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Abstract

and migration.

modulated hypoxic proliferation and migration.

Background: Hypoxia regulates gene expression via the transcription factor HIF (Hypoxia-Inducible Factor). Little is
known regarding HIF expression and function in primary bone sarcomas. We describe HIF expression and
phenotypic effects of hypoxia, hypoglycaemia and HIF in Ewing’s sarcoma and osteosarcoma.

Methods: HIF-1Ta. and HIF-2a. immunohistochemistry was performed on a Ewing's tumour tissue array. Ewing’s
sarcoma and osteosarcoma cell lines were assessed for HIF pathway induction by Western blot, luciferase assay and
ELISA. Effects of hypoxia, hypoglycaemia and isoform-specific HIF siRNA were assessed on proliferation, apoptosis

Results: 17/56 Ewing's tumours were HIF-1ai-positive, 15 HIF-2a-positive and 10 positive for HIF-1ae and HIF-2a.
Expression of HIF-1a. and cleaved caspase 3 localised to necrotic areas. Hypoxia induced HIF-1a. and HIF-2a in
Ewing’s and osteosarcoma cell lines while hypoglycaemia specifically induced HIF-2a in Ewing’s. Downstream
transcription was HIF-1a.-dependent in Ewing's sarcoma, but regulated by both isoforms in osteosarcoma. In both
cell types hypoglycaemia reduced cellular proliferation by > 45%, hypoxia increased apoptosis and HIF siRNA

Conclusions: Co-localisation of HIF-1a and necrosis in Ewing's sarcoma suggests a role for hypoxia and/or
hypoglycaemia in in vivo induction of HIF. In vitro data implicates hypoxia as the primary HIF stimulus in both
Ewing’s and osteosarcoma, driving effects on proliferation and apoptosis. These results provide a foundation from
which to advance understanding of HIF function in the pathobiology of primary bone sarcomas.

Background
Hypoxia is a fundamental micro-environmental compo-
nent of solid tumour tissue which is associated with
resistance to therapy, poor survival and a malignant
phenotype [1]. Hypoxia induces stabilisation of the
Hypoxia-Inducible Factor transcription factors, HIF-1
and HIF-2, which direct responses central to survival
and expansion of the malignant cell population.

HIF comprises a hypoxia-inducible alpha subunit and
a constitutively expressed beta subunit. Regulation of
the active transcription factor occurs via enzymatic con-
trol of the abundance and activity of HIFa subunits.
Under normoxia HIFa is post-translationally
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hydroxylated by the prolyl hydroxylase domain enzymes,
targeting it for proteasomal degradation [2,3]. These
enzymes are absolutely dependent on O, and limitation
of activity under hypoxia allows stabilisation of HIFa..
Binding of the active complex to the hypoxia-response
element (HRE) of target genes results in activation of
pathways regulating processes such as angiogenesis,
apoptosis and metabolic adaptation [4].

HIF over-expression is an independent prognostic fac-
tor in many carcinomas [5], although limited data is
available in primary bone sarcomas. Nuclear over-
expression of HIF-1a has been reported in approxi-
mately 60% of clinical osteosarcomas where it correlates
with disease grade, stage, recurrence and survival [6-8].
In Ewing’s sarcoma the presence of tumour cell-lined
blood lakes correlates with clinical outcome. Cells sur-
rounding these lakes also express HIF-la and the
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hypoxia marker pimonidazole [9]. Expression of both
HIF-1oa and HIF-2a has been reported in chondrosar-
coma [10] and giant cell tumour of bone [11], HIF-1a
expression correlating with reduced disease-free survival
in chondrosarcoma. Levels of serum VEGF, a HIF target
gene, are significantly higher in Ewing’s patients than
healthy controls [12] and are an independent prognostic
factor for survival [13]. In osteosarcoma VEGF levels
were higher in the tumour and serum of patients who
subsequently relapsed, tumour VEGF being predictive of
pulmonary metastasis and poor prognosis [14,15]. In
Ewing’s sarcoma the presence of necrotic, non-perfused
and presumably hypoxic tumour areas correlates with
survival and frequency of metastatic spread [16-18].

