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Abstract

PCR, and western blotting.

potential of this compound in vivo.

Background: Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor
activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design,
a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and
more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and
chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell
lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we
hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would
result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells.

Methods: Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on
proliferation (CyQUANT®), apoptosis (SensoLyte®™ Homogeneous AMC Caspase- 3/7 Assay kit, western blotting),
STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2
(MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, gRT-

Results: Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell
proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by
PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase
inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at
both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total
STAT3 occurred, in part, via the ubiquitin-proteasome pathway.

Conclusions: These data demonstrate that the novel curcumin analog FLLL32 has biologic activity against OSA cell
lines through inhibition of STAT3 function and expression. Future work with FLLL32 will define the therapeutic

Background

Osteosarcoma (OSA) is the most common form of
malignant bone cancer in humans and dogs [1,2]. Multi-
drug chemotherapy and aggressive surgical techniques
have improved survival; however, the prognosis for
human patients with metastatic disease remains
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extremely poor with survival rates of 10-20% [3]. The
disease in dogs occurs approximately 10 times more fre-
quently than in people and treatment with surgery and
adjuvant chemotherapy results in long-term survival
rates of only 10-15% [4]. Both clinical and molecular
evidence suggest that human and canine OSA share sev-
eral key features including early metastasis, chemother-
apy resistance, altered expression of several proteins
(e.g., ezrin, Met, PTEN), and p53 mutation, among
others [4-10]. Given these similarities, canine OSA
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serves as a relevant model in which to evaluate the
potential clinical utility of novel therapeutic targets for
this disease.

The transcription factor STAT3 has been implicated
as a key player in several features of malignant neoplasia
including tumor cell survival, metastasis, and resistance
to chemotherapy [11-13]. Our data and the work of
others support the notion that STAT3 may be a relevant
target for therapy in both human and canine OSA. In
previous work, we demonstrated that human and canine
OSA cell lines and tumors from canine patients exhib-
ited constitutive activation of STAT3 [14]. Loss of this
expression after transfection with small interfering RNA
targeting STAT3 or by reducing STAT3 DNA binding
using LLL3 (a small molecule inhibitor) abrogated
expression of STAT3 transcriptional targets and
enhanced apoptosis [14]. Increased levels of phosphory-
lated STAT3 have been identified in a subset of human
OSA tissue samples and cell lines supportive of the role
of this transcription factor in OSA [15]. Suppression of
this activated STAT3 with a dominant negative STAT3
led to decreased growth in these cell lines [15]. Studies
by Wang et al. showed that inhibition of STAT3 expres-
sion in OSA cells by siRNA decreased proliferation and
enhanced apoptosis of these cells [11]. Treatment of
multidrug resistant OSA cell lines with a synthetic olea-
nane triterpenoid, C-28 methyl ester of 2-cyano-
3,12-dioxoolen-1,9-dien-28-0ic acid (CDDO-Me)
downregulated STAT3 phosphorylation and nuclear trans-
location, subsequently inducing apoptosis [16]. Indeed,
overexpression of phosphorylated STAT3 was associated
with a poor prognosis in patients with OSA [17] and high
levels of STAT3 protein were associated with metastasis
[11]. Given the apparent role of STAT3 in the biology of
OSA, clinically relevant therapies aimed at downregulating
its activity would likely be therapeutically useful.

Curcumin (diferuloylmethane) is a naturally occurring
compound found in the plant Curcuma longa that has
numerous medicinal properties including anti-inflamma-
tory and antitumor effects [18-20]. Curcumin has been
investigated extensively as a potential therapeutic agent
for the treatment of many different cancers, such as col-
orectal carcinoma [21,22], head and neck squamous cell
carcinoma [23], pancreatic cancer [24], and OSA
[25,26]. Curcumin is known to target multiple biochem-
ical pathways, such as those mediated by Wnt/B-catenin
[26], NF-xB [20], growth factor receptors like EGFR and
HER2 [27], and JAK/STAT [28] enhancing its effect on
cancer cells. Indeed, studies indicated that curcumin tar-
gets cellular transformation, invasion, angiogenesis, and
metastasis [27,29-32]. Recent work demonstrated that
curcumin induced cell cycle arrest and apoptosis, and
inhibited migration in human OSA cell lines [19,33].
However, curcumin is not stable under physiologic
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conditions and is not readily absorbed after ingestion
[34]. Multiple modifications to the structure of curcu-
min have been investigated in an attempt to improve
potency and biochemical properties [18,35-37].

