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Abstract 

Objective The purpose of this study was to develop an individual survival prediction model based on multiple 
machine learning (ML) algorithms to predict survival probability for remnant gastric cancer (RGC).

Methods Clinicopathologic data of 286 patients with RGC undergoing operation (radical resection and pallia-
tive resection) from a multi-institution database were enrolled and analyzed retrospectively. These individuals were 
split into training (80%) and test cohort (20%) by using random allocation. Nine commonly used ML methods were 
employed to construct survival prediction models. Algorithm performance was estimated by analyzing accuracy, 
precision, recall, F1-score, area under the receiver operating characteristic curve (AUC), confusion matrices, five-fold 
cross-validation, decision curve analysis (DCA), and calibration curve. The best model was selected through appropri-
ate verification and validation and was suitably explained by the SHapley Additive exPlanations (SHAP) approach.

Results Compared with the traditional methods, the RGC survival prediction models employing ML exhibited good 
performance. Except for the decision tree model, all other models performed well, with a mean ROC AUC above 0.7. 
The DCA findings suggest that the developed models have the potential to enhance clinical decision-making 
processes, thereby improving patient outcomes. The calibration curve reveals that all models except the decision 
tree model displayed commendable predictive performance. Through CatBoost-based modeling and SHAP analysis, 
the five-year survival probability is significantly influenced by several factors: the lymph node ratio (LNR), T stage, 
tumor size, resection margins, perineural invasion, and distant metastasis.
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Introduction
Remnant gastric cancer (RGC), also known as gastric 
stump cancer, was initially reported by Balfour in 1922 
as a cancer developing in the remnant stomach following 
previous gastric surgery for peptic ulcer disease (PUD)[1, 
2]. More recently, the definition of RGC has evolved, and 
it is now described as any cancer occurring in the resid-
ual stomach following a previous partial gastrectomy for 
benign or malignant conditions[3]. In literature, the inci-
dence of RGC ranges approximately from 1 to 7%[4–8]. 
Due to the absence of specific symptoms, RGC is often 
diagnosed at an advanced stage, resulting in low surgical 
resection rates and poor prognoses, making it an impor-
tant clinical concern[4, 5]. The surgical outcomes for 
RGC vary across studies, with 5-year survival rates rang-
ing from 7 to 80%[6, 9–12].

As the number of gastrectomies continues to rise, the 
incidence of RGC is escalating annually[13]. It’s crucial to 
identify relevant prognostic factors for RGC and develop 
effective follow-up treatment strategies. In clinical prac-
tice, the adjacent gastric mucosa in RGC demonstrates 
a lower degree of atrophy when compared to cases of 
primary gastric cancer (GC), which suggests a unique 
underlying pathological mechanism[14]. Furthermore, 
there is a significantly heightened incidence of serosal 
tumor invasion in RGC, affecting between 37 to 48% of 
patients, contrasting sharply with the rate of 19% seen 
in primary GC[15]. Additionally, surgical procedures 
for RGC result in a notably smaller total number of har-
vested lymph nodes compared to those in primary GC, 
particularly when the preceding surgery was for gastric 
malignancy, since the nodes would have already been 
removed. As such, the lymph node grouping applied in 
the TNM classification system for primary GC may not 
be suitable for staging RGC[16]. Moreover, RGC shows 
a significantly higher overall frequency of splenic hilar 
lymph node involvement when compared to primary 
GC. It is worth noting that jejunal mesentery lymph node 
involvement is predominantly observed following Bill-
roth II reconstruction surgeries[17, 18].

RGC often exhibits a higher rate of invasion into adja-
cent organs, and lymph node metastasis is frequently 
observed[19], which can lead to a worse prognosis than 
primary GC[20]. However, some studies suggest that 
RGC prognoses are similar to primary GC[21]. Prior 
research has investigated the clinical characteristics 
of resectable RGC in small case studies, but the factors 

influencing patient outcomes remain unclear or contro-
versial[22–24]. A meta-analysis disclosed that the sig-
nificance of tumor location on survival varies among 
studies. Some literature indicates that tumor location 
does not significantly impact survival rates[25, 26], while 
other research reports that anastomotic site tumors 
may be a favorable prognostic factor[27]. Nonetheless, 
patients with anastomotic site tumors experience worse 
outcomes[23]. Thus, additional research is necessary to 
resolve this discrepancy.