This data implies that hypoxia and/or HIF contribute
substantially to the pathobiology of primary bone sarco-
mas. Hypoxia induces expression of HIF-1a and VEGF
in the osteosarcoma cell lines Saos2, 143B, U2-OS and
MG-63 [11,19-21], with MG-63 also expressing HIF-2a
[11,22]. The Ewing’s sarcoma cell lines A673, SK-ES-1,
SK-N-MC and TC-71 also demonstrate hypoxic induc-
tion of HIF-1a and downstream genes [23-25]. Despite
such evidence for hypoxic activation of the HIF tran-
scriptional cascade in osteosarcoma and Ewing’s sar-
coma cells, little is known regarding the effect of either
HIF-1a or HIF-2a on the hypoxic phenotype of these
cells. We have therefore analysed characteristics of the
induction of HIF-1a, HIF-2a. and HIF target genes in a
panel of osteosarcoma and Ewing’s sarcoma cell lines
and investigated effects of isoform-specific HIF siRNA
on the hypoxic phenotype of these cells.

Methods

Reagents

Tissue culture reagents were from Lonza (Wokingham,
UK), except FBS (Invitrogen, Paisley, UK). Unless other-
wise stated, reagents were from Sigma (Poole, UK). This
study was approved by the Oxford Clinical Research
Ethics Committee (C01.071).

Immunohistochemistry

A tissue array comprising 47 Ewing’s sarcomas was con-
structed at the University of Dusseldorf. Additional sec-
tions were from the Nuffield Orthopaedic Centre.
Formalin fixed sections were stained for HIF-1¢: (BD Bios-
ciences, Oxford, UK), HIF-2¢o. (EP190b, Abcam, Cam-
bridge, UK), Glut-1 (Abcam) and cleaved caspase 3 (Cell
Signalling Technology, Danvers, USA). Staining was visua-
lized with the EnVision™ Peroxidase/DAB Rabbit/Mouse
detection kit (Dako, Ely, UK). Image acquisition was per-
formed using an Olympus BX40 microscope with 20x or
40x objective, Olympus DP70 camera and CellF. Tumours
were considered positive for an antigen when > 3 positive
cells/field of view were observed at 20x magnification.
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Cell culture

Cell lines were obtained from the EuroBoNeT cell line
biobank, comprising recently characterised bone tumour
cell lines [26], and maintained in culture for < 30 pas-
sages. All cell lines were maintained in RPMI (except
TC-71; IMDM) with 10% FBS, L-glutamine (2 mM),
penicillin (50 IU/ml) and streptomycin sulphate (50 pg/
ml) in a humidified atmosphere at 37°C (5% CO, in air).
Hypoxic exposures were performed in 0.1% O,, 5% CO,,
balance N, in a MiniGalaxy incubator (RS Biotech,
Irvine, UK). Low glucose conditions were achieved using
RPMI media without glucose, supplemented as for nor-
mal media, under normoxic conditions.

Western blotting

Cells were homogenized in lysis buffer (6.2 M urea, 10%
glycerol, 5 M DTT, 1% SDS, protease inhibitors). Whole
cell extract was separated by 8% SDS-PAGE and trans-
ferred to PVDF membrane. Primary antibodies were
against HIF-1¢, HIF-2¢, Glut-1, Ki-67 (MIB-1, Dako)
and B-tubulin. Immuno-reactivity was visualised with
HRP-linked goat serum and chemiluminescence. Densi-
tometric quantification of Ki-67, normalised to B-tubu-
lin, was performed on scanned blots using Image].

Luciferase assay

Cells at 60% confluence were transfected with a PGK-
HRE-firefly luciferase reporter construct and the control
pHRG-TK renilla luciferase plasmid (Promega, South-
ampton, UK) using Lipofectamine 2000 (Invitrogen). 24
h post-transfection cells were exposed to experimental
conditions then lysed in Passive Lysis Buffer. Firefly and
renilla luciferase were assayed using the Dual-Luciferase
Reporter Assay System (Promega), with firefly luciferase
values normalized to the renilla transfection control.

ELISA

Secretion of VEGF and TGFa was measured using the
Human VEGF DuoSet and Quantikine Human TGFa
Immunoassay (R&D Systems, Abingdon, UK) respectively.

Cell number, proliferation and apoptosis

Cellular apoptosis was assessed using the Apo-One
Homogeneous Caspase-3/7 Assay (Promega), with apop-
tosis levels normalised to total cell number (CellTiter 96
Aqueous One Solution Cell Proliferation Assay, Pro-
mega). For quantification of mitotic index cells were
fixed in formalin, stained for H&E and the number of
mitotic figures was expressed as a percentage of total
cell number in 4 random fields of view.

siRNA transfection
Small interfering RNA (siRNA) sequences against HIF-
la (H1), HIF-20¢ (H2) and HIF-1o scrambled control
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(scr) were as described [27] and obtained pre-annealed
from Eurogentec. Cells at 40% confluence were trans-
fected with 50 nM siRNA duplex using Lipofectamine
2000. Duplexes were removed after 24 h and cells trea-
ted as required.