Recent work on improving both the target specificity
and stability of curcumin by the College of Pharmacy at
The Ohio State University produced the novel small
molecule STAT3 inhibitor, FLLL32. As a diketone ana-
log of curcumin, FLLL32 is more selective in its target-
ing than the parent compound due to the replacement
of two hydrogen atoms on the central carbon of curcu-
min with a spiro-cyclohexyl ring [38]. Improved interac-
tion of FLLL32 with the Src homology-2 (SH2) domain
of STAT3, a region instrumental in its dimerization and
nuclear translocation, as well as greater stability, was
predicted with these modifications as compared to cur-
cumin [38,39]. In subsequent work, FLLL32 was shown
to promote apoptosis in multiple human cancer cell
lines, inducing downregulation of STAT3 phosphoryla-
tion and DNA binding [38-40]. In human hepatocellular
cancer cells, FLLL32 inhibited IL-6-induced STAT3
phosphorylation [41]. FLLL32 was found to be more
potent than some existing STAT3 inhibitors, including
Stattic, S31-201, and curcumin in colorectal, glioblas-
toma, multiple myeloma, rhabdomyosarcoma, and liver
cancer cell lines [39,42]. Together, these data demon-
strate that FLLL32 exhibits improved efficacy at abrogat-
ing STAT3 functional activity and its effects in
enhancing tumor cell survival in many cancer cell lines
as compared to curcumin and other STAT3 inhibitors.
Therefore, the purpose of this study was to explore the
biologic activity of FLLL32 against canine and human
OSA cell lines in vitro, delineate the mechanism of
action of FLLL32, and compare the efficacy of FLLL32
to curcumin.

Methods

Cell Lines and Reagents

Canine OSA cell lines, OSA 8 and 16 were provided by
Dr. Jaime Modiano (University of Minnesota, Minneapo-
lis, MN) [43,44]. The canine D17 OSA cell line and
human OSA cell lines U20S and SJSA were purchased
from American Type Cell Culture Collection (ATCC,
Manassas, VA). Cell line authentication of human OSA
cell lines SJSA and U20S was recently completed by
The Ohio State University Comprehensive Cancer Cen-
ter Molecular Cytogenetics Shared Resource by compar-
ing the ATCC karyotype features with that of our cell
lines. The canine lines and human line SJSA were main-
tained in RPMI-1640 supplemented with 10% fetal
bovine serum, non-essential amino acids, sodium pyru-
vate, penicillin, streptomycin, L-glutamine, and HEPES
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) at
35°C, supplemented with 5% CO,. The remaining
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human cell line U20S was cultured in McCoy’s medium
with 10% FBS and the same supplements as listed for the
canine lines. FLLL32 was synthesized and purified as
described previously [38]. Curcumin, the proteasome inhi-
bitor MG132, and the pan-caspase inhibitor, Z-VAD-FMK,
were purchased from EMD Chemicals (Gibbstown, NJ).

Cell proliferation

OSA cells (2 x 10%) were seeded in 96-well plates over-
night and incubated with DMSO, 10 uM curcumin, or
increasing concentrations of FLLL32 (0.25, 0.75, 2.5, or
7.5 uM) for 72 hours. The volume of DMSO added to
the vehicle treated wells was the same as that added to
the drug treated wells. Each drug concentration was per-
formed in four replicate wells. The media was removed,
the wells were washed with PBS, and the plates were
frozen at -80°C overnight before processing with the
CyQUANT® Cell Proliferation Assay Kit (Molecular
Probes, Eugene, OR) as described previously [14]. Cell
proliferation was calculated as a percentage of the
DMSO- treated control wells with ICs, values derived
after plotting proliferation values on a logarithmic curve.

Detection of Apoptosis/Caspase 3/7 Activity

OSA cells (1.1 x 10*) were seeded in 96-well plates
overnight and incubated with media, DMSO, 10 pM
curcumin, or FLLL32 (2.5 or 7.5 uM) for 24 hours.
Wells with media only were included as controls. Levels
of caspase- 3/7 activity were determined using the Sen-
soLyte® Homogeneous AMC Caspase- 3/7 Assay kit
(Anaspec Inc, San Jose, CA) as described previously
[14]. To determine the effect of caspase activation on
the loss of STAT3 protein, 1.1 x 10* OSA cells were
pretreated for either 2 or 24 hours with 80 uM Z-VAD-
FMK. Cells were then treated for 18 hours with media,
DMSO, 80 uM Z-VAD-FMK, 10 pM FLLL32, or 10 pM
FLLL32 and 80 puM Z-VAD-FMK. Caspase activation
was measured as described previously [14].

EMSA

To confirm that FLLL32 impaired STAT3 DNA binding,
we used the Pierce LightShift Chemiluminescent EMSA
kit (Thermo Fisher Scientific Inc, Rockford, IL) that
employs a chemiluminescent detection system to detect
protein:DNA interactions as described previously [14].
Briefly, nuclear protein from human (0.8 pg/well) and
canine (5 pg/well) OSA cell lines treated for four hours
with media, DMSO, 10 pyM curcumin, or 10 uM
FLLL32 was collected using the NucBuster™ Protein
Extraction kit (EMD Chemicals Inc, Gibbstown, NJ).
Protein from cell lysates was collected from each group
concurrently and processed for western blotting as
described previously to confirm levels of STAT3 total
protein and B-actin.
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RT-PCR and gRT-PCR

RNA was extracted from canine and human OSA cells
following 12-24 hours treatment with DMSO, curcumin,
or FLLL32 using TRIzol reagent (Invitrogen, Carlsbad,
CA) according to the manufacturer’s instructions. To
generate cDNA, 2 ug of total RNA and the M-MLV
reverse transcriptase kit (Invitrogen, Carlsbad, CA) were
used according to the manufacturer’s instructions. Next,
1/20 of the resultant cDNA was used for each PCR
reaction in a total volume of 25 pl. Primers designed
and utilized for canine STAT3 are listed in Table 1; the
annealing temperature for this reaction was 55°C. Pri-
mers designed and utilized for canine STAT3 transcrip-
tional targets VEGF and MMP2 and GAPDH and
human VEGF and GAPDH were published previously
with annealing temperatures [14]. Primers designed and
utilized for human STAT3 and MMP2 are listed in
Table 1. An annealing temperature of 60°C was used for
PCR reactions with human primers for STAT3 and
MMP2. Primers were designed to span at least one
intron to identify and eliminate any potential genomic
DNA contamination. All PCR products were run on a
2% agarose gel with ethidium bromide and visualized
using the Alpha Imager system (Alpha Innotech Corp,
San Leandro, CA).