Machine learning (ML) constitutes the bedrock of 
contemporary artificial intelligence advancements[28]. 
Although these algorithms have demonstrated substan-
tial triumphs across various disciplines, their integration 
into the realms of medicine and healthcare is still in its 
nascent stages. The non-linear nature of real-world data 
impacts often challenges the effectiveness of traditional 
models like Linear Regression for classification forecasts 
and Cox Regression for predicting survival outcomes, as 
they are confined within a linear framework[29, 30]. In 
comparison with traditional mathematical models, ML 
excels notably in handling tasks related to classification 
and regression, finding broad application in developing 
predictive frameworks, determining tumor stages, and 
prognostic groupings[31–34].

ML can facilitate various problems, from patient-level 
observations to employing algorithms with numer-
ous variables, seeking combinations, and ultimately 
reliably predicting risks and outcomes[35]. Numer-
ous studies have developed valuable models utilizing 
ML techniques[36–39]. However, there is a dearth of 
research exploring the application of ML for predicting 
survival outcomes in RGC patients. Although ML pre-
sents significant benefits in constructing models to iden-
tify risk factors, the “black-box” nature of ML algorithms 
poses challenges in explaining why specific predictions 
are made for patients. In pursuit of these objectives, the 
SHapley Additive exPlanations (SHAP) methodology 
has recently been introduced[40, 41]. The SHAP method 
allows for the recognition and prioritization of attrib-
utes that influence complex classification and activity 
forecasting utilizing any ML model. Developing a visual 
predictive model to assist healthcare professionals in 
identifying individuals with poor prognoses would be 
advantageous.

Consequently, a central objective of our research was 
to construct and evaluate ML-based survival prediction 

Conclusions This study established predictive models for survival probability at five years in RGC patients based 
on ML algorithms which showed high accuracy and applicative value.
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models for patients with remnant stomach cancer over 
a five-year period. This endeavor encompassed not only 
the development of multiple ML algorithms but also an 
emphasis on visualizing these models to gain deeper 
insights into their inner workings. Furthermore, our 
study aimed to juxtapose the efficacy of these ML mod-
els against that of traditional linear regression models, 
thereby shedding light on the distinctive contributions 
and potential superiority of ML approaches in forecasting 
survival probabilities for this patient population. Through 
visualization, we sought to enhance interpretability and 
transparency, enabling a comprehensive evaluation and 
understanding of the complex relationships learned by 
the ML models in the context of RGC survival prediction.

Data and methods
Patients
Patients with RGC were enrolled at two tertiary hospi-
tals (Fujian Provincial Hospital from June 2008 to May 
2022, and Fujian Cancer Hospital from June 1999 to 
August 2021). RGC was characterized as an adenocarci-
noma originating in the remnant stomach subsequent to 
a gastric resection for either a benign or malignant con-
dition[3, 14, 42]. A total of 366 individuals participated 
in this study. Inclusion criteria consisted of patients who 
underwent surgical treatment, including radical and pal-
liative surgery, with a follow-up duration of > 5  years or 
those who died. Patients with a history of neoadjuvant 
therapy, R1/R2 resection in previous gastrectomy, other 
malignant diseases within the past 5 years, death within 
3  months after surgery, different pathological types, 
or incomplete clinicopathological data were excluded. 
Furthermore, patients with a follow-up duration of less 
than 5  years, no endpoints observed, or missing values 
exceeding 20% were also excluded from the study. Based 
on the inclusion and exclusion criteria, 286 participants 
remained in the study. The study’s flow chart is pre-
sented in Fig. 1. The study protocol adhered to the ethi-
cal guidelines of the 1995 Declaration of Helsinki, and 
was approved by the ethics committee of Fujian Cancer 
Hospital (ethical approval number K2021-100–01) and 
Fujian Provincial Hospital (ethical approval number 
K2022-08–034).