Scratch migration assay

A scratch was made through cells at 90% confluence
using a 20 ul pipette tip. Specific points of the scratch
were photographed before and after exposure to experi-
mental conditions. Wound width was measured in CellF
and migration expressed as fraction wound closure.

Statistical significance

Results are expressed as mean + SD of at least three
independent experiments. Statistical analysis comprised
one-way ANOVA using Bonferroni’s multiple compari-
son as a post-hoc test, with results considered significant
at p < 0.05.

Results

HIF-1o and HIF-20. are expressed in Ewing’s sarcoma

As HIF-1a has already been described to correlate with
clinical and survival parameters in osteosarcoma, immu-
nohistochemistry focussed on Ewing’s sarcoma. Of 56
Ewing’s tumours assessed for expression of HIF; 30%
expressed only HIF-1a, 27% only HIF-2a, 18% both
HIF-1a and HIF-2a and 25% neither HIF isoform. HIF-
lo was predominantly localised in the nucleus of
Ewing’s tumour cells, whereas HIF-20 expression was
mainly cytoplasmic (Figure 1A, B). In tumours expres-
sing both HIF-1a and HIF-2a there was no evidence of
co-localisation and no correlation in intensity of stain-
ing. In 17 of the 27 HIF-1la-positive cases expression of
HIF-1a was associated with regions of necrosis, areas of
tissue also immunoreactive for the apoptosis marker
cleaved caspase 3 (Figure 1C, D). No such relationship
was evident for HIF-2a.. With the clinical data available,
no correlation was observed between HIF expression
and clinical parameters including tumour volume,
metastasis and survival.

Differential HIF response of ES and OS cells to hypoxia
and low glucose

HIF-1la protein was stabilised in response to hypoxia
in all Ewing’s (ES) and osteosarcoma (OS) cell lines
tested. Hypoxia induced the HIF-2a isoform in all OS
and in 4/5 ES cell lines (Figure 2A). Low glucose con-
ditions were also assessed as an additional micro-envir-
onmental characteristic of regions of necrosis. Low
glucose produced no HIF response in any OS cell line,
while ES cells displayed strong induction of HIF-2a
protein and a moderate increase in HIF-1lo in SK-ES-1
and SK-N-MC (Figure 2B). This pattern of HIF
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induction was reflected in transcriptional events down-
stream of HIF. Both ES and OS cells strongly transacti-
vated the HRE-promoter element in response to
hypoxia and induced expression of the HIF target
genes, Glut-1 and VEGF (Figure 2A, C, D). ES cells
induced expression of both Glut-1 and VEGF in
response to low glucose, although the magnitude of
induction was less than for hypoxia and no transcrip-
tional activation was evident in the HRE promoter-
luciferase assay (Figure 2B-D). OS cells showed no HIF
transcriptional response to low glucose conditions.

Distinct transcriptional effects of HIF-1a and HIF-2a in ES
and OS cells

Isoform-specific HIF siRNA was used to distinguish the
relative contribution of HIF-1la and HIF-2a to the HIF
transcriptional response. In ES cell lines, HIF-2a siRNA
had no effect on Glut-1 expression (Figure 3A), VEGF
secretion (Figure 3B) or HRE-luciferase activity (Figure
3C). HIF-1a siRNA significantly inhibited hypoxic
induction of Glut-1, VEGF and HRE transactivation
(Figure 3A-C). Normoxic levels of Glut-1 and VEGF
were also reduced by HIF-la siRNA, even in the
absence of immuno-detectable HIF (Figure 3A, B). How-
ever, hypoxia and low glucose both induced secretion of
HIF-2-specific TGFa [28,29] in ES cell lines which
express the HIF-2 isoform (Figure 3D). In contrast, HIF
transactivation in OS cell lines was regulated by a com-
bination of both transcription factors. Suppressed
hypoxic induction of Glut-1 (Figure 3A), VEGF (Figure
3B) and HRE-luciferase activity (Figure 3C) was evident
with siRNA targeting either HIF-1a or HIF-20, com-
bined ‘HIF-1a plus HIF-2a’ siRNA generally exhibiting
an additive effect.