To quantitatively measure the effects of treatment on
STATS3 expression, canine OSA cells (OSA8) were trea-
ted with curcumin or FLLL32 for 4 or 24 hours, and
RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA) according to the manufacturer’s instruc-
tions. cDNA was made from 1 pg total RNA using the
Superscript III kit (Invitrogen). Real-time quantitative
PCR was performed using the Applied Biosystem’s Ste-
pOne Plus Real-Time PCR System. STAT3 and 18S
mRNA were detected using Fast SYBR green PCR mas-
ter mix (Applied Biosystems) according to the manufac-
turer’s protocol and primer sets are detailed in Table 2.
All reactions were performed in triplicate and included
no-template controls for each gene. Relative expression
was calculated using the comparative threshold cycle
method [45]. Experiments were repeated 3 times using
samples in triplicate.

Table 1 Primers for human and canine reverse
transcriptase polymerase chain reactions

Primers

Canine STAT3F
Canine STAT3R
Human STAT3F
Human STAT3R
Human MMP2F
Human MMP2R

Primer Sequences

- GGC CCA ATG GAA TCA GCT ACA G -3
- GAA GGA ACT GCT TGA TTC TTC G -3'

- GGC CCA ATG GAA TCA GCT ACA G -3
- GAA GAA ACT GCT TGA TTC TTC G -3’

- GAT GGC ACC CAT TTA CAC CTA C -3

- GTC CTT GAA GAA GAA GAT CTC -3’

v 1o oy
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Table 2 Primers for STAT3 quantitative reverse
transcriptase polymerase chain reaction

Primers
Canine STAT3F
Canine STAT3R
18S V2F
185 V2R

Primer Sequences

5-GGC CCA ATG GAA TCA GCT ACA G-3'
5-GAA GGA ACT GCT TGA TTC TTC G-3'

5-AAA TCC TTT AAC GAG GAT CCA TT-3
5-AAT ATA CGC TAT TGG AGC TGG A-3'

Western Blotting

Protein lysates were prepared and quantified, separated
by SDS-PAGE, and Western blotting was performed
using previously described methods [14] on 2 x 10°
OSA cells after treatment with either curcumin,
FLLL32, or DMSO for 24 hours. The membranes were
then incubated overnight with anti-p-STAT3 (Tyr705,
Cell Signaling Technology, Danvers, MA), anti-p-ERK1/
2 (Thr202/Tyr204, Cell Signaling Technology, Danvers,
MA), anti-PARP (BD Biosciences, San Jose, CA), anti-
VEGF (Calbiochem, Gibbstown, NJ), anti-ubiquitin (Cell
Signaling Technology, Danvers, MA), or anti-survivin
antibody (Novus Biologicals, Littleton, CO). The mem-
branes were incubated with appropriate horseradish per-
oxidase linked secondary antibodies, washed, and
exposed to substrate (SuperSignal West Dura Extended
Duration Substrate, Pierce, Rockford, IL). Blots were
stripped, washed, and reprobed for B-actin (Santa Cruz
Biotechnology, Santa Cruz, CA), total STAT3 (Cell Sig-
naling Technology, Danvers, MA) or total ERK1/2 (Cell
Signaling Technology, Danvers, MA).

Immunoprecipitation

OSA cells (7 x 10°) were serum starved for two hours
then treated with DMSO, 10 uM curcumin, 10 pM
FLLL32, or 10 pM MG132 for 4 hours. The volume of
DMSO added to the vehicle treated wells was the same
as that delivered to the drug treated wells. Cells were col-
lected and lysate prepared as described previously [14].
STATS3 antibody (Cell Signaling Technology, Danvers,
MA) was added to lysates that had been precleared with
Protein A- Agarose beads (Roche Diagnostics, Indianapo-
lis, IN) and allowed to incubate overnight at 4°C. Protein
A- Agarose beads were added to the protein lysate and
antibody and incubated 1 hour at 4°C then washed three
times in cold lysis buffer. This was spun down and super-
natant separated by SDS-PAGE and transferred to a
PVDF membrane (Thermo Scientific, Rockford, IL).
Western blotting using an anti-ubiquitin antibody (Cell
Signaling Technology, Danvers, MA) was performed after
addition of the appropriate secondary antibody. The
membrane was stripped and reprobed for total STAT3
(Cell Signaling Technology, Danvers, MA) or -actin
(Santa Cruz Biotechnology, Santa Cruz, CA). Images
were scanned and analyzed using Image J (Rasband, W.
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S., Image J, U. S. National Institutes of Health, Bethesda,
Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2009).

