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Abstract 

Background Accurate assessment of axillary status after neoadjuvant therapy for breast cancer patients with axil‑
lary lymph node metastasis is important for the selection of appropriate subsequent axillary treatment decisions. Our 
objectives were to accurately predict whether the breast cancer patients with axillary lymph node metastases could 
achieve axillary pathological complete response (pCR).

Methods We collected imaging data to extract longitudinal CT image features before and after neoadjuvant chemo‑
therapy (NAC), analyzed the correlation between radiomics and clinicopathological features, and developed models 
to predict whether patients with axillary lymph node metastasis can achieve axillary pCR after NAC. The clinical utility 
of the models was determined via decision curve analysis (DCA). Subgroup analyses were also performed. Then, 
a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was vali‑
dated using the calibration plots.

Results A total of 549 breast cancer patients with metastasized axillary lymph nodes were enrolled in this study. 
42 independent radiomics features were selected from LASSO regression to construct a logistic regression model 
with clinicopathological features (LR radiomics‑clinical combined model). The AUC of the LR radiomics‑clinical com‑
bined model prediction performance was 0.861 in the training set and 0.891 in the testing set. For the HR + /HER2 − , 
HER2 + , and Triple negative subtype, the LR radiomics‑clinical combined model yields the best prediction AUCs 
of 0.756, 0.812, and 0.928 in training sets, and AUCs of 0.757, 0.777 and 0.838 in testing sets, respectively.

Conclusions The combination of radiomics features and clinicopathological characteristics can effectively predict 
axillary pCR status in NAC breast cancer patients.

Keywords Breast cancer, Axillary lymph node, Radiomics, Computed tomography, Neoadjuvant chemotherapy, 
Pathological complete response
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Introduction
Breast cancer patients with axillary lymph node metas-
tasis often need neoadjuvant chemotherapy (NAC). For 
NAC patients, pCR means no residual invasive carci-
noma in either the primary breast tumor lesion or the 
positive axillary lymph node. Previous studies showed 
that approximately 20–40% of NAC patients with axil-
lary lymph node metastasis could achieve axillary pCR 
[1], with higher proportions observed in triple-negative 
and HER2-positive patients [2]. Achieving axillary pCR 
holds greater significance compared to the primary 
lesion for evaluating the patient’s prognosis [3]. How-
ever, NAC patients with axillary lymph node metastasis 
generally require direct axillary lymph node dissection 
(ALND) after completing NAC [4, 5]. This procedure 
can lead to complications such as impaired upper limb 
function, numbness, pain, and even lymphedema [6–8]. 
Therefore, for patients who might achieve axillary pCR 
through NAC, the potential benefits of ALND may be 
outweighed by the risk of surgical complications. These 
patients should be considered for surgery de-escalation 
to avoid these complications [9]. The key issue lies in how 
to determine axillary pCR before surgery. If a noninvasive 
approach can accurately assess the axillary lymph node 
status before surgery, axillary pCR patients could even be 
exempted from axillary surgery. It may hold significant 
decision-making implications for surgeons.

Traditional prediction models for axillary pCR often 
rely solely on clinical and pathological features and their 
performances are often unsatisfactory [10, 11]. One pos-
sible reason is that these models lacked longitudinal 
information on changes in axillary lymph node status 
after NAC. Additionally, even if post-NAC information 
was included, there may still be a disparity between the 
predicted model and clinical application if the model 
does not encompass the entire axillary situation [12, 13]. 
These studies only included cN1 to cN2 stage patients, 
without considering information about infraclavicular 
lymph node metastasis. They were limited to providing 
a more accurate and comprehensive description of the 
axilla. If data encompassing the entire axillary region can 
be obtained, the prediction model performance could be 
significantly improved.

As an interdisciplinary field combining medical imag-
ing and computer vision, radiomics is gradually playing 
a significant role in assisting clinical diagnosis and treat-
ment strategies. It also has been used to assess axillary 
lymph node status in breast cancer patients [14–16]. 
However, these studies still only focused on one positive 
lymph node as a target rather than the whole axilla.

