intrave-
nous inoculation of NKDCs (1 ×  107 cells/mice) was 

initiated on Day 7 and repeated once on Day 15. We 
weighed the body weight and tumor volume every 2–3 
days during the treatment [15]. On Day 28, mice were 
sacrificed via CO2 anesthetization, and peripheral blood, 
tumor, spleen, and sentinel lymph nodes from each 
mouse were collected in terms of the study group for pre-
paring single-cell suspensions.

Preparation of single-cell suspension
Single-cell suspensions of tumors, spleens, and senti-
nel lymph nodes were prepared via homogenization 
[16]. Erythrocytes in the peripheral blood sample were 
removed via ACK lysis [16]. All cell suspensions were 
stored under 4oC until use.

Tumor-specific T-cell-activation assay
Evaluating the re-stimulation of E.7-specific T cells fol-
lowed the protocol described in the literature with modi-
fication [17]. Mice splenocytes (without T-cell isolation) 
were stained with CTV followed by cultivation with OVA 
peptide for five days. Cell stimulation cocktails were 
applied at 2 h before cell harvesting.

Statistical analysis
The result of each experiment was summarized from at 
least three repeats and plotted by Prism V6 (GraphPad 
Inc., La Jolla, CA USA). We utilized Prism in determin-
ing statistical significance among each comparison which 
unpaired Student-t test (for pairwise comparison) and 
one-way ANOVA plus Tukey’s test (for multiple compar-
isons) were utilized, and α value was 0.05.

Fig. 1  Schematic illustration of allograft E.7 tumor model
Six-week-old of female C57BL/6 mice were randomly assigned into 5 groups: 1× PBS, E.7, E.7 + anti-PD-L1 antibody (α-mPD-L1), E.7 + NKDC, and 
E.7 + α-mPD-L1 + NKDC, and administrated with α-mPD-L1, NKDCs, both, or PBS, respectively, for 28 days
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Results
NKDC exhibited both NK and DC activities
We showed the phenotype of NKDCs in Fig.  2A. 
NKDC comprised three predominant populations: 
CD80+MHCII+CD11c+NK1.1-NKp46- (population 1), 
CD80+MHCII-CD11c-NK1.1-NKp46- (population 2), 
and CD80-MHCII-CD11c-NK1.1+NKp46+ (population 
3), respectively. As co-incubating NKDCs with TFL-
4-labeled E.7 cells with a ratio of 20:1, the percentage of 
apoptotic E.7 cells increased from 2.14 to 4.53% (Fig. 2B). 
A similar result was observed in the MLR assay, in which 
NKDC triggered CFSE-labeled BALB/c lymphocyte pro-
liferation in a ratio of 5:1 (Fig. 2C). These data indicated 
that NKDCs displayed the activities of NK and DC.

NKDCs showed additive enhancement in tumor control 
while treating alongside α-mPD-L1
To evaluate whether NKDC/ICI combination enhanced 
the efficacy of tumor control, we constructed E.7-based 
allograft tumor model and treated the allograft mice with 
NKDC, ICI, and both for 28 days (Fig. 3). In the model, 
E.7 cells were chosen as target cells based on the posi-
tive expression of PD-L1 on the cells (Fig. 1). During the 
treatment, the body weight of each group was compara-
ble with 1× PBS, indicating no acute toxicity occurred in 
the treatment (Data not shown). Tumor volumes among 
E.7, E.7 + α-mPD-L1, and E.7 + NKDC groups were com-
parable at Day 28 (all p > 0.05, Fig. 4). Notably, tumor vol-
ume of E.7 + α-mPD-L1 + NKDC group was significantly 
smaller than that of E.7 group and two mono-treatment 
groups at Day 28 (p < 0.01, Fig.  4). This result revealed 

Fig. 2  NKDC displayed both natural killer cells and dendritic cells activity
Antigen-presenting cell-like natural killer cells (NKDCs) were generated from murine bone marrow cells by culturing them with interleukin 15 and gran-
ulocyte-macrophage colony-stimulating factor for 9 days. After cultivation, (a) Phenotypes, (b) cytotoxicity against E.G7-OVA cells (E.7 cells), and (c) 
antigen-presenting activity were evaluated. Ratios among NKDCs, E.7 cells and BALB/c lymphocytes were 1:20 and 5:1, respectively
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the observable enhancement in tumor control as NKDCs 
combined with α-mPD-L1.