Proteasome Inhibition Assay

OSA cells (6 x 10°) were serum starved for 2 hours then
treated with DMSO, 10 uM curcumin, 10 uM FLLL32, or
10 uM MG132 for 4 hours. After treatment, cells were
collected, washed with cold PBS, and lysed. Cell lysis buf-
fer contained 50 mM HEPES (pH 7.5), 5 mM ethylene-
diaminetetraacetic acid (EDTA), 150 mM sodium
chloride, and 1% Triton X-100. Proteasome enzyme was
extracted and prepared for use in the 20S Proteasome
Activity Assay Kit (Millipore, Billerica, MA). The 20S
proteasome activity was measured in a 96-well plate. The
assay is based on detection of the fluorophore 7-amino-
4-methylcoumarin (AMC) after cleavage from labeled
substrate LLVY-AMC. Samples were incubated for
1 hour at 37°C prior to detection of free AMC fluorescence
using a 380/460 nm filter set in a SpectraMax microplate
reader (Molecular Devices Corp., Sunnyvale, CA).

Statistical Methods

Statistical analysis of the CyQUANT® proliferation
assays, caspase 3/7 activity, and real time PCR data was
performed using the Student’s t-test. P values of < 0.05
were considered statistically significant.

Results

Treatment with curcumin or FLLL32 decreased
proliferation of OSA cell lines

Canine (OSAS, 16, and D17) and human (SJSA and
U20S) OSA cell lines were treated with 10 pM curcumin
or increasing concentrations of FLLL32 for 72 hours and
proliferation was measured. Figure 1A shows that both
canine and human OSA cell lines exhibited significant
decreases in proliferation after treatment with FLLL32,
particularly at concentrations above 0.75 uM. Interest-
ingly, while the human cell lines were sensitive to curcu-
min treatment, the canine lines appeared to be somewhat
resistant. However, FLLL32 induced a statistically signifi-
cant greater effect on proliferation of all OSA cell lines at
lower concentrations (2.5 uM and 7.5 uM) when com-
pared to that induced by curcumin at 10 uM. As depicted
in Figure 1B, the ICsq for FLLL32 ranged from 0.75-
1.45 puM for the OSA cell lines as extrapolated from loga-
rithmic curves. These data demonstrate that FLLL32 is
more potent than curcumin, with FLLL32 inhibiting cell
proliferation at lower concentrations than curcumin both
in canine and human OSA cell lines.

FLLL32 induced activation of caspase 3/7, PARP cleavage,
and apoptosis of OSA cell lines

Previous work in our laboratory demonstrated that
siRNA mediated downregulation of STAT3 expression
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Figure 1 Treatment with curcumin or FLLL32 decreased the proliferation of OSA cell lines. A) Canine (OSA8, OSA16, and D17) or human
OSA cell lines (SJSA and U20S) were treated with vehicle, curcumin, or FLLL32 for 72 hours. Proliferation was analyzed using the CyQUANT® cell
proliferation assay kit. Proliferation values are listed as a percentage of DMSO control. Experiments were performed in quadruplicate and
repeated two times. Statistical analysis of cell proliferation was performed using the Student’s t-test. P values of < 0.05 were considered
statistically significant*p < 0.05 B) Canine and human OSA cell lines were treated with DMSO or FLLL32 for 72 hours and analyzed with
CyQUANT® to determine proliferation as a percentage of DMSO control. ICsos for FLLL32 were calculated for each cell line using a log curve.
Experiments were performed in quadruplicate and repeated two times.
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in human and canine OSA cell lines induced apoptosis
[14]. To evaluate the effects of FLLL32 on OSA cells,
canine and human OSA cell lines were cultured with
curcumin or increasing concentrations of FLLL32 for
24 hours and apoptosis was measured. Significant
increases in caspase 3/7 activity occurred at 7.5 uM of
FLLL32 compared to curcumin at 10 pM (Figure 2A).
Additionally, we examined the status of poly (ADP-
ribose) polymerase (PARP), a nuclear enzyme important
for chromosomal structure and genomic stability [46].
PARP cleavage occurs following caspase-3 activation
during the process of apoptosis [47]. A dose-dependent
increase in PARP cleavage (cPARP) in both canine and
human OSA cell lines also occurred after 24 hours of
treatment with FLLL32 (Figure 2B). In contrast, there
was minimal to no PARP cleavage induced by treatment
with 10 uM curcumin (Figure 2B).

FLLL32 decreased STAT3 DNA binding in OSA cell lines
The curcumin analog FLLL32 acts in part through
direct inhibition of STAT3 DNA binding by interacting
with its SH2 domain, which is critical for dimerization
[38]. We observed that both canine (OSA8) and human
(SJSA) OSA cells exhibited decreased STAT3 DNA
binding after only 4 hours of treatment with curcumin
or FLLL32 (Figure 3A). To determine if the decrease in
DNA binding was due to loss of STAT3 total protein,
we harvested protein from cells concurrently treated for
4 hours and observed no significant decrease in STAT3
protein compared to media or DMSO- treated cells
(Figure 3B).

