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Abstract
PANoptosis is a specific type of inflammatory programmed cell death (PCD) modality that can be involved in three 
key modes of cellular programmed cell death-pyroptosis, apoptosis and necroptosis. We analyzed PANoptosis 
activity in three common renal cell carcinoma subtypes (Clear cell renal cell carcinoma, Papillary renal cell 
carcinoma, and Chromophobe renal cell carcinoma) separately and constructed a new PANoptosis immunity index 
(PANII). In three renal cell carcinomas, we found that PANII was an effective predictor of immunotherapy efficacy 
in KIRC, KIRP and KICH, and the high PANII group was characterized by high immune infiltration and sensitivity 
to immunotherapy, while the low PANII group was prone to immune escape and immunotherapy resistance. 
We performed molecular docking prediction of each core protein comprising PANII and identified natural small 
molecule compounds with the highest affinity to target proteins. In addition, we found that down-regulation of 
PYCARD inhibited the proliferation and migration of renal clear cell carcinoma cells by in vitro functional assays, 
suggesting that PYCARD could be a novel target for renal clear cell carcinoma therapy. Our findings that the 
PANoptosis characterization-based index (PANII) helps to elucidate the tumor microenvironmental features of three 
common renal cell carcinoma subtypes and identify patient populations that will benefit from immunotherapy, 
providing a new tool for the clinical diagnosis and treatment of patients with intermediate- and advanced-stage 
renal cell carcinoma.
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Background
Renal cell carcinoma is a common urological malignancy, 
which is composed of three main pathological subtypes, 
namely clear cell renal cell carcinoma (ccRCC, KIRC), 
papillary renal cell carcinoma (pRCC, KIRP), and renal 
chromophobe carcinoma (chRCC, KICH), with ccRCC 
being the most predominant subtype, accounting for 
approximately 75% of all pathologic types [1, 2]. Renal 
cell carcinoma has long been considered an immuno-
genic tumour resistant to conventional radiotherapy and 
chemotherapy, and its current main therapeutic strat-
egy is surgery-based combination therapy and renal cell 
carcinoma is an immunotherapy-responsive tumour; 
immune checkpoint inhibition therapies targeting the 
immunosuppressive microenvironment have revolution-
ised cancer treatment; however, only a small proportion 
of patients derive lasting benefit from immune check-
point inhibitors, which limits the use of these promising 
strategies in clinical practice [3–6]. Therefore, there is an 
urgent need to identify reliable molecular biomarkers to 
predict response to checkpoint blockade and improve the 
clinical efficacy of these therapies.

Apoptosis, a classical process of programmed tumor 
cell death, plays an important role in cancer suppres-
sion [7]. However, with the increase of resistance to che-
motherapeutic drugs inducing apoptosis in tumor cells, 
more mechanisms of programmed cell death have been 
discovered, including Pyroptosis, Necrosis, Ferroptosis, 
Cuproptosis, Autophagy, and so on. Recently, a newly 
discovered programmed cell death pathway, in which the 
mechanisms of Pyroptosis, Apoptosis and Necroptosis 
are cross-linked, was named “PANoptosis”. Furthermore, 
PANoptosis cannot be characterized by any of the cell 
death modes of Pyroptosis, Apoptosis and Necroptosis 
alone ( [8–10]. PANoptosis in specific tumor types with 
the value of parsing tumour heterogeneity, but lack of 
PANoptosis on study of relationship between renal cell 
carcinoma.

In our study, PANoptosis was characterized by bioin-
formatics analysis for three common subtypes of renal 
cell carcinoma (KIRC, KIRP, and KICH) and a new 
metric, the PANoptosis Immunity Index (PANII), was 
constructed to assess the potential correlation between 
PANoptosis and the immune microenvironment of the 
three renal cell carcinoma subtypes and its predictive 
value for immunotherapy response. Our findings may 
provide innovative targeted therapies for the treatment of 
patients with renal cell carcinoma.