Data collection
Follow-up procedures encompassed outpatient visits, 
hospital appointments, and telephone inquiries. The fol-
low-up period concluded on December 31, 2023. Patients’ 
survival time (in months) was calculated from the date of 
surgery to the date of death or the end of follow-up. Ret-
rospective analysis was conducted on preoperative infor-
mation (age, initial gastric disease, initial reconstruction 
methods, and interval between the initial surgery and 

RGC resection), operative details (operative approaches, 
combined resections, and either curative (R0) or non-
curative resections (R1/2)), and postoperative data (RGC 
tumor location, histopathological findings, lymph nodes 
ratio (LNR), venous and perineural invasions, follow-up 
duration, and adjuvant therapy). TNM staging was per-
formed according to the AJCC/UICC staging criteria (8th 
edition) after RGC surgery[43]. Histological types were 
classified as highly differentiated, moderately differenti-
ated, and lowly differentiated (including signet-ring cell 
carcinoma, poorly differentiated, or mucinous). Tumor 
locations were categorized as anastomotic and non-anas-
tomotic sites.

Study outcomes
The primary endpoint of the study was all-cause mortal-
ity within the 5-year follow-up period. All-cause mortal-
ity was defined as death resulting from any cause.

Feature selection and data preprocessing
ML algorithms were implemented in Python software, 
and the data were organized in the format required for 
applying these algorithms. Samples were classified into 
healthy or sepsis groups based on the outcome indicators 
for the classification prediction model. The K-Nearest 
Neighbor (KNN) algorithm[44] was used to fill in missing 
data. To prevent non-normal distributed features from 
causing incorrect outcomes in ML estimators, logistic 
regression (with L2 penalty and c = 0.01) was employed 
as an external estimator, assigning weights to each fea-
ture. This approach facilitated accurate and reliable pre-
dictions in our study.

Model development
Nine ML algorithms, including Artificial Neural Net-
work (ANN), CatBoost, Decision Tree, Gradient Boost-
ing Machine (GBM), Gaussian Naive Bayes (GNB), 
K-Nearest Neighbor (KNN), Logistic Regression, Ran-
dom Forest, and Support Vector Machine (SVM), were 
employed to develop prognostic models. These models 
were compared with Linear Regression[45]. To divide the 
286 patients into a training and a testing set, stratified 
random sampling was utilized based on the occurrence 
of the endpoint. The 8:2 ratio resulted in a training set of 
228 patients and a test set of 58 patients.

Model performance evaluation
Various metrics and scoring methods were employed to 
quantify the accuracy of predictions, including applica-
tion to the evaluated estimators such as accuracy, preci-
sion, recall, and F1-score. The model’s discrimination 
capability was assessed using the receiver operating char-
acteristic (ROC) curve. To prevent overfitting, repeated 
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resampling, model fitting, and evaluation were utilized. 
Additionally, decision curve analysis (DCA) and calibra-
tion curves were applied to calibrate the model and pro-
vide support for probability predictions.

Model interpretation
The Shapley Additive explanation (SHAP) package[46], a 
method for uniformly measuring feature importance in 
ML models, was employed for visualizing and explain-
ing the prediction model. SHAP-based explanations offer 
a solid theoretical foundation and are the only attribu-
tion method that satisfies local accuracy, missingness, 
and consistency requirements[47]. The SHAP beeswarm 
plot provides a visual overview of the entire model, while 
sorting feature variables and creating scatter plots help 
explain the model. The SHAP dependence plot is used 
to visualize feature interactions and SHAP values, while 

the SHAP force plot enables visualization of the model at 
an individual level. We utilized SHAP to offer an expla-
nation for our predictive model, which includes relevant 
risk factors contributing to mortality in patients with gas-
tric stump cancer. This interpretation helps to enhance 
understanding of the model’s predictions and the factors 
influencing patient outcomes.