In this retrospective study, we considered the entire 
axilla as the region of interest (ROI) for radiomics anal-
ysis and incorporated both pre-NAC and post-NAC 

computed tomography (CT) images to add longitudinal 
information. We aimed to assess the feasibility of predict-
ing axillary pCR after NAC using radiomics with clinical 
and pathological information.

Materials and methods
Patient enrollment
This study initially included 720 breast cancer patients 
who underwent NAC followed by surgery at Henan Can-
cer Hospital between January 2020 and September 2022. 
All patients had confirmed axillary lymph node (includ-
ing infraclavicular lymph nodes) metastasis through 
either core needle biopsy or pathological consultation 
before NAC. Enrollment and exclusion criteria for analy-
sis is shown in Fig. 1. The required imaging data and clin-
ical pathological information were obtained through the 
Picture Archiving and Communication System (PACS) 
and Electronic Medical Records system. This retrospec-
tive study obtained approval from the institutional ethics 
review board (No. 2017407). Informed consent had been 
obtained from each patient at the time of the examina-
tion for imaging and clinical data.

All included patients underwent pre-NAC clinical 
staging according to the eighth edition American Joint 
Committee on Cancer (AJCC) breast cancer staging 
system. Expression of ER, PR, HER2, and KI67 index 
were detected by immunohistochemistry. When HER2 
expression was 2 + , HER2 gene amplification was deter-
mined by fluorescence in situ hybridization (FISH). Then 
patients were classified into Luminal A/ B (HER2 -), 
Luminal B (HER2 +), HER2 enriched, and Triple Nega-
tive subtypes. All patients underwent levels I-II ALND, 
and N3 (infraclavicular lymph node metastasis) patients 
also underwent additional level III dissection. The dis-
sected axillary lymph nodes were analyzed by patholo-
gists, and the absence of invasive cancer residue in all 
lymph nodes was considered axillary pCR; otherwise, it 
was considered non-pCR.

Treatments
Patients with different molecular subtypes received cor-
responding NAC regimens. For HER2 positive patients, 
a dual-targeted chemotherapy regimen containing taxa-
nes, trastuzumab, and pertuzumab was administered. 
For luminal subtype (HER2 negative) and triple negative 
patients, chemotherapy regimens combining taxane with 
anthracycline or with platinum drugs were administered. 
Treatment changes due to progressive disease (PD) dur-
ing NAC were considered regimen change, while simple 
deletion of chemotherapy drugs or cycles were still con-
sidered the original regimens.
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CT scan and image processing
Patients should undergo routine chest CT scans before 
and after NAC. All CT scans were performed following 
a standardized protocol on one of the three CT systems: 
Brilliance iCT scanner (Philips Healthcare), uCT 760 
(United Imaging), and SOMATOM Perspective (Siemens 
Healthineers). The main scanning parameters were as fol-
lows: tube voltage = 120 kV, automatic tube current mod-
ulation (30–70 mAs), pitch = 1.0–1.5, matrix = 512 × 512, 
and field of view 350 mm × 350 mm. The slice thickness 
was from 0.625  mm to 1.25  mm. The acquired medias-
tinal window CT plain scan images were in DICOM for-
mat series images. The dicom2nifti library (python 3.7) 
was used to batch convert DICOM series images into nii.
gz files with the image resampling unified to 1 mm, 1 mm, 
and 1.25  mm (thickness). Then, two senior radiologists 

used 3D slicer software (5.0.2) to draw the entire axilla 
of the affected side as ROI and saved it as a MASK file. 
Then, the PyRadiomics module was used to batch-extract 
radiomics features from nii.gz files and their matched 
MASK files [17]. To obtain more derived features, we 
also used wavelet, gradient, and Laplacian of Gaussian 
(LoG) filters. In particular, as an edge enhancement fil-
ter, the LoG filter can highlight different image textures 
by adjusting the parameter Sigma. The roughness of the 
image texture is inversely proportional to the value of 
Sigma. In this study, the parameter range of Sigma was 
set from 2 to 8 to obtain texture features with different 
levels of fineness (Sigma = [2,3,4,5,6,7,8]). 3190 radiomics 
features can be obtained from each patient undergoing 
two CT scans. Inter-observer and intra-observer consist-
ency was performed by analyzing all radiomics features 

Fig. 1 Patient recruitment process and study workflow. *:N3 only includes infraclavicular lymph node metastasis
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extracted based on intra and interclass correlation coef-
ficients (ICCs). ICC > 0.8 suggested good agreement.