Downregulation of STAT3 via FLLL32 treatment decreased
expression of VEGF, MMP2, and survivin

Given the role of survivin, VEGF, and MMP2 in tumor
cell survival, angiogenesis, and metastasis, we deter-
mined if downregulation of STAT3 DNA binding
correlated with loss of expression of these STAT3 tran-
scriptional targets in OSA cell lines. Canine (OSA8) and
human (SJSA) OSA cells were treated for 12 or 24
hours with DMSO, 10 uM curcumin, or 10 uM FLLL32.
Loss of MMP2 mRNA expression occurred in OSA8 at
both 12 and 24 hours after treatment with 10 pM
FLLL32; however, loss of MMP2 mRNA in the SJSA
line was not noted until 24 hours of FLLL32 exposure
(Figure 4A). Treatment with 10 pM FLLL32 resulted in
loss of VEGF mRNA expression in both cell lines after
24 hours of drug treatment (Figure 4A). Additionally,
downregulation of VEGF protein expression was simi-
larly observed following 24 hours of FLLL32 exposure at
10 uM and was also noted at lower concentrations (2.5
and 5 pM) of drug (Figure 4B). Interestingly, VEGF
mRNA levels appeared to be increased in the OSA8 and
SJSA lines after 24 hours of exposure to 10 uM
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curcumin, although this did not correlate with the
observed changes in VEGF protein in which VEGF was
unchanged (SJSA) or downregulated (OSAS8) after cur-
cumin treatment. Decreases in survivin expression
occurred at 5 and 10 puM FLLL32 in the canine OSA
lines and at 2.5 uM FLLL32 and higher in the human
OSA lines (Figure 4B). Curcumin downregulated survi-
vin expression in the human but not canine OSA lines,
supporting the notion that, as with the previously dis-
cussed proliferation data, the human cells are much
more sensitive to the effects of curcumin.

Treatment with FLLL32 decreased pSTAT3 and total
STAT3 expression in canine and human OSA

Human and canine OSA cells were treated with 10 uM
curcumin or increasing concentrations of FLLL32 for
24 hours to determine their effect on STAT3 phosphor-
ylation. There was a dose dependent decrease in STAT3
tyrosine 705 phosphorylation as demonstrated by Wes-
tern blotting with downregulation occurring at 2.5 uM
FLLL32 (Figure 5A). Additionally, decreases in total
STAT3 occurred after FLLL32 treatment in all cell lines
treated (Figure 5A). To determine the mechanism for
loss of total STAT3 protein, we treated canine and
human OSA cell lines with FLLL32 for 24 hours and
performed RT-PCR to determine whether this was due
to loss of stat3 gene expression as STAT3 is known to
regulate its own expression through an autoregulatory
loop [48]. Using standard RT-PCR, there was no down-
regulation of STAT3 mRNA expression after 24 hours
with treatment with curcumin or FLLL32 (Figure 5B).
When OSAS8 cells were treated with FLLL32 and
STATS3 expression was evaluated using quantitative real
time PCR, a small decrease in STAT3 mRNA expression
was present at 24 hours, but this was not statistically
significant (Additional File 1) and therefore would be
unlikely to account for the protein loss observed by wes-
tern blotting. Lastly, the loss of STAT3 was not due to
global loss of proteins secondary to cell death as there
were no differences in the levels of pERK1/2 and total
ERK 1/2 in OSA cell lines treated with drug for 24 hrs
(Additional File 2).

STAT3 downregulation after FLLL32 treatment occurred
through the ubiquitin/proteasome pathway

STAT family proteins are known to be regulated by ubi-
quitin-mediated degradation [49,50]. To determine if
this mechanism was responsible for the loss of total
STAT3 following FLLL32 treatment, the OSAS8 cell line
was treated with curcumin or FLLL32 for 24 hours and
Western blotting for ubiquitin was performed on lysates.
An intense band emerged at 75 kDa in FLLL32 treated
cells corresponding to the size of STAT3 (Figure 5C).
We next immunoprecipitated STAT3 and performed
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Figure 2 FLLL32 induced activation of caspase 3/7, PARP cleavage, and apoptosis of OSA cell lines. A) Canine (OSA8, OSA16, and D17)
and human (SJSA and U20S) OSA cell lines were treated with media, DMSO, curcumin, or FLLL32 for 24 hours. Apoptosis was assessed by
measuring active caspase-3/7 using the Sensolyte® Homogeneous AMC Caspase-3/7 Assay kit. Experiments were performed in triplicate and
repeated two times. Statistical analysis of the caspase 3/7 activity was performed using the Student’s t-test. P values of < 0.05 were considered
statistically significant*p < 0.05 B) Canine (OSA8, OSA16, and D17) or human (SJSA and U20S) OSA cell lines were treated with DMSO, curcumin,
or FLLL32 for 24 hours prior to collection. Protein lysates were generated and separated by SDS-PAGE and western blotting for PARP and B-actin
was performed. Experiments were repeated two times.
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Figure 3 FLLL32 decreased STAT3 DNA binding in OSA cell
lines. A) Canine OSA cell line OSA8 and human OSA cell line SJSA
were incubated with media, DMSO, 10 uM curcumin, or 10 uM
FLLL32 for 4 hours. Cells were harvested and nuclear protein
isolated. Nuclear protein was added to binding reactions with
labeled species specific DNA probes for the STAT3 recognition
sequences located in the promoter for survivin in the presence or
absence of unlabelled competitor probe. Additionally, anti-STAT3
antibody was added to nuclear protein from cells treated with
media alone to demonstrate specificity of the binding reaction.
Reactions were separated on an acrylamide gel, transferred to a
nylon membrane, and the DNA was crosslinked. The membranes
were processed using the LightShift Chemiluminescent EMSA kit
(Thermo Fisher Scientific Inc, Rockford, IL). Experiments were
repeated two times. B) Canine OSA cell line OSA8 and human OSA
cell line SISA were incubated with media, DMSO, 10 uM curcumin,
or 10 uM FLLL32 for 4 hours concurrently with cells treated for
EMSA above. Cells were harvested and total protein isolated and
quantified. Protein was separated by SDS-PAGE. Western blotting
was performed for STAT3 and B-actin. Experiments were repeated
two times.