Statistical analysis
Numerical variables with normal distributions were pre-
sented as mean ± SD, while those without normal dis-
tributions were represented by median (lower quartile, 
upper quartile). Categorical variables were expressed as 
the sum (percentage). Data preprocessing was performed 
using R software (version 3.6.3). For missing data imputa-
tion, KNN[44], Sklearn[48], and SHAP packages[46], in 
Python (version 3.7) were utilized respectively. The KNN 

Fig. 1 Flow diagram of the study population selected from Fujian Cancer Hospital and Fujian Provincial Hospital. According to the inclusion 
and exclusion criteria, a total of 286 patient were included in this study, and they were randomly cut into the training and test sets in an 8:2 ratio
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package filled in missing data, while the Sklearn package 
built and verified the risk models. The SHAP package was 
used for model visualization and explanation. All models 
were constructed using the Sklearn package.

Result
Clinicopathological features of RGC 
A final dataset consisting of 286 patients with RGC was 
obtained based on the inclusion criteria. This included 
250 male patients (87.4%) and 36 female patients (12.6%). 
The average age of all patients was 64.3 ± 10.7 years. Dur-
ing a 5-year follow-up period, 142 patients (49.65%) 
passed away. The basic participant information is pre-
sented in Table  1. The dataset encompassed 19 clinical 
features, including those related to the outcome variable. 
To prevent later model construction from being influ-
enced by significantly correlated features, the linear cor-
relation between continuous numerical variables in the 
dataset was analyzed. As shown in Supporting Informa-
tion 1, there were no significantly correlated variables 
(r < 0.8). This ensures that the constructed model is mini-
mally affected by redundant or confounding factors.

Feature variable selection
The data was prepared in the required format for imple-
menting the ML algorithm. Nineteen observation indi-
ces were assessed for missing values. Aside from three 
instances where T-stage information was absent, no 
other variables exhibited any missing data. To fill in miss-
ing data, the K-Nearest Neighbor method was employed. 
For feature selection, recursive feature elimination (RFE) 
was utilized to enhance estimators’ accuracy scores or 
improve their performance on highly dimensional data-
sets. Logistic regression (with L2 penalty, c = 0.01, n = 10) 
was used as an external estimator to assign weights to 
features. This approach ensures that the selected features 
contribute effectively to the model’s predictive accuracy 
and performance.

Model performance
The predictive performance of the model during both 
training and testing, as measured by the AUC value, is 
detailed within Supporting Information 2. The confu-
sion matrices illustrating the performance of the models 
trained on the test dataset are presented in Fig. 2. Upon 
comparison with conventional methodologies, the ML-
built models showcased enhanced performance. Among 
all the models, CatBoost models emerged as having the 
highest f1-scores. The AUC ranged from 0.60 to 0.76 for 
the test set (refer to Supporting Information 3). Other 
metrics and scoring methods for quantifying the qual-
ity of risk models, such as False Negative Rate (FNR), 
False Positive Rate (FPR), False Discovery Rate (FDR), 

Table 1 The basic information of participants

0 (N = 144) 1 (N = 142) Overall (N = 286)

Center

 Center 1 52 (36.1%) 40 (28.2%) 92 (32.2%)

 Center 2 92 (63.9%) 102 (71.8%) 194 (67.8%)

Gender

 Man 127 (88.2%) 123 (86.6%) 250 (87.4%)

 Woman 17 (11.8%) 19 (13.4%) 36 (12.6%)

Age

 Mean (SD) 63.7 (9.53) 64.8 (11.7) 64.3 (10.7)

 Median [Min, 
Max]

65.0 [27.0, 86.0] 67.0 [4.00, 87.0] 66.0 [4.00, 87.0]

Interval

 Mean (SD) 20.7 (15.5) 21.6 (14.7) 21.1 (15.1)

 Median [Min, 
Max]

20.0 [1.00, 69.0] 20.0 [1.00, 50.0] 20.0 [1.00, 69.0]

Initial gastrectomy

 Billroth I 31 (21.5%) 27 (19.0%) 58 (20.3%)

 Billroth II 113 (78.5%) 115 (81.0%) 228 (79.7%)

Initial gastric disease

 Benign 85 (59.0%) 87 (61.3%) 172 (60.1%)

 Malignant 59 (41.0%) 55 (38.7%) 114 (39.9%)

Location

 anastomotic 108 (75.0%) 106 (74.6%) 214 (74.8%)

 non-anasto-
motic

36 (25.0%) 36 (25.4%) 72 (25.2%)