Materials and methods
Obtaining patient data on three renal cell carcinoma 
subtypes and identifying PANoptosis-related genes
We downloaded expression profiling data, clinical infor-
mation, and pathology sections for KIRC, KIRP, and 

KICH patients from The Cancer Genome Atlas (TCGA) 
(https://portal.gdc.cancer.gov/) database (Deletion of 
sample data with incomplete survival data) [11]. Sin-
gle-cell datasets GSE154763, GSE159913, GSE111360, 
GSE121636, GSE139555, GSE159115, GSE171306 and 
GSE159115 were downloaded from the GEO database 
and normalised. from the GSEA gene set, KEGG, Hall-
mark, and review articles. key regulatory genes for apop-
tosis, pyroptosis and necroptosis as PANoptosis-related 
genes, the final gene list was the tandem regulatory genes 
for apoptosis, pyroptosis and necroptosis [12, 13] (Table 
S1).

Unsupervised clustering of PANoptosis-related genes
We used the R package “ConsensusClusterPlus” to imple-
ment consensus clustering based on PANoptosis-related 
genes to identify KIRC, KIRP and KICH subtypes [14]. 
The parameter settings were “maxK” set to “10”, “clus-
terAlg” set to “km “, “clusterAlg” is set to “km”, and “dis-
tance” is set to “pearson“ [15–17].

Gene set enrichment analysis (GSEA)
We obtained reference genomes (Hallmark, c5go 
and c2kegg) from the Molecular Signature Database 
(MSigDB). The R package “clusterProfiler” was used 
to identify Hallmark, c5go and c2kegg biological path-
ways [18]. Screening conditions were |NES| > 1, NOM 
p-value < 0.05.

Construction of the PANoptosis immunity index (PANII)
After cross-linking the key regulatory genes for apop-
tosis, pyroptosis and necroptosis, we retained the genes 
identified as “confirmed” by using the Boruta algorithm. 
Principal component analysis (PCA) was used to reduce 
the dimensionality of the resulting PANoptosis gene 
clusters. Subsequently, a PANoptosis Immunity Index 
(PANII) score was assigned to each patient by calculat-
ing the score for each sample using the following for-
mula: Score = ∑PCA A - ∑PCA B [19]. Taking the median 
value, each patient was categorized into a high PANII 
group and a low PANII group.

Analysis of the immune microenvironment
Tumor purity, ESTIMATE score, immune cell score, and 
stroma score were calculated for each sample using the 
R package " ESTIMATE " [20]. The single sample gene 
set enrichment analysis (ssGSEA) algorithm was used to 
study the level of immune infiltration based on different 
immune cell types. Lymphocyte scores in pathology sec-
tions were graded using a semi-quantitative scoring sys-
tem (0–5) to describe tumor inflammation.

https://portal.gdc.cancer.gov/
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Immunotherapeutic response
The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm can be used to infer patient response to immu-
notherapy [21]. In addition we downloaded anti-PD-1 
and anti-CTLA4 IPS scoring data from ccRCC via the 
TCIA database (https://tcia.at/home) [22] to assess 
patient response to immune checkpoint inhibitors.

Molecular docking
Schrödinger software was used to screen small molecule 
compounds with high affinity to target proteins. Protein 
structures of target proteins (BAX-6EB6, CASP1-5MTK, 
CASP8-4PS1, and PYCARD-5H8O) were downloaded 
from the PDB database. Natural small molecule drugs 
were collected from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/). We set Use PROPKA pH 
to 7.0 and energy minimization of the protein structure, 
docking using OPLS-2005 force field, Precision to stan-
dard precision, and simulated the binding poses of BAX, 
CASP1, CASP8, and PYCARD with the small molecule 
drugs by the Glide module in Schrödinger software.

Immunohistological chemical staining
Human Protein Atlas Database (https://www.pro-
teinatlas.org/) [23] to obtain histological validation of 
BAX, CASP1, CASP8 and PYCARD at the protein level 
between renal clear cell carcinoma tissues and normal 
kidney tissues.

Cell culture
The human renal clear cell carcinoma cell lines 769-P 
and 786-O were purchased from the Shanghai Cell Bank 
of the Chinese Academy of Sciences and used. The cells 
were both cultured in medium containing 5% fetal bovine 
serum and at 37 °C with 5% carbon dioxide.