Western blotting for ubiquitin. A band was present at
75 kDa in addition to a smear directly above the band
in the group treated with 10 uM FLLL32 for 4 hours
(Figure 5D). This was interpreted to be mono-ubiquiti-
nylated STAT3 at 75 kDa and poly-ubiquitinylated
STATS3 protein at the large molecular weight sizes.
Indeed, after treating OSAS8 cells with curcumin,
FLLL32, or the proteasome inhibitor MG132, there was
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almost a four-fold increase in poly-ubiquitinylated
STATS3 in cells treated with FLLL32 as compared to
those treated with curcumin (Figure 6A). Immunoblot-
ting for B-actin was performed to confirm the specificity
of the immunoprecipitation experiment; none was
detected (data not shown). Although it has been
reported that curcumin has proteasome inhibition prop-
erties [51], treatment with curcumin or FLLL32 did not
lead to alteration in the activity of the 20S proteasome
when compared with MG132 at the same concentration
(Figure 6B).

Inhibition of caspase activation did not affect loss of
STAT3 following FLLL32 treatment

Activated caspases 2, 4, 5, and 10 are known to be cap-
able of cleaving STAT3 [52]. To investigate whether loss
of STAT3 after treatment with FLLL32 was due to clea-
vage by activated caspases, we pretreated the OSA8 and
SJSA cell lines with a pan-caspase inhibitor Z-VAD-FMK
for 2 or 24 hours and then added FLLL32 or DMSO to
the cells for an additional 18 hours. Western blotting of
cell lysates demonstrated that inhibition of caspase activ-
ity by Z-VAD-FMK abrogated PARP cleavage but it did
not significantly alter the amount of total STAT3 remain-
ing after FLLL32 treatment compared with cells treated
with FLLL32 and no Z-VAD-FMK (Figure 7A). Further-
more, Z-VAD-FMK pretreatment abrogated caspase 3/7
activation but this had no effect on the loss of STAT3
following FLLL32 treatment (Figure 7B). These data indi-
cate that loss of STAT3 protein after FLLL32 exposure
was not due to caspase- mediated cleavage.

Discussion

Curcumin has a long history of use as a medicinal com-
pound and is known to have multiple anti-inflammatory
and anti-cancer properties; however, blood levels that
can be achieved after oral administration are low, which
limits its potential clinical value [20,27,34]. Curcumin
also affects a broad range of cellular targets including
STAT3 [53,54] in addition to a host of other signaling
molecules such as Wnt/p-catenin [26], NF-xB [20], and
HER?2 [27], and the proteasome [51]. Given the number
of targets affected by curcumin and its poor bioavailabil-
ity, efforts have been directed at improving its chemical
properties by complexing it with lipids/phospholipids
[55,56] and developing more specific derivatives
[35,57-59]. Interestingly, many of these analogues have
demonstrated greater stability and more potent activity
against several tumor cell lines, including those derived
from breast, prostate, pancreas, and colon cancers when
compared to curcumin [35,57-59]. Curcumin has been
found to be well-tolerated in healthy individuals and
OSA patients [18], most recently when given as a solid
lipid particle formulation. However, peak plasma levels
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Figure 4 Downregulation of STAT3 via FLLL32 treatment decreased expression of VEGF, MMP2, and survivin. A) Canine (OSA8) or
human (SJSA) OSA cell lines were treated with DMSO, 10 uM curcumin, or 10 uM FLLL32 for 12 or 24 hours. RNA was collected and RT-PCR was
performed for VEGF, MMP2, and GAPDH. Experiments were repeated two times. B) Canine (OSA8, OSA16, and D17) or human (SJSA and U20S)
OSA cell lines were treated with DMSO, curcumin, or FLLL32 for 24 hours prior to collection. Protein lysates were generated and separated by
SDS-PAGE and western blotting for survivin, VEGF, and B-actin was performed. Experiments were repeated two times.
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reached only 22.43 ng/mL (approximately 60 nM), well
below concentrations known to have biologic effects
against OSA cells in vitro.

