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Abstract

Background: L1CAM was originally identified as an adhesion molecule involved in neural development. In many
human carcinomas L1CAM is over-expressed and is associated with a bad prognosis. We previously reported that
L1CAM was absent in the vast majority of endometrioid endometrial carcinomas (ECs) (type 1) but was strongly
expressed in the more aggressive serous and clear-cell ECs (termed type 2). The differential regulation of L1CAM in
ECs is not well understood. Recent evidence suggests that it can be regulated by epigenetic mechanisms. Here we
investigated the role of DNA-methylation of the L1CAM promoter for expression. We also studied the relationship
to cancer testis (CT-X) antigens that co-localize with L1CAM on chromosome Xq28, a region that is often activated
in human tumors.

Methods: We used EC cell lines and primary tumor tissues for our analysis. For expression analysis we employed
RT-PCR and Western blotting. DNA-Methylation of the L1CAM promoter was determined after bisulfite conversation
and DNA sequencing. Tumor tissues were examined by immunohistochemical (IHC) staining.

Results: We demonstrate that the treatment of L1CAM low/negative expressing EC cell lines with 50-Azacytidine
(5-AzaC) or knock-down of DNMT1 (DNA methyltransferase 1) as well as the HDAC (histone deacetylase) inhibitor
Trichostatin A (TSA) up-regulated L1CAM at the mRNA and protein level. The L1CAM gene has two promoter
regions with two distinct CpG islands. We observed that the expression of L1CAM correlated with hypermethylation
in promoter 1 and 5-AzaC treatment affected the DNA-methylation pattern in this region. The CT-X antigens
NY-ESO-1, MAGE-A3 and MAGE-A4 were also strongly up-regulated by 5-AzaC or knock-down of DNMT1 but did
not respond to treatment with TSA. Primary EC tumor tissues showed a variable methylation pattern of the L1CAM
promoter. No striking differences in promoter methylation were observed between tumor areas with L1CAM
expression and those without expression.

Conclusions: L1CAM expression correlated with methylation of the L1CAM promoter in EC cell lines. In negative
cell lines L1CAM expression is up-regulated by epigenetic mechanism. Although genes localized on Xq28 are often
re-expressed by human tumors, L1CAM and CT-X antigens show distinct regulation in response to HADC inhibitors
and 5-AzaC.
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Background
The L1 cell adhesion molecule (L1CAM) was originally
identified as a neural adhesion molecule involved in
brain development. Work in the past has shown that
L1CAM is also overexpressed in many human tumors
[1,2]. It was shown that L1CAM augments cell motility,
invasion and metastasis formation [1-3]. Generally, its
expression in a variety of tumors is associated with a bad
prognosis [4-7].
L1CAM is absent in normal endometrium [8]. In

endometrial carcinomas (ECs), expression is absent in
most of the indolent endometrioid type EC (type 1
tumor) but present in the more malignant forms of
serous-papillary and clear cell carcinoma (type 2 tu-
mors) [8]. In addition, ECs often occur as a mixed-type,
i.e. they are composed of a mixture of endometrioid and
serous/clear cells components that can be morpholo-
gically distinguished. Importantly, the expression of
L1CAM is also mixed and L1CAM staining of IHC sec-
tions can be used to identify even minor components of
serous/clear cell components [8].
The regulation of L1CAM expression at the transcrip-

tional and/or epigenetic level is not well understood.
The L1CAM gene is located at chromosome Xq28 and
spans about 26 kb with 29 exons, whereof 28 are protein
coding exons [9]. The full-length open reading frame
consists of 3,825 bp encoding for a 1,275 amino acid
polypeptide [9]. During the past years L1CAM was
shown to be subject of epigenetic regulation. Kuwajima
et al. demonstrated that histone deacetylase inhibitors
like butyrate and TSA can upregulate both mRNA and
protein levels of the cell adhesion molecules Mel-CAM
and L1CAM in B16-BL6 melanoma cells [10]. Another
report investigated the methylation status at the L1CAM
promoter and found an inverse correlation of DNA
methylation and protein expression in both colorectal
cancer (CRC) cell lines and CRC patients [11]. Treat-
ment with the demethylating agent 5-AzaC induced
L1CAM mRNA/protein expression in two L1CAM ne-
gative CRC cell lines, whereas levels of two L1CAM
positive CRC cell lines did not change [11]. However,
these findings have neither been confirmed nor extended
to other tumor entities.
On Xq28, L1CAM colocalizes with CT-X antigens