Statistics
Patients were divided into a training set and a testing 
set at a ratio of 7:3. Then they were divided again into 
two groups according to whether they obtained axillary 
pCR. We employed R 4.2.1 and SPSS 26.0 (IBM, USA) 
for statistics. Continuous variables are described as the 
mean ± SD. The comparison between the two groups 
was performed using χ2 test for categorical variables and 
independent t-test or Mann–Whitney U test for con-
tinuous variables. The obtained radiomics features were 
screened for significantly different features through Stu-
dent’s t-test and least absolute shrinkage and selection 
operator (LASSO) regression algorithm [18]. Feature 
importance was subsequently evaluated using the explain 
function (DALEX library, R software 4.2.1). The corre-
lation between radiomics features and baseline clinical 
features was analyzed. Then, we built a pure radiom-
ics features model and developed a possible prediction 
score (Radiomics score) using this algorithm. Radiomics 
score was combined with these clinical features to build 
an integrated clinical-radiomics model through logis-
tic regression (LR radiomics-clinical combined model). 
Clinical features model was also constructed by logis-
tic regression. Receiver operating characteristic (ROC) 
curves were drawn for each model. Bilateral P val-
ues < 0.05 were regarded as significant. Subtype analyses 
were the same as above. Finally, a nomogram was created 
using the rms library (R software). Calibration curve were 
also generated to examine the performance of the nomo-
gram. The study workflow is detailed in Fig. 2.

Results
Baseline clinicopathological characteristics
A total of 549 cases were obtained after screening, 
including 290 axillary pCR patients and 259 non-pCR 
patients. Then these patients were randomly divided into 
training set and testing data in the ratio of 7:3 (see Fig. 1). 
Table  1 shows the clinicopathological characteristics of 
the patients in the training set (n = 385) and the testing 
set (n = 164). There were significant differences between 
the two groups, such as clinical N stage, molecular sub-
type, IHC markers, and treatment regimen, while there 
were no significant differences in age, height, weight, or 
primary tumor T stage.

Correlation analysis of radiomics and clinicopathological 
features
Then, from the 3190 obtained features, we found that 
the correlation coefficients of 33 radiomics features with 
clinicopathological features were greater than absolute 

correlations of 0.35. These features had the strongest 
correlation with the clinical N stage and were all pre-
NAC features (Fig.  3A). Then, these 3190 features were 
screened through t-test and LASSO regression. A total 
of 42 radiomics features were obtained and significantly 
related to axillary pCR (Fig.  3B), including 21 pre-NAC 
features and 21 post-NAC features. Pre-NAC features 
were mainly wavelet (n = 10) and LoG (n = 9) filter-
derived features; post-NAC features were mainly LoG 
(n = 18) filter-derived features. These 42 features had no 
intersection with the previous 33 features that were sig-
nificantly related to the clinical N stage. Their correlation 
with baseline clinical features was much lower (generally 
between -0.3 and 0.3, Fig. 3C).

Performance of clinical and radiomics models
Subsequently, using different machine learning meth-
ods, we established 3 models to predict axillary pCR and 
compared their performance. Through logistic regression 
to build a clinical features model, the AUC was 0.837 in 
the training set and 0.716 in the testing set. The LASSO 
regression model from 42 radiomics features had an AUC 
of 0.778 in the training set and 0.734 in the testing set. 
However, the integrated LR radiomics-clinical combined 
model, which combined radiomics with clinical features, 
performed much better (training set AUC: 0.861, test-
ing set AUC: 0.891) than these two single-modal models 
(Fig.  4A and B). The DCA also showed that the thresh-
old probability of radiomics-clinical combined model 
was greater than 10% in the training set (Fig.  4C) and 
testing set (Fig. 4D). Feature importance of the radiom-
ics LASSO model was analyzed. The vast majority of the 
features were achieved through the Laplacian of Gauss-
ian (LoG) filter (Fig. 4E).