During the development of novel curcumin analogs,
our collaborators determined that one of these com-
pounds, FLLL32, was particularly effective at suppres-
sing the growth of pancreatic and breast cancer cells
[38]. To produce FLLL32, the two hydrogen atoms on
the central carbon of curcumin were replaced with a
spiro-cyclohexyl ring. It was proposed that this altera-
tion would confer greater stability and specificity for
STATS3 than curcumin [38]. Recent work with FLLL32
showed that it induced apoptosis in human melanoma,
multiple myeloma, glioblastoma, pancreatic, breast, and
colorectal cancer cell lines and inhibited STAT3

phosphorylation and DNA binding [38-40]. The com-
pound also exhibited higher potency at inhibiting prolif-
eration and STAT3 DNA binding activity than
curcumin and other JAK/STAT3 inhibitors in human
rhabdomyosarcoma cells [42]. Indeed, FLLL32 has been
shown to be more potent than other STAT3 inhibitors
in promoting growth inhibition of multiple cancer cell
lines, and the drug is improved in its specificity as
demonstrated by kinase profile assays that revealed
almost no activity against tyrosine kinases such as Lck,
Syk, Lyn, Yes, and Abl-1 [39]. Given the superior speci-
ficity and efficacy of FLLL32 as compared to curcumin
in a variety of cancer cell lines, the purpose of this
study was to evaluate the biologic activity of this com-
pound against OSA cell lines.
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Figure 5 Treatment with FLLL32 decreased pSTAT3 and total STAT3 expression in canine and human OSA cell lines. A) Canine (OSAS,
OSAT16, and D17) or human (SJSA and U20S) OSA cell lines were treated with DMSO, curcumin, or FLLL32 for 24 hours prior to collection.
Protein lysates were generated and separated by SDS-PAGE and western blotting for pSTAT3 (Y705), total STAT3, and B-actin was performed.
Experiments were repeated two times. B) Canine (OSA8 and 16) or human (SJSA) OSA cell lines were treated with DMSO, 10 uM curcumin, or
10 UM FLLL32 for 24 hours. RNA was collected and RT-PCR was performed for STAT3 and GAPDH. Experiments were repeated two times. C)
Canine OSA cell line OSA8 was treated with DMSO, curcumin, or FLLL32 for 24 hours prior to collection. Protein lysates were generated and
separated by SDS-PAGE and Western blotting for ubiquitin, STAT3, and B-actin was performed. Experiments were repeated two times. D) OSA8
was treated with DMSO or FLLL32 for 4 hours prior to collection. Protein lysates were generated and STAT3 was immunoprecipitated. Protein
was separated by SDS-PAGE and western blotting for ubiquitin and STAT3 was performed. Experiments were repeated two times.

Previous studies have explored the activity of curcu-  constitutively activated in OSA cell lines and that inhibi-
min against OSA both in vitro and in human clinical  tion of STAT3 through STAT3 siRNAs or the small
trials [18,20,27]. OSA cell lines experienced cell cycle molecule STAT3 inhibitor LLL3 resulted in loss of pro-
arrest, reduced proliferation, and underwent apoptosis  liferation and apoptosis [14]. Data presented in this
following treatment with curcumin [19,33,60]. Prior  study showed that FLLL32 inhibited proliferation of
work in our laboratory demonstrated that STAT3 is  OSA cell lines and promoted apoptosis via caspase 3/7
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Figure 6 Loss of STAT3 occurred in part through the ubiquitin-proteasome pathway however curcumin and FLLL32 did not inhibit the
20S proteasome in OSA cell lines. A) OSA8 was treated with DMSO, curcumin, FLLL32, or the proteasome inhibitor MG132 for 4 hours prior to
collection. Protein lysates were generated and STAT3 was immunoprecipitated. Protein was separated by SDS-PAGE and western blotting for
ubiquitin and STAT3 was performed. Experiments were repeated two times. Densitometry analysis was performed using Image J (Rasband, W. S,
Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2009). B) Canine (OSA8) or human (SJSA) OSA
cells were serum starved for 2 hours then treated with DMSO, 10 uM curcumin, 10 uM FLLL32, or 10 uM MG132 for 4 hours. Cells were
collected, washed with cold PBS, and prepared for use in the 20S Proteasome Activity Assay Kit (Millipore, Billerica, MA). Experiments were
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activation at lower concentrations than curcumin. This
is consistent with recent work demonstrating apoptosis
via caspase activation in human multiple myeloma, glio-
blastoma, liver cancer, colorectal, and melanoma cell
lines after FLLL32 exposure [39,40]. Cleavage of PARP,
an indicator of caspase-3-mediated apoptosis, was also
seen in many of these human cancer cell lines upon
treatment with FLLL32 [39]. Interestingly, loss of mes-
senger RNA and protein expression of survivin, an inhi-
bitor of apoptosis, as well as decreased STAT3 DNA
binding activity was observed in human rhabdomyosar-
coma cells treated with FLLL32 [42]. The concurrent
reduction in STATS3 transcriptional activity of targets
such as survivin through decreased DNA binding and
loss of STAT3 phosphorylation likely both played a role
in the reduced survival of OSA tumor cells observed fol-
lowing exposure to FLLL32.