Cell counting kit-8 (CCK8) cell activity assay and plate 
cloning assay
CCK8 and plate cloning were used to determine cell pro-
liferative capacity. Cells were digested and resuspended 
into cell suspension and added to 96-well plates, CCK8 
solution was added and incubation was continued for 4 h 
until a distinct orange color appeared, and absorbance at 
450 nm was measured using an enzyme marker. Mono-
layer cultured cells in logarithmic growth phase were 
taken and blown into individual cell suspension by tryp-
sin digestion and then counted. The cell suspensions were 
inoculated in Petri dishes at the appropriate cell density, 
followed by incubation at 37 °C with 5% CO2 for 2 weeks. 
Pure methanol was added for fixation. The fixative was 
removed, stained with Giemsa’s staining solution, washed 
with running water to remove the staining solution, air-
dried, and photographed and counted using a fluores-
cence microscope.

Transwell and wound-healing experiments
Transwell and Wound-healing assays were performed to 
determine cell invasive capacity. Cells were starved for 
24 h and then digested and centrifuged to make cell sus-
pension. Culture medium was added to the lower cham-
ber of the 24-well plate, and the cell suspension was taken 
and added to the upper chamber and put into the incu-
bator for 24  h for fixation and staining, after which the 
cells were observed and counted. Cells were inoculated in 
6-well plates, scribed with a lance tip, and put into the 
incubator for 48 h for taking pictures.

Statistical analysis
Survival curves were plotted using the Kaplan-Meier 
method to compare the difference in survival between 
the two groups. Receiver Operation Characteristic (ROC) 
curves, and univariate and multivariate Cox analyses 
were used to assess the prognostic value of the character-
istics. Spearman correlation analysis was used to assess 
correlation. p-value ≤ 0.05 was considered statistically sig-
nificant. All statistical analyses were performed by R.

Results
Identifying PANoptosis patterns in three renal cell 
carcinoma subtypes
To investigate the PANoptosis patterns of three com-
mon renal cell carcinoma subtypes (KIRC, KIRP and 
KICH), we first performed functional enrichment analy-
sis on tumor and normal kidney tissues, respectively. 
It was found that for KIRC and KIRP, tumor cells were 
significantly enriched in Pyroptosis, Apoptosis and 
Necrotic cell death pathways compared to normal tissues 
(p < 0.05). However, for KICH, tumor tissues were signifi-
cantly enriched in the Apoptosis pathway (p < 0.05), while 
not significantly enriched in the Pyroptosis and Necrotic 
cell death pathways, it is therefore inferred that the PAN-
optosis process as well as the immune microenvironment 
is more active in KIRC and KIRP tumours. (Fig. 1A-C). 
We subsequently collected key regulatory genes for apop-
tosis, pyroptosis and necroptosis through GSEA gene 
set, KEGG, Hallmark and review articles and performed 
tandem linkage to serve as PANoptosis-related genes, 
including BAX, CASP1, CASP8 and PYCARD (Fig. 1D). 
Mapping the protein-protein interaction (PPI) network 
of the core PANoptosis-associated genes through the 
STRING website showed that BAX, CASP1, CASP8 and 
PYCARD were at the core of the whole network (Fig. 1E).

PANoptosis clustering analysis in three renal cell carcinoma 
subtypes
Based on the PANoptosis genes obtained from the 
above analyses, we performed consensus clustering of 
KIRC, KIRP and KICH, respectively, and classified KIRC 
and KIRP into 2 Clusters and KICH into 3 Clusters 

https://tcia.at/home
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
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(Fig.  2A-C). Kaplam-Meier survival analyses showed 
significant differences in survival rates among Clusters 
in the three renal cell carcinoma subtypes. There was a 
significant difference in survival. survival was worst in 
Cluster 2 in KIRC and KIRP, while Cluster 1 patients in 
KICH had the worst survival (Fig.  2D-F). We then ana-
lyzed the differences in the immune microenvironment 

between the Clusters, and the results showed that Clus-
ter 2 in KIRC and KIRP had significantly higher immune 
scores and stromal scores than Cluster 1, whereas Cluster 
1 in KICH had significantly higher immune scores and 
stromal scores than the other two Clusters (Fig.  2G-I). 
The infiltration abundance of immune cells was assessed 
by the CIBERSORT algorithm, and CD8 T cells were 