Model performance in subtypes
In subtypes analysis, as Luminal B (HER2 positive) and 
HER2 enriched subtype patients generally accepted the 
same NAC treatment, these two subtypes were pooled 
as a HER2 positive subtype for analysis. Then, for each 
subtype, we also developed 3 models to predict axillary 
pCR and compared their performance to determine the 
most optimal model. In the training sets, three radiom-
ics-clinical combined models yielded AUCs of 0.756, 
0.812, and 0.928 in Luminal A/B (HER2 negative), 
HER2 positive, and Triple negative subtype, respec-
tively (Fig. 5A). Figure 5B showed all the feature impor-
tance of the selected radiomics features in Luminal A/B 
(HER2 negative), HER2 positive and Triple negative 
subtype radiomics models. In the testing sets (Fig. 5C), 
the radiomics-clinical combined models (AUCs: 0.757 
[Luminal A/B (HER2 negative)], 0.777 [HER2 posi-
tive] and 0.838 [Triple negative]) also performed better 
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Fig. 2 The study workflow of necessary steps in predicting axillary pCR after NAC. The entire axilla was drawed as ROI (blue dashed circle)
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than the clinical models (AUCs: 0.600 [Luminal A/B 
(HER2 negative)], 0.736 [HER2 positive] and 0.569 [Tri-
ple negative]), and the radiomics models (AUCs: 0.702 
[Luminal A/B (HER2 negative)], 0.657 [HER2 positive] 
and 0.686 [Triple negative]). To evaluate the clinical 
benefit value, we used decision curve analysis to iden-
tify the model score interval that could benefit patients 
from model suggestions. For the Luminal A/B (HER2 
negative) subtype and HER2 positive subtype, when the 
threshold was set more than 0.08 (Luminal A/B (HER2 
negative)) and 0.13 (HER2 positive), their clinical net 
benefits were higher than 0 in the testing sets. How-
ever, for the Triple negative subtype, only the threshold 
was set at the interval of 0.04–0.56, and the clinical net 
benefits were higher than 0 (Fig. 5D).

Nomogram for prediction
With the results above, we developed an individualized 
nomogram using the LR radiomics-clinical combined 
model’s risk features for visualization. Then, the risk 
probability of axillary non-pCR for each patient could be 
calculated directly according to the nomogram. The cali-
bration curves demonstrated a good agreement between 
the prediction probability by the nomogram and the 
actual observation in both the training and testing sets 
(see Fig. 6).

Discussion
Accurately predicting axillary pCR is of great significance 
for breast cancer patients undergoing NAC. Our study 
found that for patients who already had axillary lymph 
node metastasis before NAC, using longitudinal radi-
omics features from pre-NAC and post-NAC CT scans, 

Table 1 Baseline characteristics of the axillary pCR and non‑pCR groups

a independent T test
b χ2 test
c Mann-Whitney U test

Clinical features Groups Training Set P Testing Set P

pCR (N = 195) Non-pCR(N = 190) pCR (N = 95) Non-pCR(N = 69)