Phenotypic effects of hypoxia and low glucose in ES and
OS cell lines

Phenotypic effects of 72 h exposure to hypoxia or low
glucose conditions were assessed in a reduced panel of
3 ES and 3 OS cell lines. Hypoxia had no effect on total
cell number in any cell line except 143B, whereas low
glucose consistently reduced cell number by > 45%
(Figure 4A). Caspase 3/7 activation was assessed as a
marker of cellular apoptosis. Hypoxia increased apopto-
sis in both cell panels, having a 2 to 3-fold greater effect
in OS cell lines. Glucose deprivation only had a signifi-
cant effect on apoptosis in SK-ES-1 (Figure 4B). Prolif-
eration was measured in OS cells by mitotic index and
in ES cells by immuno-detection of Ki-67. The percen-
tage of mitoses generally did not change during expo-
sure to hypoxia, but was reduced by low glucose
conditions (Figure 4C). Similarly, Ki-67 expression was
inhibited by low glucose conditions but maintained on
exposure to hypoxia (Figure 4D).
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Figure 1 Expression of HIF in Ewing’s sarcoma. (a) HIF-1a. and (b) HIF-2a. expression in Ewing’s tumour cells; scale bar = 50 um. Expression of
HIF-1a (c) co-localises with that for cleaved caspase 3 (d); scale bar = 100 um.
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Figure 2 HIF induction in ES and OS cell lines. Western blots showing induction of HIF-1a (120 kDa), HIF-2o. (120 kDa) and Glut-1 (50 kDa) in
a panel of ES (A673, RD-ES, SK-ES-1, SK-N-MC, TC-71) and OS (MG-63, Saos2, G292, 143B) cell lines in response to 24 h (a) hypoxia (H; 0.1% O,)
or (b) low glucose (G; over-exposed in comparison to hypoxia blots) compared with the untreated/normoxic (N) control. (c) Activation of the
HRE-luciferase reporter construct and (d) secretion of VEGF in response to hypoxia (light grey bars) or low glucose (dark grey bars). *, p < 0.05;
** p < 001; ** p < 0001,
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Figure 3 HIF siRNA in ES and OS cell lines. (a) Western blots showing expression of HIF-1ae (120 kDa), HIF-2a (120 kDa) and Glut-1 (50 kDa) in
response to siRNA targeting HIF-Ta. (H1), HIF-2a (H2), HIF-1ae and HIF-2ou (H12) or control siRNA (scr) in ES (SK-N-MC) and OS (143B) cells. Effects
of HIF siRNA on (b) secretion of VEGF and (c) activation of the HRE-luciferase reporter construct and in response to hypoxia or low glucose in ES
and OS cell lines. Bar graph data is normalised to the siRNA mock control (-) for each condition and represents pooled data from the entire
panel of ES or OS cell lines. *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus scr siRNA control. (d) Secretion of TGFa. from ES cell lines in response
to hypoxia (light grey bars) or low glucose (dark grey bars). *, p < 0.05; **, p < 0.01; *** p < 0.001.
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Figure 4 Phenotypic effects of hypoxia and low glucose. Effect of hypoxia (light grey bars) or low glucose (dark grey bars) on (a) cell
number and (b) apoptosis in ES and OS cell lines and (c) mitotic index in OS cell lines. Bar graph data is normalised to the normoxic control
(white bars) for each condition: *, p < 0.05; **, p < 0.01; ***, p < 0.001 versus control. (d) Proliferation assessed in ES cell lines by Western blot for
Ki-67. N, normoxia; H, hypoxia; G, low glucose. Numerical values represent mean fold change in Ki-67 as assessed by densitometry*, p < 0.05;

Effect of HIF siRNA on the hypoxic phenotype

Since no differences were observed between ES and OS
cell lines regarding phenotypic effects of glucose depri-
vation, and as OS cells have no HIF transcriptional
response to this stimulus, effects of HIF siRNA were
only investigated under hypoxia. No effect was observed
on cell number or apoptosis under hypoxia with the
exception of a minor increase in OS cell number with
HIF-2a siRNA, the magnitude of which questions its
biological significance (Figure 5A, B). However, in ES
cells HIF-1o. siRNA consistently increased cell prolifera-
tion under hypoxia as assessed by Western blotting for
Ki-67 (Figure 5C). Conversely, siRNA targeting either
HIF-1a or HIF-2a resulted in reduced hypoxic prolifera-
tion in 2/3 OS cell lines, although siRNA targeting
either HIF-1a or HIF-2a in 143B cells produced the
opposite effect (Figure 5D).