Fig. 1  PANoptosis pattern analysis of three renal cell carcinoma subtypes. KIRC (A), KIRP (B) and KICH (C) Tumor tissues and normal renal tissues were 
enriched in Pyroptosis, Apoptosis and Necrotic cell death pathway enrichment results. (D) Crosstalk of key regulatory genes for Apoptosis, Pyroptosis and 
Necroptosis. (E) PPI network of PANoptosis core-associated genes
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significantly different in the three renal cell carcinoma 
Clusters, with higher levels of immune infiltration for 
Cluster 2 than for Cluster 1 in KIRC and KIRP, and the 
highest level of immune infiltration for Cluster 1 in KICH 
(Fig. 2J-L).

Single-cell sequencing data analysis
To further investigate how PANoptosis-related genes are 
expressed in various cell types in the immune microen-
vironment of renal cell carcinoma, we analyzed single-
cell sequencing data from mixed renal cell carcinoma 
(KIPAN), KIRC and KICH. Firstly, the dimensionality of 

the single-cell dataset is reduced by the UMAP method 
thereby illustrating the distribution of the single-cell 
sequencing profiles, where the size of the dots in the 
picture indicates the expression of the genes in the cell, 
and the color shades indicate the level of expression of 
the genes. In KIRC, BAX was predominantly expressed 
in malignant tumor cells, CD8 T cells, NK cells, and 
monocytes, CASP1 was predominantly expressed 
in monocytes and macrophages, CASP8 was highly 
expressed predominantly in CD8 T cells and NK cells, 
and PYCARD was predominantly expressed in mono-
cytes and macrophages (Figure S1A-E). In KICH, BAX 

Fig. 2  Cluster analysis of PANoptosis patterns. (A-C) Unsupervised cluster analysis of KIRC, KIRP and KICH. (D-F) Kaplan-Meier survival curves between 
different Clusters in KIRC, KIRP and KICH. (G-I) Differences in immunity scores and stromal scores between Clusters in KIRC, KIRP and KICH. (J-L) Differences 
in infiltration abundance of immune cells between different Clusters in KIRC, KIRP and KICH. Note * p < 0.05, **p < 0.01, ***p < 0.001
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was predominantly expressed in Malignant, Endothelial, 
Pericytes, and monocyte macrophages, and PYCARD 
was predominantly expressed in monocyte macrophages 
(Figure S1F) In addition, we also plotted a heatmap of 
the expression of BAX, CASP1, CASP8, and PYCARD 
in the single-cell dataset (Figure S2). These results indi-
cate that BAX, CASP1, CASP8 and PYCARD, which 
construct PANII, are all produced by various immune 
cells expressed in the tumour immune microenviron-
ment and play a role in the renal cell carcinoma tumour 
microenvironment.

Construction of the PANoptosis immunity index (PANII) 
and immune characterization of different renal cell 
carcinoma subtypes
To further characterize the immune microenvironment 
of three common renal cell carcinoma subtypes (KIRC, 
KIRP and KICH) based on PANoptosis, we constructed 
PANoptosis by principal component analysis (PCA) 
based on the PANoptosis genes obtained from the above 
analysis, including BAX, CASP1, CASP8, and PYCARD 
characterization and derived a new index, the PANopto-
sis immunity index (PANII). The results of enrichment 
analysis by GSEA showed that the high PANII group 
was significantly enriched in Pyroptosis, Apoptosis and 
Necrotic cell death pathways in KIRC, KIRP and KICH, 
indicating that the PANoptosis signaling pathway was 
significantly active in the high PANII group compared to 
the low PANII group (Fig. 3A- C).