such as the MAGE-A family and NY-ESO-1 that are
frequently overexpressed in human tumors. A recent
study in prostate cancer has identified Xq28 as one
of 35 domains in the prostate cancer genome that
undergo activation due to long-range epigenetic re-
modelling [12].
In the present study we wished to clarify i) whether

L1CAM expression in ECs involves epigenetic mecha-
nisms in cell lines and primary tumor tissues and ii)
whether L1CAM and the CT-X genes, all encoded in the
same locus on the X-chromosome, bear some similarity
in their epigenetic regulation.
Methods
Cell lines and cell culture
The EC cell lines were maintained in DMEM/F12 medium
or RPMI-1640 (PAA Laboratories, Pasching, Austria)
supplemented with 10% fetal calf serum as described be-
fore [8,13,14].
Chemicals and antibodies
Antibodies to the ectodomain of L1CAM (monoclonal
antibody (mAb) L1-11A, a subclone of UJ127.11) and
L1-9.3 were described before [15,16]. Antibodies for de-
tection in Western blot were as follows: GAPDH (Santa
Cruz Biotechnology, Heidelberg, Germany), Acetyl-H3
(9765, New England Biolabs), MAGE-A4 (WH4103M1,
Sigma-Aldrich, Taufkirchen, Germany), MAGE-A3 (NBP1-
02506, Novus Biologicals, Littleton, USA) and Ny-ESO-1
(Invitrogen, Eggenstein, Germany). 5-AzaC, TSA and VA
were obtained for Sigma-Aldrich and dissolved in serum-
free medium or DMSO.
RNA extraction, reverse transcription and RT-PCR analysis
RNA extraction from cell lines and Reverse transcriptase
reaction were described before [14]. Specific primers and
probes for L1CAM, MAGE-A4, NY-ESO-1 and β-actin
as internal standard were determined with the computer
program “Primer Express” (Applied Biosystems, Foster
City, CA). To prevent amplification of contaminating
genomic DNA, the probe was placed at a junction be-
tween two exons. Primers were produced by Sigma-
Aldrich. All primers were used in a concentration of
300 μM. The sequences for the primers were as follows:
L1CAM forward 50-ACGAGGGATGGTGTCCACTT

CAAA-30, L1CAM reverse 50-TTATTGCTGGCAAAG
CAGCGGTAG-30; β-actin forward 50-ACAAGATGAG
ATTGGCATGGC-30, β-actin reverse 5′-GCCACATTG
TGAACTTTGGGG-30; 50-DNMT1 forward AAGAAC
GGCATCCTGTACGGAGTT-30, DNMT1 reverse 50-
TGCTG CCTTTGATGTAGTCGGAGT-30; MAGE-A3
forward 50-AGCAAAGCTTCCAGTTCCTTGCAG-30,
MAGE-A3 reverse 50-ACAGTCGCCCTCTCTTGCGAT
TAT-30; MAGE-A4 forward 50-TAATCCTGCGCGC
TATGAGTTCCT-30, MAGE-A4 reverse 50-TGACCA
CATGCTCCAGGACTTTCA-30; NY-ESO-1 forward
50-AGTTCTACCTCGCCATGCCTTT-30, NY-ESO-1 re-
verse 50-TCGGATAGTCAGTATGTTGCCGGA-30.
To determine the mRNA expression levels, 10 ng of

cDNA was analysed in triplicates. The PCR reactions
were performed with the SYBRgreen Master Mix from
Applied Biosystems using an ABI 7300 analyser.
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siRNA transfection
24 h before siRNA treatment 1.5 × 105 cells were seeded
per 6-well. The transfection was carried out with
Interferin (Polyplus, Illkirch, France) following the manu-
facturer’s protocol. For each well the final siRNA concen-
tration was 10 nM. After the first transfection the cells
were incubated for 72 h under standard conditions and
then transfected again and analyzed 48 h after the second
transfection. siRNA’s used for the knock-down were
as follows: siDNMT1 50-AGACCAGGAUGAGAAGA
GA-30, siGFP 50-GGCCAGGUCCAGCAGCGCACC-30. All
siRNA’s were synthesized by MWG Eurofines (Ebersberg,
Germany).