Grade

 High 7 (4.9%) 0 (0%) 7 (2.4%)

 Inter 66 (45.8%) 48 (33.8%) 114 (39.9%)

 Low 69 (47.9%) 93 (65.5%) 162 (56.6%)

 Missing 2 (1.4%) 1 (0.7%) 3 (1.0%)

T stage

 Mean (SD) 2.81 (1.16) 3.61 (0.683) 3.21 (1.03)

 Median [Min, 
Max]

3.00 [1.00, 4.00] 4.00 [1.00, 4.00] 4.00 [1.00, 4.00]

Metastasis

 No 139 (96.5%) 119 (83.8%) 258 (90.2%)

 Yes 5 (3.5%) 22 (15.5%) 27 (9.4%)

 Missing 0 (0%) 1 (0.7%) 1 (0.3%)

Combined resection

 No 122 (84.7%) 106 (74.6%) 228 (79.7%)

 Yes 22 (15.3%) 36 (25.4%) 58 (20.3%)

Tumor size (cm)

 Mean (SD) 4.20 (2.13) 5.61 (2.61) 4.90 (2.48)

 Median [Min, 
Max]

4.00 [0.800, 11.0] 5.00 [0.500, 15.0] 5.00 [0.500, 15.0]

Venous invasion

 No 106 (73.6%) 82 (57.7%) 188 (65.7%)

 Yes 38 (26.4%) 60 (42.3%) 98 (34.3%)

Perineural invasion

 No 99 (68.8%) 62 (43.7%) 161 (56.3%)

 Yes 45 (31.3%) 80 (56.3%) 125 (43.7%)
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and False Omission Rate (FOR), are presented in Sup-
plementary Table  4.  Cross-validation serves as a princi-
pal method for internal validation[49], and in this study, 
five-fold cross-validation was employed. Table  2  show-
cases the performance metrics of the ML algorithms after 

being subjected to five-fold cross-validation on the test 
data. Notably, the KNN models achieved the most out-
standing test set and f1-scores. Figure  3 further illumi-
nates that, aside from the decision tree model, all other 
models delivered commendable performances, with an 
average AUC of the ROC exceeding 0.7, indicating their 
robustness and predictive capabilities.

DCA is a method to determine whether using a pre-
diction model for clinical decision-making provides 
benefits[50, 51]. In DCA, the net benefit is compared 
between two strategies: “treat all” and “treat none”. The 
optimal strategy is the one with the highest net ben-
efit at a specific threshold probability. For the major-
ity of models, the net benefit of the decision curve was 
higher than that for either “treat all” or “treat none” 
across all likely threshold probabilities. The GNB 
model showed a significant decrease in net benefit 
when threshold probabilities exceeded 80%. For the 
other eight models, a high net benefit was observed 
over a wide range of threshold probabilities. Con-
sequently, the DCA results indicated that the con-
structed models could aid clinical decision-making to 
improve patient outcomes (Fig. 4).

0 survivor, 1 No-survivor, Center 1 Fujian Provincial Hospital, Center 2 Fujian 
Cancer Hospital

Table 1 (continued)

0 (N = 144) 1 (N = 142) Overall (N = 286)

Resection margins

 No 138 (95.8%) 119 (83.8%) 257 (89.9%)

 Yes 6 (4.2%) 23 (16.2%) 29 (10.1%)

Lymph nodes ratio

 Mean (SD) 0.109 (0.243) 0.365 (0.332) 0.236 (0.318)

 Median [Min, 
Max]

0 [0, 1.00] 0.290 [0, 1.00] 0.0500 [0, 1.00]

Postoperative complications

 No 123 (85.4%) 110 (77.5%) 233 (81.5%)

 Yes 21 (14.6%) 32 (22.5%) 53 (18.5%)

Adjuvant chemotherapy

 No 94 (65.3%) 89 (62.7%) 183 (64.0%)

 Yes 50 (34.7%) 53 (37.3%) 103 (36.0%)

Fig. 2 Confusion Matrices for Model Results. Numbers represent the total number of patients. The vertical axis shows the true label, 
and the horizontal axis shows the label predicted
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Furthermore, the calibration curve was assessed to 
evaluate another measure of discrimination. The refer-
ence line is diagonal, and the calibration curve aligns 
with the reference when the predicted value equals the 
observed value. The curve is below the reference when 
risk is overestimated, and above when risk is underesti-
mated. Figure 5 demonstrates that except for the decision 
tree model, the predicted values of the other eight mod-
els exhibited good performance.