We analyzed the immune microenvironment charac-
teristics of KIRC, KIRP, and KICH by PANII. Compared 
with the low PANII group, the high PANII group had 
lower TumorPurity, while ImmuneScore, StromalScore 
and ESTIMATEScore were all increased (Fig. 3D-F). We 
also analyzed the immune characteristics of different 
PANII groups by immune cells and immune functions, 
and the results showed that most of the immune cells 
and immune functions were significantly higher in the 
high PANII group than in the low PANII group (Fig. 3G-
I). In addition, we further confirmed the above immune 
cell infiltration characteristics by pathological sections. 
In KIRC, the level of immune cell infiltration was higher 
in the high PANII group (TCGA-BP-4352) than in the 
low PANII group (TCGA-B4-5832) (Fig. 3J). In KIRP, the 
level of immune cell infiltration was higher in the high 
PANII group (TCGA-Q2-A5QZ) than in the low PANII 
group (TCGA-BQ-5876) (Fig. 3K). In KICH, the level of 
immune cell infiltration was higher in the high PANII 
group (TCGA-KO-8405) than in the low PANII group 
(TCGA-KN-8428) (Fig. 3L).

Association of PANII with the efficacy of immunotherapy 
for subtypes of renal cell carcinoma
We next analyzed the association between PANII and 
immune checkpoints, and found that in KIRC, KIRP and 
KICH, patients in the high PANII group significantly 
over-expressed common immune checkpoints, which, 
combined with the above analysis of the immune micro-
environment, suggests that in the three renal cell carci-
noma subtypes mentioned above, patients in the high 
PANII group exhibited a “hot “tumor microenviron-
ment, i.e., they might be more sensitive to immunother-
apy (Fig. 4A-C). Tumor mutational load (TMB) refers to 
the number of mutations in tumor cells; the higher the 
TMB, the more effective the immunotherapy [24]. Mic-
rosatellite instability (MSI) is a highly mutated pheno-
type, and MSI is associated with increased neoantigenic 
load in tumors, thus making them sensitive to ICI treat-
ment [25]. By analyzing the association of TMB, MSI and 
PANII, we found that in KIRC and KICH, TMB and MSI 
showed a significant positive correlation with PANII and 
were significantly higher in patients in the high PANII 
group than in the low PANII group. However, in KIRP, 
PANII showed a significant positive correlation with 
MSI and no significant correlation with TMB (Fig. 4D-I). 
Patients with lower TIDE scores were more likely to ben-
efit from immunotherapy [21], and through the correla-
tion analysis of PANII with TIDE, we found that in KIRC, 
KIRP, and KICH, the high PANII group had significantly 
lower TIDE score and Exclusion were significantly lower 
than those of the low PMGI group, and it can be inferred 
that the high PMGI group responded better to immu-
notherapy (Fig.  4J-L). Immunogenicity was assessed by 
immunophenotypic core (IPS) scoring to predict patient 
response to immune checkpoint blockade (anti-PD1 and/
or anti-CTLA4), with higher IPS scores indicating better 
predicted immunotherapy outcomes.

We found that in KIRC, KIRP, and KICH, patients in 
the high PANII group had significantly higher scores 
for anti-PD1/CTLA4 immunotherapy than those in the 
low PANII group (Fig. 4M-O). Subsequent validation of 
VMRI for predicting immunotherapy efficacy by exter-
nal immunotherapy datasets showed that patients in the 
immunotherapy-responsive group in the Imvigor210 
(anti-PD-L1) and Kim (anti-PD-1) cohorts had signifi-
cantly higher PANII values than patients in the non-
responsive group (Figure S3 A-B). All these results 
indicated that PANII could better predict the immu-
notherapy effect in three common renal cellcarcinoma 
subtypes (KIRC, KIRP, and KICH), and the high PANII 
group responded better to immunotherapy.