α-mPD-L1/NKDC combination increased the amount of 
DCs in the tumor-bedding site
To evaluate how α-mPD-L1 promote tumor control 
activity of NKDC, amounts of NKs and DCs in the 
single-cell suspensions from peripheral blood, senti-
nel lymph nodes, and tumor-bedding sites were deter-
mined (Supplementary Fig.  2). As shown in Fig.  5, the 
proportion of NKs in peripheral blood, sentinel lymph 
nodes, and tumor-bedding sites among each group was 
comparable. Of note, a significantly higher propor-
tion of DCs in the tumor-bedding site was observed in 

E.7 + α-mPD-L1 + NKDC group compared with other 
groups (p < 0.05), revealing a promotion of the accumula-
tion of DCs in the tumor-bedding site may cause tumori-
cidal promotion of α-mPD-L1/NKDC combination.

α-mPD-L1/NKDC combination promoted amounts of 
myeloid-derived suppressor cells (MDSCs) in sentinel 
lymph nodes
Combination of α-mPD-L1 and NKDC may contribute 
to manipulating the distribution of regulatory cells [18]. 
Hence, we further investigated the distribution of G-/M-
MDSC and CD4+ Treg cells (Supplementary Fig. 3). Sig-
nificant increases of MDSCs in sentinel lymph nodes 
were observed in either the NKDC monotherapy group 

Fig. 4  Adoptively transferred NKDC showed synergetic effects with α-mPD-L1 antibody in E.7allograft mouse model
A total of 18 Female C57BL/6 mice were randomly grouped into five, followed by E.7 cell inoculation. Administration of NKDC and α-mPD-L1 followed 
the treatment schedule described in Fig. 3, respectively. The tumor volume of each mouse was measured every 2–3 days until sacrifice and showed in a 
line plot with mean ± SEM. *, p < 0.05

 

Fig. 3  E.7cells expressed abnormal MHCI and significant PD-L1
E.7 cell was stained with antibodies targeting to H-2Db (a subunit of C57BL/6 MHCI) and PD-L1 followed by fluorescent analysis by flow cytometry
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or combination therapy group when compared with the 
untreated group (both p < 0.05), which were not observed 
in the peripheral blood and tumor-bedding site (Fig. 6). 
Comparable amounts of CD4+ Treg cells in all single-cell 
suspensions were observed among all groups. This result 
showed that α-mPD-L1/NKDC combination did not alter 
regulatory cell distribution.

α-mPD-L1/NKDC combination promoted activation of CD8 
T cells in tumor-bedding sites
Increased DC amounts in tumor-bedding sites poten-
tially enhanced tumor-specific T-cell response [19]. 
Therefore, we measured the distribution of CD4+ T, 
CD8+ T, and activated CD8+ T cells (CD69+CD8+) in 
peripheral blood, sentinel lymph nodes, and tumor-bed-
ding sites (Supplementary Fig.  4). Significantly higher 
amounts of CD4+, CD8+, and activated CD8+ T cells 

within the tumor-bedding site were observed in the 
E.7 + α-mPD-L1 + NKDC group compared with those 
in the mono-treated and un-treated groups (all p < 0.05; 
Fig. 7), indicating DC-associated accumulation and acti-
vation of T cells may contribute to enhance tumor con-
trol of α-mPD-L1/NKDC combination.