Visualization and explanation of models
The 5-year death prediction model based on ML tech-
niques performed satisfactorily in terms of model validity 
and clinical net benefit. Nonetheless, the opaque nature 
of ML models creates a lack of transparency. SHAP val-
ues reveal the individual contributions of each feature to 
the final prediction, effectively clarifying and interpret-
ing model predictions for specific patients. After sort-
ing features, SHAP was applied to distinguish the feature 
values for the selected variable (Fig. 6A). To explain the 
CatBoost-based model, the SHAP summary plot was 
utilized. The study findings suggested that a high lymph 
node ratio (red) had a negative impact on prognosis, 
while a low lymph node ratio (blue) contributed posi-
tively. Concurrently, a high Tstage (red) showed a nega-
tive effect on prognosis, whereas a low Tstage (blue) had 
a positive influence on the patient’s outlook. The results 
corresponded to those concerning resection margins, 
positive metastasis, and perineural invasion.

After several years of development, traditional ML 
methods have become capable of displaying feature vari-
ables. However, these methods fail to demonstrate the 
positive and negative relationships between features 
within the model (Fig. 6B).

The SHAP Dependence Plot enables visualization of the 
effects within the model. Each dot represents a sample 

(Fig. 6C). It was observed that as the T stage increased, 
so did the SHAP values. The SHAP Force Plot illustrates 
the individual level within the model. Figure 6D demon-
strates the significance of influencing factors for the three 
subjects in the RGC. In comparison to the first sample 
(SHAP, 1.03) and third sample (SHAP, 1.54), the second 
sample (SHAP, -0.41) belonged to the low-risk group, 
possessing a decreased risk of 5-year death. Variables 
influencing the model’s outcomes are listed below the 
horizontal axis. Different individuals might have identical 
or slightly varying key variables affecting their outcomes.

Discussion
Our research harnessed ML techniques to create a set 
of ML models skilled at forecasting five-year survival 
prognoses for RGC following surgery. This is the first 
investigation to examine prognostic risk factors for RGC 
utilizing ML models. Through the development and vali-
dation of this model, we have showcased its consistent 
performance and superior reproducibility. Significantly, 
our risk model not only demonstrates robust stability 
compared to conventional techniques but also addresses 
the ‘black box’ issue associated with ML models by 
incorporating model visualization techniques. By visu-
alizing the model, we enable healthcare professionals to 
more effectively discern post-surgery survival outcomes. 
These predictive indicators potentially grant clinicians 
an enhanced ability to tailor care strategies, thereby opti-
mizing risk factor management for high-risk patients.

The proficiency, user-friendliness, and resilience of ML 
models in recognizing complex data significantly surpass 
traditional statistical models, overcoming their limita-
tions regarding statistical efficiency[49]. In ML models, 
classes can be utilized for feature selection or dimen-
sionality reduction to enhance the model’s accuracy 
score or improve its performance on high-dimensional 

Table 2 Metrics and Scoring for Quantifying the Quality of Model Performance with 5-Fold Stratified Cross-Validation on Test Set

LASSO least absolute shrinkage and selection operator, ANN artificial neural network, GBM gradient boosting machine, GNB Gaussian NB, KNN K-nearest neighbor, SVM 
supported vector machine

Accuracy_scores Precision  Recall  F1-scores AUC 
No-survivor No-survivor No-survivor  No-survivor