Treatment of cells and biochemical analysis
Cells were seeded in 6-well plates and treated for 5 days
with 5-AzaC or for 24 h with TSA or VA, respectively.
After treatment, the cells were lysed for 15 min at 4°C in
RIPA lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 1 mM PMSF, 1 μg/ml leupeptin,
5 μg/ml aprotinin, 1% NP40, 0.5% deoxycholic acid so-
dium salt, 0.1% SDS) and sonified. After centrifugation
at 10000 × g for 10 min at 4°C, supernatant was collected
and protein concentrations were determined with a
commercial protein assay (Pierce, BCA protein assay,
Thermo Scientific, Waltham, USA). For Western blot
analysis, 50 μg of protein per lane was separated on 10
or 12% SDS-polyacrylamide gels under reducing con-
ditions and transferred onto Immobilon membranes
(Millipore, Germany). Protein loading was controlled by
Ponceau red staining of the membranes. After blocking
for one hour in Tris-buffered saline (TBS) supplemen-
ted with 5% non-fat milk and 0.1% Tween 20 (Sigma-
Aldrich GmbH, Taufkirchen, Germany), membranes were
incubated for one hour at room temperature in blocking
buffer containing the respective primary antibody. Mem-
branes were washed three times in TBS-Tween and
incubated for one hour with horseradish peroxidase con-
jugated anti-rabbit or anti-mouse secondary antibody.
Immunodetection was performed with a chemolumines-
cence system (ECL, GE Healthcare, Freiburg, Germany).
Protein band intensities were defined as the mean of pixels
within the area (mean) of the band limited by a preform-
ed rectangular area (area) after subtraction of the back-
ground pixels. Quantification was carried out using the
“ScionImage” (Scion Corp.) software.

Patient cohort and immunohistochemistry
Normal testicular tissue of 10 patients (age range 23–75,
median 32) who were orchidectomied between 1994–
1996 at the University Hospital Zurich was assembled on
a tissue microarray. All patients were resected because of
primary testicular germ cell tumors or primary funicular
or paratesticular neoplasia (myxoid liposarcoma, well
differentiated liposarcoma, monophasic synovial sarcoma).
The project has been approved by the local ethics commit-
tee (Kanton of Zurich reference number StV 25–2008).
Mouse mAb to MAGE-A4 was kindly provided by the

Ludwig Institute for Cancer Research and diluted 1:50.
Mouse mAb to NY-ESO1 (Zymed Laboratories Inc.) was
diluted 1:50. Mab to L1CAM (clone 14.10) was diluted
1:200. Two protocols were applied: First, on a Ventana
BenchmarkW platform (Ventana Medical Systems, Tucson,
AZ, USA). Here the pretreatment with 60 min boiling in
pH 8 Tris buffer was followed by incubation with primary
mAb (MAGEA4, NY-ESO1) for 60 min at room tem-
perature (RT) and development with the Ultraview-HRP
kit, including incubation with respective secondary anti-
body for 16 min at RT. Second, on a Leica BondW plat-
form (Vision Biosystems, Melbourne, Australia), the H2
standard pre-treatment with 60 min boiling in pH8 Tris
buffer was followed by incubation with primary mAb
(L1CAM for 30 min at RT and development with the
Refine-DAB Bond kit, including incubation with second-
ary antibody for 30 min at RT and additional polymer
amplification. All primary antibodies were diluted in Tris/
BSA and all staining conditions were predetermined. For
negative control the primary antibody was omitted. For
both systems, hematoxylin counterstains were applied.
H&E staining were performed according to standard
protocols.