Molecular docking of core target proteins
Molecular docking is a computational algorithm for 
structure-based compound screening, which is a 
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combination of core target and structure-based approach 
to find the feasibility of a drug candidate. We obtained 
protein structures of BAX (6EB6), CASP1 (5MTK), 
CASP8 (4PS1) and PYCARD (5H8O) from PDB data-
base for molecular docking with natural small molecule 
compounds. The top four small molecules (Allantoic 
Acid, Chalcomoracin, Nadide, and Triphosphopyri-
dine Nucleotide) with the highest binding affinity to the 

BAX binding pocket (Fig. 5A-D), the top four small mol-
ecules with the highest binding affinity to the CASP1 
binding pocket (Biliverdin, Epicatechin, Epigallocat-
echin, and Glutathione) (Fig.  5E-H), the top four small 
molecules with the highest binding pocket binding to 
CASP8 (Abrine, Citrulline, Indicaxanthin, and Stachy-
ose) (Fig. 5I-L), and the top four small molecules with the 
PYCARD top four small molecules (Heliosin, Laminaran, 

Fig. 3  Enrichment analysis and immunological characterization of different PANII groups. GSEA analysis of high PANII groups in KIRC (A), KIRP (B) and 
KICH (C). Differences in TumorPurity, ImmuneScore, StromalScore and ESTIMATEScore between high/low PANII groups in KIRC (D), KIRP (E) and KICH (F). 
Differences in immune cells and immune function between patients in the high/low PANII groups in KIRC (G), KIRP (H), and KICH (I). Pathologic sections 
showing the level of immune cell infiltration in the high/low PANII groups in KIRC (J), KIRP (K) and KICH (L). Note * p < 0.05, **p < 0.01, ***p < 0.001
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Nadide, and Oroxin B) with the highest binding pockets 
(Fig. 5M-P). For example, Allantoic Acid forms hydrogen 
bonds with BAX amino acid residues Gln-28, Gln-32, 
Asp-33, Gln-52, and Lys-57, with Gln-28, Asp-33, and 
Gln-52 acting as hydrogen bond acceptors and Gln-32 
and Lys-57 acting as hydrogen bond donors.

Immunohistological chemical staining
We first compared the differences in protein expression 
of BAX, CASP1, CASP8 and PYCARD in renal clear 
cells by CPTAC database, and the results showed that 
the protein levels of BAX, CASP1, CASP8 and PYCARD 
were significantly higher than those in normal tissues in 
tumor cells (Figure S4A). Later we also verified the above 
results by immunohistochemical staining results of BAX, 
CASP1, CASP8 and PYCARD in renal normal tissues and 
renal clear cell carcinoma (Figure S4B).

Fig. 4  Association of PANII with immunotherapy outcome. (A-C) Differences in common immune checkpoint expression between patients in high/low 
PANII groups in KIRC, KIRP, and KICH. Differences in TMB levels (D-F) and MSI levels (G-I) between patients in high/low PANII groups in KIRC, KIRP, and KICH. 
(J-L) Differences in TIDE and Exclusion levels between patients in high/low PANII groups in KIRC, KIRP and KICH. (M-O) IPS scores for anti-PD1(-)CTLA4(-), 
anti-PD1(+)CTLA4(-), anti-PD1(-)CTLA4(+), and anti-PD1(+)CTLA4(+) blocker ground IPS scores for the high and low PANII groups in KIRC, KIRP, and KICH
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Knockdown of PYCARD inhibits the proliferation and 
migration of renal clear cell carcinoma cells
We designed siRNA for PYCARD to silence PYCARD 
expression in human renal clear cell carcinoma cell lines 

769-P and 786-O cells to investigate the role of PYCARD 
in renal clear cell carcinoma. The silencing effect of 
PYCARD was detected by QPCR, and si-PYCARD 
could effectively knock down the expression of PYCARD 

Fig. 5  Molecular docking. Screening of candidate small molecules for target proteins using molecular docking. The figure shows the docking poses of 
the BAX active pocket with Allantoic Acid (A), Chalcomoracin (B), Nadide (C), and Triphosphopyridine Nucleotide (D). CASP1 active pocket with Biliverdin 
(E), Epicatechin ( F), Epigallocatechin (G), and Glutathione (H). docking poses of CASP8 active pocket with Abrine (I), Citrulline (J), Indicaxanthin (K), and 
Stachyose (L). docking poses of PYCARD active pocket with Heliosin (M), Laminaran (N), Nadide (O) and Oroxin B (P) in docking poses
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(Fig.  6A-B). We further silenced PYCARD in human 
renal clear cell carcinoma cell lines 769-P and 786-O cells 
to investigate the role of PYCARD in renal clear cell car-
cinoma. The results of CCK8 and plate cloning experi-
ments showed that the proliferative ability of 769-P and 
786-O cells in the si-PYCARD group was significantly 
lower than that in the NC group (Fig. 6C-F). The results 
of Transwell assay showed that the cell migration ability 
of 769-P and 786-O cells was significantly reduced after 
knocking down PYCARD (Fig.  6G-H). Wound-healing 
assay showed that the migration ability of 769-P and 
786-O cells in the si-PYCARD group was significantly 
lower than that of the NC group after 48 h (Fig. 6I-J). The 
above results indicated that the proliferation and migra-
tion of renal clear cell carcinoma cells were inhibited 
after knockdown of PYCARD.