Effect of hypoxia and HIF on cell migration

ES and OS cell lines responded in an opposing manner
with respect to cell migration during exposure to 18 h
hypoxia. ES cell migration was inhibited by 65-80%
under hypoxia, whereas OS cells showed a trend to

increased hypoxic migration (Figure 6A). Despite con-
trasting responses to the initial stimulus, both ES and
OS cells demonstrated similar responses to HIF siRNA,
with targeted inhibition of HIF-2a resulting in increased
cell migration under hypoxia (Figure 6B).

Discussion

These results provide the first detailed description of
HIF induction by micro-environmental conditions rele-
vant to primary bone tumours in Ewing’s sarcoma and
osteosarcoma. We have described phenotypic effects of
these conditions, outlining the HIF dependence of these
phenotypes and differences between the two tumour
types regarding these responses.

Work in many cell types describes HIF-1a as constitu-
tively hypoxia-regulated and HIF-2a as more cell type
specific, its transcriptional activation being influenced by
micro-environmental conditions other than hypoxia
[30,31]. Despite both isoforms sharing an identical core
binding motif, the majority of HIF-regulated hypoxia-
inducible genes are induced by HIF-1a alone or by a
combination of both HIF-1a. and HIF-2a [27,31-33].
Our results in ES cells reflect this, with HIF-regulated
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expression of VEGF, Glut-1 and PGK (the luciferase
assay HRE) being mediated solely by HIF-1a. Also in
accordance with previous results [32,34], inducible HIF-
20 stimulated expression of HIF-2-specific genes, e.g.
TGFa, suggesting that HIF-2a is functional in ES cells
but that its effects are normally masked by HIF-1a to
regulate the majority of HIF-dependent genes. In con-
trast, gene expression in OS cells was regulated by both
HIF isoforms. Indeed, the observed shift towards relative
transcriptional domination of HIF-2a places OS cells in
a small group, including 786-0 renal cancer cells and
the MDA-MB-435 melanoma cell line [27,28], displaying
preferential utilisation of HIF-2a.

Hypoglycaemic induction of HIF-2a is the second
transcriptional feature distinguishing ES and OS cell
lines. Reports of HIF pathway induction under low glu-
cose conditions suggest a specific role for HIF-2a, for
example in neuroblastoma cell lines [35]. Similarly,
embryonic stem cells and pancreatic cancer cells under
hypoglycaemia induced HIF target gene expression in a

manner dependent on the HIFa dimerisation partner
ARNT [36], but independent of HIF-1a [37]. Our
results in ES cell lines also suggest a dominant role for
HIF-2a in regulation of the HIF response to hypoglycae-
mia. Hypoxic stabilisation of HIF-1a is dependent on
the presence of glucose [38], which regulates translation
via effects on the mTOR/Akt pathway [39,40]. The lack
of a HIF transcriptional response to low glucose in OS
cells may represent a differential sensitivity to glucose
deprivation. This could be a consequence of the high
levels of PAS™ glycogen present in ES cells [41] that
might provide sufficient intracellular available glucose
for translation of HIF under hypoglycaemic conditions.
Phenotypic effects of prolonged exposure to hypoxia
and low glucose were similar in both cell types. Hypoxia
did not affect cell number, despite evidence of increased
apoptosis. Hypoglycaemia produced a > 45% reduction
in cell number, predominantly due to reduced cellular
proliferation. The only previous reports on apoptosis
in ES cell lines described A673 as resistant [23] and
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Figure 6 Effect of hypoxia on migration of ES and OS cell lines.
(a) Fraction closure of a scratch wound due to cell migration during
18 h normoxia (white bars) or hypoxia (grey bars). (b) Effect of
SIRNA targeting HIF-1o (H1) or HIF-2a (H2) on migration of ES
(combined data from A673, SK-ES-1 and SK-N-MC) or OS (combined
data from MG63, Saos2 and 143B) cell lines under hypoxia. N,
normoxia; H, hypoxia. Bar graph data is normalised to the (a)
normoxic or (b) scrambled hypoxic siRNA control: *, p < 0.05; **, p
< 0.071; ***, p < 0.001; NS, not significant.