α-mPD-L1/NKDC combination reinforced cognate tumor 
antigen-specific cytotoxic T cell responses
The T cells of the recipients’ spleen were CFSE labeled 
and stimulated with OVA peptide to investigate the 
sustained tumor-specific immune activation in recipi-
ent mice. As the results showed in Fig. 8A, E.7 + NKDC 
(14.7%) and E.7 + combination therapy groups (18.83%) 
exhibited a significantly higher proportion of prolifer-
ated T cells than in the E.7 + α-mPD-L1 group (4.9%, 
p = 0.0008; Fig.  8B), indicating that NKDC alone and 

Fig. 5  α-mPD-L1 and NKDC triggered DCs accumulation in tumor-bedding site
NKs and DCs in single-cell suspensions of peripheral blood, sentinel lymph nodes, and tumor-bedding sites were identified via pedigree described in 
Supplementary Fig. 2. Means not sharing ant letters were significantly different by the Tukey’s test with 5% level of significance
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α-mPD-L1 strengthened tumor-specific T-cell mem-
ory. In addition, IFN-γ expression was higher in the 
E.7 + α-mPD-L1 + NKDC combination group than in the 
other groups (14.24%, p = 0.0113; Fig.  8B). Our results 
indicate that combined treatments of NKDCs and 
α-mPD-L1 lead to sustained tumor-specific immune acti-
vation that correlates with tumor control activity in the 
recipient mice models.

Discussion
The current study described an additive enhancement 
of tumor control between α-mPD-L1 and NKDCs and 
its detailed mechanism via the murine allograft tumor 
model. The combination of NKDCs and α-mPD-L1 
exhibited an enhanced efficacy of tumor control than 
NKDC and α-mPD-L1 alone. α-mPD-L1/NKDC com-
bination increased DC and T cell accumulation in the 
tumor-bedding site and such increase of DC and T cell 
enhanced intensity and sustained tumor-specific T-cell 
response.

ICI immunotherapies break immune tolerance toward 
tumor cells via reducing PD-1/PD-L1 interaction and 
subsequently initiate endogenous antitumor immune 
response [20]. For those cancer patients experiencing 

immune dysregulation, the antitumor immune response 
cannot be well-developed owing to compromised periph-
eral immunity [20]. Hence, combinations of ICI immu-
notherapies with other cancer treatments (e.g., target 
therapies, ACTs of tumor-specific immune cells, innate 
immune agonists, or anti-regulatory cell therapies) are 
suggested to ameliorate the compromised peripheral 
immunity in cancer patients [21]. Hui et al. reported a 
case that administrated autologous cytokine-induced 
killer cells (CIK, immune cell product mixed with NKs 
and cytotoxic T cells) and pembrolizumab to a patient 
with metastatic squamous cell carcinoma in the lung 
[22]. They observed a rapid decrease in tumor volume 
and serum tumor markers after treatment, indicating 
that combining ACT and ICIs treatments in improving 
tumor control was feasible [23]. In the report from Zhou 
et al., the disease-control rate (DCR) of non-small-cell 
lung cancer patients treating with CIK and sintilimab 
(anti-PD-1 antibody drug) was 64.7% [24]. Furthermore, 
four clinical studies revealed a highly 12-week DCR 
(61.5–100%) observed in patients with solid tumors after 
treatment of autologous tumor-infiltrated lymphocytes 
and ICIs [7, 25–27]. These studies demonstrate that ICI 
plus adoptive transferring of tumor-specific immune 

Fig. 6  NKDC/α-mPD-L1 synergism increased amount of granulocytic myeloid-derived suppressor cells (G-MDSCs) in sentinel lymph nodes
Granulocytic-myeloid-derived suppressor cells (G-MDSC), monocytic-MDSCs (M-MDSC), and regulatory CD4+ T cells (CD4+ Treg cells) within single-cell 
suspensions of peripheral blood, sentinel lymph nodes, and tumor-bedding sites were identified via pedigree described in Supplementary Fig. 3. Means 
not sharing ant letters were significantly different by the Tukey’s test with 5% level of significance
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cells can ameliorate compromised peripheral immunity 
of cancer patients and lead to better tumor control than 
ICI or ACT alone. We identified that NKDCs carry both 
NK and DC activity (Fig. 2B & C), which can do tumor-
cell killing and antigen-presentation of tumor-specific 
antigens to T cells and trigger an adaptive immune 
response from one cell product. This property implied 
that antigen-presenting and tumor-specific killing activi-
ties of NKDCs can be well-functioned in tumors car-
rying unknown or heterogenic tumor antigens, which 
frequently obstacles the application of T-cell-based and 
NK-based ACTs [8, 28].