Recent work has shown that expression of high levels
of STAT3 in human OSA tumor samples correlated to

poor differentiation, metastasis, and lower rates of over-
all and relapse-free survival [11]. Overexpression of
phosphorylated STAT3 in OSA has also been linked to
poor prognosis [17]. STAT3 is known to enhance tumor
cell invasion, metastasis, and angiogenesis through
enhanced expression of VEGF and MMP2 [61]. Human
patients with OSA whose tumors had higher VEGF
expression as shown by immunohistochemistry had a
significantly worse prognosis and had lung metastasis
[62,63]. Previous work revealed that treatment of OSA
cell lines with curcumin inhibited their migration [26].
Mouse xenograft models of pancreatic and colorectal
cancer treated with curcumin exhibited suppression of
tumor angiogenesis and tumor growth inhibition [20].
In more recent studies, FLLL32 inhibited vascularity and
tumor growth in chicken embryo xenografts and
reduced tumor volume in mouse xenografts of breast
cancer [38]. Our data demonstrate that in the OSA cell
lines we tested, VEGF mRNA and protein and MMP2
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Figure 7 Inhibition of caspase activation did not affect loss of STAT3 following FLLL32 treatment. A) Canine (OSA8) and human (SJSA)
OSA cell lines were pretreated with the pan-caspase inhibitor 80 pM Z-VAD-FMK or DMSO for 2 or 24 hours then treated with DMSO or 10 uM
FLLL32 for 18 hours. Protein lysates were generated and separated by SDS-PAGE and western blotting for STAT3, PARP, and B-actin was
performed. Experiments were repeated two times. B) Canine (OSA8) or human (SJSA) OSA cell lines were pretreated with the pan-caspase
inhibitor 80 uM Z-VAD-FMK, DMSO, or media for 2 or 24 hours then treated with media, DMSO, or 10 uM FLLL32 for 18 hours. Caspase-3/7
activity was measured using the SensolLyte® Homogeneous AMC Caspase-3/7 Assay kit. Experiments were performed in triplicate and repeated
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mRNA were expressed and treatment with 10 pM
FLLL32 downregulated the expression of these STAT3
transcriptional targets following 24 hours of drug expo-
sure. Interestingly, VEGF mRNA expression appeared to
increase over baseline in both the OSA8 and SJSA lines
after curcumin exposure, although this did not correlate
with the findings obtained by Western blotting in which
VEGF protein was absent in OSA8 cells and unchanged
in SJSA cells. The mechanism for this observed discre-
pancy is not clear, although there are several possible
explanations. Curcumin may somehow interfere with
translation of VEGF mRNA, directly enhance degrada-
tion of VEGF protein, or alternatively, given its diversity
of cellular targets, affect proteins other than STAT3 that
in turn alters VEGF expression. Further investigation of
these potential mechanisms is needed. Given the puta-
tive role of both VEGF and MMP2 in the process of
tumor growth and metastasis and recent data demon-
strating the ability of FLLL32 to abrogate breast cancer
xenograft growth in mice, future work assessing the
effects of FLLL32 in mouse models of OSA is
warranted.

Treatment of OSA cell lines with FLLL32 promoted
loss of both pSTAT3 and total STAT3. This loss of
STATS3 correlated with the presence of mono- and poly-
ubiquitinylated STAT3, indicating that proteasome-
mediated degradation was likely responsible for the
observed decrease in protein. Interestingly, curcumin
has been shown to inhibit activities of the proteasome
in certain cancer cells [51]; however we detected no evi-
dence for this activity after treating the OSA cell lines
with curcumin or FLLL32 at the doses and time points
examined. Although modulation of STAT3 protein
levels is known to occur in part through caspase clea-
vage [52] a pan-caspase inhibitor did not affect the
observed loss of STAT3 after FLLL32 treatment. Addi-
tionally, we did not see a significant decrease in STAT3
mRNA 24 hours after FLLL32 treatment, indicating that
loss of STAT3 mRNA could not be primarily responsi-
ble for the protein downregulation that occurs after
FLLL32 exposure. These data support the assertion that
in addition to blocking STAT3 function, FLLL32 acts to
promote downregulation of STAT3 protein, thereby
enhancing the functional consequences of this small
molecule inhibitor.

Conclusions

The novel small molecule STAT3 inhibitor FLLL32
downregulated proliferation and promoted apoptosis of
OSA cells. FLLL32 inhibited STAT3 DNA binding and
induced proteasome mediated degradation of STAT3
resulting in a subsequent loss of VEGF, MMP2, and sur-
vivin expression. These data support the notion that
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STATS3 is a relevant target for therapeutic intervention
in OSA and that FLLL32 and similar analogs may have
clinical utility for the treatment of OSA.

Additional material

Additional file 1: Curcumin and FLLL32 downregulated the
expression of STAT3 protein without significant inhibition of STAT3
mRNA transcript levels. OSA8 cells were treated with 10 pM curcumin
or 10 uM FLLL32 and were collected at 4 and 24 hours after treatment,
and real-time PCR for STAT3 mRNA was performed. Bars represent STAT3
relative expression (2/A-Delta Ct). Experiments were performed in
triplicate and repeated three times. The difference between treatment
groups and DMSO control group was analyzed using the Students ¢ test.
P values of < 0.05 were considered statistically significant. There was no
statistical significance between the treatment groups.

Additional file 2: Treatment with curcumin or FLLL32 did not
significantly alter pERK1/2 or total ERK1/2 levels. Canine (OSA8) or
human (SJSA) OSA cell lines were treated with DMSO, 10 pM curcumin,
or increasing concentrations of FLLL32 for 24 hours prior to collection.
Protein lysates were generated and separated by SDS-PAGE and western
blotting for pERK1/2 (Thr202/Tyr204), total ERK1/2, and B-actin was
performed. Experiments were repeated two times.
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