 ANN  0.67±0.09  0.66±0.07  0.65±0.07  0.67±0.09  0.782 ± 0.025

 CatBoost  0.62±0.10  0.64±0.13  0.62±0.10  0.62±0.10  0.757 ± 0.060

 Decision Tree  0.55±0.10  0.55±0.14  0.54±0.14  0.49±0.08  0.631 ± 0.086

 GBM  0.57±0.08  0.54±0.08  0.54±0.08  0.52±0.08  0.715 ± 0.063

 GNB  0.57±0.11  0.54±0.18  0.58±0.11  0.54±0.15  0.793 ± 0.041

 KNN  0.74±0.09  0.75±0.10  0.74±0.09  0.74±0.10  0.745 ± 0.040

 Logistic  0.66±0.09  0.66±0.08  0.66±0.09  0.65±0.09  0.793 ± 0.031

 Random Forest  0.64±0.14  0.66±0.12  0.61±0.09  0.58±0.06  0.728 ± 0.053

 SVM  0.69±0.09  0.70±0.09  0.69±0.09  0.69±0.09  0.786 ± 0.037
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datasets[52]. Gradient boosted decision trees (GBDTs), 
including XGBoost, LightGBM, and CatBoost, are potent 
tools for big data classification tasks. Our method pro-
vides not only a precise and clinically feasible technique 
for predicting RGC patient survival outcomes but also 
enhances the interpretability of the predictions. The 
SHAP value quantifies each feature marker’s contribu-
tion to the model’s identification results, enabling com-
prehensive global explanations[46, 53, 54]. The predictive 
capacity of a clinical factor in the XGBoost model ele-
vates as the average absolute SHAP value of each fac-
tor rises. To obtain a uniform perspective, these factors 

were consolidated, and SHAP interpretation drew from 
individual patients. SHAP effectively addresses multi-
collinearity issues and determines whether an influence 
is beneficial, thanks to its ability to consider both indi-
vidual factor effects and their synergies[41]. According 
to the SHAP values, LNR, T stage, tumor size, resection 
margins, perineural invasion, and distant metastasis were 
determined as the most crucial factors in identifying 
five-year survival prognoses for RGC. In essence, these 
factors can be considered an optimal subset represent-
ing the key players in survival risk assessment for RGC 
patients. The interpretability of the optimal subset stems 

Fig. 3 Model Evaluation. ROC Curve of Stratified K-Fold for Models
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from capturing and visualizing the effect direction of 
each feature and its contribution size to the prediction. 
This enables clinicians to gain specific insights into how 
individual predictions are influenced by various vari-
ables, affording a personalized, fine-grained understand-
ing of different patients’ prognoses.

Most reports indicate that RGC is often diagnosed at 
an advanced stage, leading to a relatively low rate of cura-
tive resection and unfavorable prognosis. This suggests 
that RGC may possess distinct biological characteristics 
from primary GC[1, 55, 56]. However, some researchers 

have compared RGC to primary GC and found no signifi-
cant difference in survival rates between the two[57–59]. 
A few studies have investigated the clinicopathologic fea-
tures and prognosis of RGC, but consensus has not been 
reached yet[1, 60, 61]. Similar to prior research[56, 62, 
63], our study noted that more than 80% of RGC patients 
were male. This may be attributed to the fact that men 
are more susceptible to developing both gastroduodenal 
ulcers and GC[64, 65].

In the majority of studies, RGC lymph node staging 
adheres to the UICC/AJCC grading criteria. However, 

Fig. 4 Model Evaluation. A Decision Curve Analysis to Evaluate the Benefits of Prediction Models. The two dashed lines reflecting the strategies 
of “assume all patients have the condition” (i.e., treat all) and “assume no patients have the condition” (i.e., treat none) cross at the midpoint 
of the preference range. The GNB model showed a significant decrease in net benefit when the threshold probabilities were greater than 80%. 
For the other eight models, a high net benefit was observed across a wide range of threshold probabilities
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in first-time GC patients, postoperative lymph node 
drainage changes and the lymph nodes detected by 
RGC cannot comprehensively determine the N stage, 
particularly given the occurrence of RGC after GC. 
The total number of postoperative lymph node dis-
sections during re-surgery typically does not exceed 
10, which is significantly fewer than the number 
of lymph nodes dissected by RGC after surgery for 
benign lesions. This may lead to inaccurate staging. A 
study analyzed the prognostic significance of LNR in 
resectable RGC using retrospective propensity score 
matching and found that LNR served as an independ-
ent prognostic factor for RGC, while the number of 
positive lymph nodes did not act as an independent 
prognostic factor[42]. Our study reinforced this notion 
using an ML method. Therefore, LNR may be a more 
dependable prognostic factor for RGC patients. How-
ever, some studies suggest that LNR is not superior 
to the number of positive lymph nodes[66]. Further 