Age (years)a 49.7(± 9.2) 48.8(± 9.6) 0.350 50.1(± 9.4) 47.0(± 10.9) 0.055

Height (cm)a 159.7(± 12.0) 159.5(± 7.2) 0.822 159.6(± 5.1) 160.2(± 4.2) 0.396

Weight (kg)a 63.1(± 9.1) 64.3(± 11.4) 0.236 61.9(± 9.1) 62.2(± 9.5) 0.798

T  stageb 0 1 1 0.818 0 0 0.770

1 13 15 5 4

2 151 138 76 51

3 22 24 11 10

4 8 12 3 4

N  stageb 1 106 96 0.301 59 32 0.011

2 38 31 21 12

3 51 63 15 25

Subtypeb Luminal A/ B (HER2 ‑) 40 109  < 0.001 9 39  < 0.001

Luminal B (HER2 +) 75 48 31 16

HER2 enriched 62 16 39 6

Triple Negative 18 17 16 8

ER  expressionc 5 (0, 80) 90 (30, 95)  < 0.001 0 (0, 20) 90 (10, 95)  < 0.001

PR  expressionc 0 (0, 20) 35 (1, 80)  < 0.001 0 (0, 7.5) 40 (0, 85)  < 0.001

Ki67  indexc 50 (40, 70) 40 (30, 60)  < 0.001 50 (40, 70) 40 (30, 70) 0.151

HER2  statusb 0 11 20  < 0.001 6 10  < 0.001

1 + 27 34 8 11

2 + (FISH‑) 20 72 11 26

2 + (FISH +) 19 32 13 13

3 + 118 32 57 9

Treatmentb anthracycline and taxane 48 120  < 0.001 18 43  < 0.001

dual‑targeted drug 137 62 70 21

taxane and platinum 10 4 6 3

regimen change 0 4 1 2
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Fig. 3 Correlation analysis before and after feature screening. A The relation between radiomics features and clinicopathological features 
before LASSO regression screening. B Feature coefficients corresponding to the value of parameter λ. The most valuable radiomics features 
were screened out by tuning λ using LASSO regression with 10‑fold cross‑validation. C The relation between screened radiomics features 
and clinicopathological features
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combined with clinical and pathological information, 
could have a good predictive effect on the patient’s axil-
lary lymph node status.

In the past, the evaluation of axillary lymph node sta-
tus after NAC always relied solely on the patient’s clini-
cal pathological characteristics [10, 11, 19, 20]. Our study 
also showed that axillary pCR was related to the N stage 
before NAC, molecular subtype, ER/HER2 expression, 
and treatment regimen. However, consistent with previ-
ous reports, our logistic regression model built on base-
line features cannot satisfactorily predict axillary status in 
the testing set (AUC = 0.716). The reason is that baseline 

features lack longitudinal information with NAC. In 
addition, baseline clinicopathological features often 
come from breast primary lesions, which were different 
from metastatic axillary lymph nodes [21]. Therefore, a 
model based solely on pre-NAC baseline features can-
not accurately assess the post-NAC axillary lymph node 
status. Luckily, during the patient’s NAC process, a large 
amount of imaging scan data will inevitably be gener-
ated for treatment evaluation. If imaging features related 
to axillary lymph nodes can be extracted from these 
data, it will further help to improve the accuracy of the 
prediction model. Indeed, previous studies showed that 

Fig. 4 ROC curves of different models and radiomics feature importance . A Predictive performances of the different models in the training set. B 
Predictive performances of the different models in the testing set. DCA of predicting models in the training set (C) and testing set (D). The feature 
importance of the selected radiomics features in the LASSO model (E)
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combining clinicopathological information with radiom-
ics could improve the performance of models [22–24]. 
Our results also found that building integrated predic-
tion models through this method for axillary pCR status 
indeed achieved satisfactory results. The AUC value of 

the radiomics-clinical combined model was above 0.85 
either in the training set or the testing set.

Radiomic features just from pre-NAC CT could 
not accurately predict axillary pCR because pre-NAC 
imaging data cannot cover the patient’s personalized 

Fig. 5 ROC curves and feature importance of different models in different subtypes. Predictive performances of the different models in the Luminal 
A/B (HER2 negative), HER2 positive, and Triple negative subtype in the training sets (A). The feature importance of the radiomics model for each 
subtype: Luminal A/B (HER2 negative), HER2 positive, and Triple negative (B). Predictive performances of the different models in each subtype 
in the testing sets (C). DCA of predicting models in each subtype in testing sets (D)
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treatment process [4]. To address this problem, this 
study included pre-NAC and post-NAC CT for radiom-
ics analysis. The result showed that both pre-NAC and 
post-NAC could contribute valuable radiomics features 
for predicting axillary pCR. In the correlation analysis, 
we noticed that 33 pre-NAC radiomics features were sig-
nificantly correlated with patients’ N stage, which means 

that even if the entire axilla rather than a positive lymph 
node was drawn as the ROI, the extracted features could 
also reflect the axillary metastatic burden. Although 
baseline data analysis showed that patients with a lower 
axillary metastatic burden might be more likely to 
achieve axillary pCR (P = 0.011 in the testing set), the 42 
features screened by LASSO regression did not include 

Fig. 6 Developed the predicted nomogram based on the Combined Model in the training set (A). Calibration curves of nomogram in the training 
set (B) and testing set (C), respectively
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the 33 features mentioned above. This indicated that for 
predicting axillary lymph node status, radiomics has spe-
cific information that is different from clinical features. 
The improvement in model performance by their com-
bination also showed that radiomics features could more 
comprehensively reflected the post-NAC axillary lymph 
node status and were also independent predictors of axil-
lary pCR as clinicopathological features.