Tumor cells express PD-L1 to reduce tumor-medi-
ated T-cell and NK activation [29, 30]. Blocking PD-L1 
activity can stimulate the endogenous tumor-specific 
immune response. Recent studies discovered that DC 
also expresses PD-L1 and that expression of DCs controls 
stimulatory activity toward T cells [31]. PD-L1 interacts 
with PD-L1 in cis or trans manners and triggers CD28-
related signaling on T cells and consequently activated 
T cells [32, 33]. While PD-L1 expression is more abun-
dant than CD80, PD-1/PD-L1 signaling will offset CD28-
related signaling [33]. Therefore, blocking PD-L1 can 
either activate endogenous tumor-specific T-cell and 

NKs or enhance the co-stimulatory activity of DCs. These 
studies provide the underlying mechanism of augmented 
activated CD8+ T cells and reinforced tumor-specific 
T-cell response in our results (Figs.  7 and 8B). Chen et 
al. conducted a phase I/II trial to investigate the tumor-
control efficacy of DC-CIK (CIK cell product co-cultured 
with ex vivo-expanded DC) and pembrolizumab combi-
nation in advanced solid tumor patients [34, 35]. In this 
study, 64.5% and 22.5% of patients experienced disease 
control and tumor shrinkage, respectively [35]. Accord-
ing to the mechanism described above, combining DC-
CIK with anti-PD-L1 antibodies (such as atezolizumab or 
avelumab) rather than pembrolizumab may have better 
efficacy in tumor control.

Kalinski et al. reported that NK aided DC anti-can-
cer responses [36, 37]. Similar effects were observed 
in another study, which utilized NKs mediated type-1 
polarization of DCs to enhance tumor-specific cyto-
toxic lymphocyte effects in melanoma [38]. Researchers 
have concluded that NK is the key to DC-based immu-
notherapy and vaccines [39]. These findings provided 
a sound rationale for the present study. In our mouse 
model, treatment of NKDC or α-mPD-L1 partially con-
trolled tumor growth. NKDC/α-mPD-L1 combination 

Fig. 7  NKDC/α-mPD-L1 synergism promoted CD4+ T and activated CD8+ T cells accumulation in tumor-bedding sites
CD4+, CD8+, and activated CD8+ (CD69+CD8+) T cells in single-cell suspensions of peripheral blood, sentinel lymph nodes, and tumor-bedding sites were 
identified via pedigree described in Supplementary Fig. 4. Means not sharing ant letters were significantly different by the Tukey’s test with 5% level of 
significance
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reduced tumor growth stronger than applying NKDC or 
α-mPD-L1 alone, even at a low cell dose. This result con-
firmed that tumor control is based on the further initia-
tion of the cytotoxic T-cell activation cascade, not simply 
the NK innate immunity-killing effect. This additively 
tumor-control efficacy was demonstrated clearly in the 
cytotoxic T-lymphocyte response assay.

Conclusion
In conclusion, our study provided an efficient and prac-
tical approach to augment the efficacy of α-mPD-L1 
through co-utilizing with NKDCs. NKDC/α-mPD-L1 
combination facilitates the mobilization of T lympho-
cytes and DCs to the tumor-bedding site and enhances 
tumor-specific T-cell response. Accumulated tumor-
specific T cells can archive sustained tumor control. Our 

findings hold great potential to improve responses to 
current cancer immunotherapies by turning cold tumors 
into the hot tumor. In the future, we would continuously 
investigate the long-term memory and long-term tumor-
control activity of NKDC/ICI combination in vivo. Addi-
tionally, we plan to confirm the proposed conception in 
this study via early clinical trials shortly.
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Fig. 8  Adoptively transferred NKDC synergized with α-mPD-L1 antibody to mount more efficient cognate tumor antigen-specific cytotoxic T cell 
responses
(a) Total cultured CFSE-labeled cells were harvested on day 5, and the CFSE diluted patterns on CD8+ T cells were determined. (b) Each histogram and 
bi-axis-dot plot represents the data out of 2 (1× PBS group) to 4
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gating strategy of activated CD8 T cells
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