Fig. 5 Calibration curve of models. The diagonal line serves 
as the reference, with which the calibration curve aligns 
when the predicted value matches the observed value. The curve 
falls below the reference when risk is overestimated and rises above it 
when risk is underestimated. Except for the decision tree model, 
the predicted values of the remaining eight models display good 
performance

Fig. 6 Visualization and explanation of machine learning models. A For the variable importance output by SHAP, the vertical axis ranks the features 
according to the sum of the SHAP values (the distribution of the influence of the features on the model output). B Variable importance ratio 
output using Sklearn. C SHAP value of the T stage. D Base value on the horizontal axis representing the average SHAP value of the population. 
The second object is relatively low-risk, with a SHAP value of -0.41. Despite the higher T stage of the individual, their low lymph nodes ratio 
and absence of a combined resection contribute to a decreased risk of death. The first and third objects exhibit high-risk characteristics, with SHAP 
values spanning from 1.0 to 2.0. Their negative factors include a high lymph nodes ratio, advanced T stage, large tumor size, perineural invasion, 
and a combined resection
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analysis incorporating data from multiple centers with 
larger sample sizes is necessary.

Another study identified lymphatic invasion and 
pathological T stage as risk factors for lymph node 
metastasis in RGC[67]. Many researchers have pro-
posed that high rates of adjacent organ invasion and 
lymph node metastasis contribute to RGC’s poorer 
prognosis[19, 20]. Nonetheless, one study found 
pathological T stage and venous invasion to be sig-
nificant independent risk factors for survival among 
RGC patients[68]; however, pathological N stage 
showed no significant association with long-term 
survival[68]. This contradicts our study’s findings. 
In our research, venous infiltration was not included 
in the prognostic model, suggesting it is not an inde-
pendent prognostic factor, and nerve invasion plays a 
crucial role. Given their small sample size (65 cases) 
and single-center retrospective study, the prognostic 
value of venous infiltration deserves further examina-
tion. It has been demonstrated that tumor site affects 
RGC’s prognosis[22, 23, 27]. RGC’s tumor location is 
a vital factor for predicting recurrence patterns and 
overall survival[69]. However, in our study, tumor 
location at the anastomotic site did not act as an 
independent prognostic factor, which aligns with pre-
vious reports[70, 71].

The current study unavoidably has several limita-
tions. Firstly, due to its retrospective nature, there 
was selection bias. Secondly, the sample size was rel-
atively small. Thirdly, some crucial information was 
incomplete or missing, likely caused by difficulties in 
gathering data about the initial operation. Further pro-
spective studies involving RGC patients are necessary 
to comprehensively explore the clinicopathological 
characteristics of RGC.

Given the primary aim of our research to optimize 
the use of pathological features in predicting mortality 
risks for post-gastrectomy GC patients, we intentionally 
confined our analysis to these specific characteristics. 
Consequently, we did not incorporate other potentially 
influential mortality risk factors, such as comorbidi-
ties, laboratory indices, and other clinical attributes for 
stratification purposes. This deliberate focus on pathol-
ogy data alone may have limited the model’s ability to 
achieve its maximum predictive capacity. Nonetheless, 
this study serves as a foundational step towards refin-
ing risk prediction. Moving forward, we plan to extend 
our work by integrating additional clinical indicators 
and biomarkers to construct a more refined and com-
prehensive predictive model. Such a holistic approach 
will likely enhance the precision and practicality of risk 
assessment in this patient population.

Conclusion
In summary, utilizing the CatBoost ML model to develop 
a prognostic risk model for RGC can effectively assist cli-
nicians in predicting patient outcomes, outperforming 
traditional ML methods. Moreover, combining SHAP 
and ML may serve as a suitable approach to identify indi-
viduals with poor prognoses.
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