Previous studies always used only one confirmed meta-
static lymph node as the ROI for analysis and modeling 
[14, 15], regardless of the number of metastatic lymph 
nodes. However, this cannot reflect the entire metastatic 
burden in the axilla. It also has a problem of localization 
difficulty, as this single lymph node could shrink and 
even disappear during NAC. In this study, we creatively 
used the entire axilla instead of simply drawing a posi-
tive lymph node as an ROI to extract radiomics features. 
This can cover all imaging information in the entire axilla 
and even evaluate the status of infraclavicular lymph 
node metastasis. It also avoids the metastatic lymph 
node drawing difficulties and errors caused by changes 
after NAC. However, if using the entire axilla as an ROI, 
whether these obtained radiomics features could reflect 
total changes in these lymph nodes scattered in the axilla 
becomes a key issue. Fortunately, we could use differ-
ent filters to solve this problem. Radiomics features are 
not only extracted from original images but can also be 
obtained from different filter-derived images. Among 
them, the wavelet filter could highlight texture charac-
teristics, while the LoG filter mainly reflects grayscale 
change areas. So the LoG filter was often used to repre-
sent boundaries between lymph nodes and surround-
ing fatty tissue. And wavelet filter was used to reflect the 
internal texture structure of the lymph node [25]. There-
fore, if drawing the entire axilla as the ROI, we speculated 
that using the wavelet filter could better reflect the struc-
tural differences inside enlarged axillary lymph nodes, 
and the LoG filter was suitable for judging the overall 
development of lymph node contour. In keeping with this 
conjecture, from pre-NAC CT images, the extracted 10 
wavelet features and 9 LoG features reflected the enrich-
ment of internal texture information and the contour 
increase of enlarged positive lymph nodes. Due to the 
drug response, enlarged lymph nodes often shrank after 
NAC. It was difficult to observe the internal structure of 
lymph nodes in detail, and only residual lymph node con-
tours could be observed. Therefore, most of the features 
from post-NAC were mainly LoG filter-driven features.

For subtype analysis, due to insufficient cases, none 
of the models in each subtype achieved better perfor-
mance than the overall case models. The stability and 
accuracy of these models for subtypes decreased to 
a certain extent. In addition, the relative increase in 

feature dimensions caused by the reduction of cases in 
subtype analysis could indeed weaken the stability of 
the model [26, 27]. More importantly, subtype mod-
eling greatly weakened the value of baseline features, 
especially in the Luminal A/B (HER2 negative) subtype 
and Triple negative subtype. The pure clinical mod-
els performed the lowest AUC than radiomics mod-
els and radiomics-clinical combined models in these 
two subtypes. This is because the gene expression and 
treatment of the same subtype were always consistent. 
Therefore, in the same subtype, most baseline features 
could not distinguish treatment outcomes, and their 
importance was very limited in the model. Only for the 
HER2 positive subtype, previous studies showed that 
different HER2 expressions showed significantly differ-
ent pCR rates [28, 29]. This also explains why the clini-
cal model has better performance than the radiomics 
model in the HER2 positive subtype. The consistency 
also led to the result that our nomogram only screened 
four independent clinical features, including N stage, 
ER expression, HER2 status, and KI67 index. Obviously, 
the radiomics score had the highest score weight in the 
nomogram.

Our study still has some limitations. It was a retro-
spective single-center study lacking more prospec-
tive multicenter data to enhance its clinical value. In 
addition, in recent years, with the development of 
artificial intelligence, deep learning has been rapidly 
used in medical imaging [22, 30, 31]. We hope that in 
future research, we can add deep learning to traditional 
machine learning methods to achieve better results.

Conclusion
This study successfully predicted the axillary pCR sta-
tus of breast cancer patients after NAC by using pre- 
and post-NAC routine CT data combined with clinical 
pathological characteristics. This result can provide 
decision-making assistance for whether patients could 
be exempt from ALND.
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