Discussion
An increasing number of studies have shown that cell 
death is an important anti-cancer defense mechanism 
and therapeutic target. A dynamic network of molecular 
interactions exists for tumor cells to escape the critical 
requirement for malignant cell survival and progression 
when cell death is evaded, in which PANoptosis is a com-
plex mode of cell death with interconnections between 
cell deaths. Therefore, exploring the mechanisms and-
functions of cell death, especially the forms of PANopto-
sis and the regulatory mechanisms during cell death, will 
provide some insights for future cancer therapy [26–28]. 
In this study, we first analyzed three common renal cell 
carcinoma subtypes (KIRC, KIRP, and KICH) for the 
occurrence of PANoptosis in their tumor microenviron-
ment and constructed a PANoptosis signature based on 

Fig. 6  Knockdown of PYCARD inhibits renal clear cell carcinoma cell proliferation and migration. (A-B) QPCR verified the mRNA expression level of 
PYCARD in 769-P and 786-O cells after transfection with siRNA. CCK8 experiments(C-D), Plate cloning assay (E-F), Transwell cell migration ability (G-H) 
and Wound-healing assay (I-J) of normal renal tissues and 769-P and 786-O cells after transfection with si-PYCARD. Note * p < 0.05, **p < 0.01, ***p < 0.001
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PANoptosis-related genes (BAX, CASP1, CASP8, and 
PYCARD) and derived a new metric, the The PANoptosis 
Immunity Index (PANII) can reflect the characteristics 
of PANoptosis in KIRC, KIRP and KICH, and among the 
three renal cell carcinoma subtypes mentioned above, the 
group with high PANII showed a “hot” tumor microen-
vironment, i.e., it was more effective for immunotherapy. 
Finally, we identified natural small molecules that can 
target PANoptosis-related target proteins by molecular 
docking and determined the role of PYCARD in renal 
clear cell carcinoma by in vitro functional assay.

The survival of tumor cells is closely related to the 
fact that the tumor microenvironment in which they 
reside helps them evade immune surveillance and drug 
interference [29]. We analyzed three common renal cell 
carcinoma subtypes (KIRC, KIRP, and KICH) and PAN-
optosis characteristics by ESTIMATE algorithm, ssGSEA 
algorithm, and pathological sections, respectively, and 
found that the high PANII group was highly correlated 
with immune cell infiltration and immune function. We 
then compared the differences in the expression levels 
of common immune checkpoints between the high and 
low PANII groups and showed that most were highly 
expressed in the PANII group. In addition, we also ana-
lyzed the association of TMB and MSI with PANII, 
suggesting that patients in the high PANII group with 
“hot” tumors in KIRC, KIRP, and KICH may be more 
effective for immunotherapy. Then we also showed that 
patients in the high PANII group were more effective 
for anti-PD-L1, anti-PD-1 and anti-CTLA-4 immuno-
therapy by immunotherapy response algorithms (TIDE 
and IPS). Finally, the results were further validated by 
immunotherapy datasets Imvigor210 (anti-PD-L1) and 
Kim cohort (anti-PD-1). The above results indicate that 
PANII can effectively evaluate the immunotherapy effects 
of three common renal cell carcinoma subtypes (KIRC, 
KIRP and KICH), which is important for the future preci-
sion treatment of renal cell carcinoma patients.