SK-N-MC as sensitive [42] to hypoxia-induced apopto-
sis. Our results for A673 and SK-N-MC show a 2 to 3-
fold increase in apoptosis after 72 h at 0.1% O,, longer
exposure to more severe hypoxia potentially explaining
the increased apoptosis in A673. Hypoxia-induced apop-
tosis of OS cells has not previously been reported, but
was generally 2-fold greater than that in ES cell lines.
There is considerably less data regarding hypoglycae-
mia-induced apoptosis [43], suggesting that this is
potentially a cell type-specific response which was lar-
gely absent from either ES or OS cell lines.

It is intriguing that both ES and OS cells were sensi-
tive to hypoxia-induced apoptosis but that HIF siRNA
had no effect on the apoptotic phenotype. In the
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majority of cells, hypoxia-induced apoptosis is mediated
by HIF-1a [23,44,45]. However there is an increasing lit-
erature suggesting that, in some cell types, apoptosis
induced by severe hypoxia is HIF-la-independent
[46,47]. However, in ES in vivo expression of HIF-1a
and cleaved caspase 3 localised to areas adjacent to
necrotic, and presumably hypoxic, tissue and HIF-1a
has been correlated with the percentage of dead cells in
OS tumours [6]., This suggests some in vivo relationship
between HIF and apoptosis which we have been unable
to dissect in the in vitro situation.

The first phenotypic difference between ES and OS
cell lines was the effect of HIF siRNA on hypoxic prolif-
eration. Although overall proliferation rates were similar
in normoxia and hypoxia in both cell types, HIF-1a
siRNA enhanced proliferation 2 to 3-fold in ES cells
whereas in 2/3 OS cell lines both HIF-1a and HIF-2a
siRNA inhibited hypoxic proliferation. It is not uncom-
mon for HIF-1a and HIF-2a to exert opposing phenoty-
pic effects in different cell lines. For example, HIF-2a is
necessary to maintain tumour growth in RCC4 renal
carcinoma cells [48], potentially via regulation of the
cell cycle regulatory proteins TGFa and cyclin D1. It
may also specifically promote proliferation by enhancing
activity of the c-Myc oncoprotein [49], in contrast to
inhibition of cell cycle progression by HIF-1a counter-
acting c-Myc transcriptional activity [50]. Conversely, in
SW480 colon cancer cells, HIF-1a siRNA inhibits prolif-
eration whereas HIF-2a siRNA increases anchorage
independent growth [51].

The second phenotypic difference between the two
cell types encompassed hypoxic migration, which was
inhibited in ES cells and maintained or increased in OS
cell lines. In both cell types, however, HIF-2o. siRNA sti-
mulated hypoxic migration, suggesting an effect of HIF-
200 to inhibit cell migration under hypoxia. There are
many reports demonstrating migration to be dependent
on either HIF-1a and/or HIF-2a in different cell types
[27,51,52], again demonstrating the ability of HIF-1a
and HIF-2a to exert distinct phenotypic effects in differ-
ent cell lines.

This data implicates hypoxia as the primary micro-
environmental stimulus inducing expression of HIF and
downstream genes in both ES and OS cells in culture.
However, phenotypic results in both cell types suggest
that hypoxia does not significantly increase either cell
number or migration and, in addition, enhances tumour
cell apoptosis. This does not correlate with clinical
reports that hypoxia [9,16-18] and/or HIF-1a [6-8] are
predictive of poor outcome in these tumours. This may
be due to antagonistic effects of genes downstream of
HIF, which cancel each other out when manipulating
the whole pathway in vitro. For example, VEGF block-
ade decelerates the growth of experimental
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osteosarcoma [53] and Ewing’s sarcoma [54], demon-
strating the viablility of specific targeting of HIF down-
stream genes. Despite being currently unable to dissect
specific mechanisms by which HIF promotes ES and OS
progression in vivo, we have identified features of the
HIF pathway which distinguish the two cell types. This
provides a solid platform from which to advance our
understanding of the role of hypoxia and HIF in the
biology of primary bone sarcomas.

Conclusions

To our knowledge, this study represents the first com-
prehensive report of effects of hypoxia and hypoglycae-
mia on HIF expression, transcriptional activation and
phenotype of ES and OS cells. The two cell types dif-
fered with respect to their HIF isoform-specific tran-
scriptional response to hypoxia and hypoglycaemia.
Phenotypically, ES and OS cells demonstrated opposing
migratory responses to hypoxia and opposing HIF-speci-
fic effects on hypoxic proliferation. Although the specific
mechanism(s) whereby HIF promotes ES and OS pro-
gression in vivo remains to be identified, this data pro-
vides a comprehensive characterisation from which to
advance our understanding of HIF function in the
pathobiology of primary bone sarcomas.
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