The PANII index was constructed by the incorpora-
tion of four PANoptosis genes, including BAX, CASP1, 
CASP8, and PYCARD. The proteins encoded by BAX 
belong to the BCL2 family of proteins, and members of 
the family play important roles as anti-apoptotic or pro-
apoptotic factors involved in programmed cell death, and 
furthermore, it has been reported that the association 
between BAX and BCL2 is a key mechanism in deter-
mining the key mechanism for cell survival after apop-
totic stimuli [30]. CASP1 and CASP8 encode proteins 
that are also members of the cysteine-aspartate protease 
(caspase) family, and sequential activation of caspases 
plays an important role in the execution phase of apop-
tosis. caspases exist as inactive zymogens on conserved 
protein hydrolytic processing on conserved aspartic acid 
residues, generating two subunits of size that dimerize to 

form the active enzyme, a process that has been shown 
to play an important role in the induction of apoptosis, 
especially Caspase-8  A key protein of cross-talk signal 
way in “PANoptosis " in cancer [8, 31–33]. PYCARD 
functions as a key mediator of apoptosis and inflam-
mation and promotes cystatinase-mediated apoptosis, 
mainly involving cystatinase-8 and cystatinase-9, possibly 
in a cell type-specific manner [34, 35]. PYCARD is also 
involved in the transcriptional activation of cytokines 
and chemokines independent of inflammatory vesicles; 
this function may involve AP-1, NF-κB, MAPK and cas-
pase-8 signaling pathways [36]. This study found that 
knockdown of PYCARD significantly inhibited the prolif-
eration and invasion of renal clear cell carcinoma.

As another application of PANII efficacy prediction, we 
demonstrate the feasibility of a structure-based approach 
to find small molecule drug candidates that can target 
core proteins. Chalcomoracin, which has a strong affin-
ity for BAX, has been shown to inhibit cell proliferation 
through endoplasmic reticulum stress-mediated parapto-
sis and to increase the sensitivity of non-small cell lung 
cancer to radiotherapy [37]. Of the top four small mol-
ecule drugs with the highest affinity for CASP1, Epicat-
echin has a significant role in the regulation of NADPH 
oxidase-dependent oxidant production and energy 
homeostasis [38]. Abrine has the highest affinity for the 
CASP8 docking pocket and has been shown to inhibit 
apoptosis of osteoblasts in osteoarthritis through the 
PIM2/VEGF signaling pathway. In addition, Abrine can 
target IDO1 to inhibit tumor cell immune escape and 
enhance anti-PD-1 immunotherapy in hepatocellular 
carcinoma [39, 40]. Laminaran has a high affinity for 
PYCARD and has been reported to act as a radiosensi-
tizer and protective agent in melanoma [41].

Although our constructed PCDI can closely reflect the 
prognosis of renal clear cell carcinoma as well as predict 
drug sensitivity and treatment efficacy, certain limita-
tions still exist in this study. First, the data for our analy-
sis were obtained from public databases, which may have 
led to some case selection bias in case selection. Second, 
although we collected several external datasets to vali-
date the conclusions obtained in this study, it is still nec-
essary to collect a large amount of clinical case data for 
evaluation to further validate the accuracy of our find-
ings. In addition, we only found natural small molecule 
drugs that can target BAX, CASP1, CASP8 and PYCARD 
through molecular docking, but no experimental valida-
tion was performed. Finally, further in vivo and in vitro 
experiments are needed to explore the specific mecha-
nism and function of PANoptosis genes in renal cell 
carcinoma.
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Conclusion
In summary, through the comprehensive analysis of 
PANoptosis characteristics of three common renal cell 
carcinoma subtypes (KIRC, KIRP and KICH), we con-
clude that PANII can effectively reflect the immune 
microenvironmental status of KIRC, KIRP and KICH 
and predict the immunotherapeutic response of renal cell 
carcinoma patients. In addition, knockdown of PYCARD 
inhibited the progression of renal clear cell carcinoma 
cells, suggesting that PYCARD may be a potential target 
for the treatment of renal clear cell carcinoma. In an era 
when immunotherapy holds great promise for cancer 
treatment, PANII provides guidance for clinical diagnosis 
and individualized comprehensive treatment of renal cell 
carcinoma.
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