Microdissection, DNA isolation and methylation analyses
ECs were collected at the Department of Gynecology
and Obstetrics, Medical University of Innsbruck. The
project has been approved by the local ethics committee
(University of Innsbruck ,UN3801; reference number:
282/4.12).
In total, we analyzed 9 endometrioid ECs (8 endometrioid

ECs with areas of squamous differentiation), 7 clear cell
ECs, 10 papillary serous ECs and 4 normal endometrial tis-
sues. Immunohistochemistry for L1CAM was conducted as
described above. DNA from punch biopsies was isolated
using the DNeasy Tissue Kit (Qiagen, Hilden, Germany).
Not from all tissue samples DNA of high enough quality
for further analysis could be recovered. Therefore we re-
stricted our analysis to those tumors where paired samples
from L1CAM positive and L1CAM negative areas were
available. Genomic DNA from cell lines was isolated using
the AllPrep DNA/RNA/protein kit from Qiagen (Hilden,
Germany). Bisulfite modification was performed using the
EZ DNA Methylation-Gold Kit (Zymo Research, Orange,
CA, USA) according to the manufacturer’s instructions.
MethyLight analysis was done as described previously [17].
Briefly two sets of primers and probes, designed specifically
for bisulfite-converted DNA, have been used: a methylated
set for the gene of interest and a reference set, collagen,
type II, alpha 1 (COL2A1), to normalize for input DNA.
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Specificity of the reactions for methylated DNA has been
confirmed separately using SssI (New England Biolabs)-
treated human white blood cell DNA (heavily methylated).
The percentage of fully methylated molecules at a specific
locus was calculated by dividing the GENE:COL2A1 ratio
of a sample by the GENE:COL2A1 ratio of SssI-treated con-
trols and multiplying by 100. Primers and probes for
COL2A1 have been described before [18]. Primers and
probes for L1CAM were determined with the assistance
of the computer program Primer Express version 2.0.0 (Ap-
plied Biosystems, Foster City, CA, USA) to produce a 68-
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Figure 2 Regulation of L1CAM expression by epigenetic mechanisms. (A) RT-PCR analysis of cells treated for 5 days with the indicated
concentration of 5-AzaC, TSA or both compounds. DMSO was used as a mock control. Cells were lysed and mRNA was isolated and transcribed
into cDNA. β-actin served as internal standard. (B) Cells were treated as described above and cell lysates were prepared for Western blot analysis.
MAb L1-11A was used as a primary antibody followed by peroxidase conjugated Goat anti mouse IgG and ECL detection. (C) TSA and VA up-
regulate L1CAM expression. Cells were treated and analyzed as described in (B).
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CpG islands in the analyzed genes were identified using a
CpG island searcher (www.uscnorris.com/cpgislands/cpg.
cgi) which screens for CpG islands which meet the criteria
and algorithm described by Takai and Jones [19].
For L1CAM-bisulfite sequencing the following primers

were used:
PP1 forward 50-TTAGAGAGTTGGAGGAAAATTTG-30,

PP1 reverse 50-ACACACACACACAAAACAAAAC-30;
PP2 forward 50-GAGTTTTGTTTTGTGTGTGTGTG-30,
PP2 reverse 50-CACCCTAACCCCTAATACCAAC-30, PP3
Forward 50-AGTAGTTGAAGGGAGTTTGG-30, PP3 re-
verse 50-TAAAAAAAACCCAAAACCTC-30. The pri-
mers were determined with the assistance of the computer
program Methyl Primer Express software v1.0 (Applied
Biosystems, Foster City, CA, USA).
PCR reactions were performed in a final volume of

50 μl containing 2 U of HotStarTaq DNA Polymerase
(Qiagen, Hilden, Germany), 0.2 μM dNTP mix (Qiagen),
250nM of each primer, 1x buffer and 150 ng of bisulfite
modified DNA. The thermal cycling conditions com-
prised an initial denaturation step at 95°C for 15 min,
35 cycles at 94°C for 1 min, 55°C, 58°C or 54°C respect-
ively (for PP1, PP2 or PP3 respectively) for 45 sec and at
72°C for 1 min, and after the last cycle an incubation
step at 72°C for 10 min. For visualization and statistical
analysis of the raw bisulfite sequencing data the free BiQ
Analyzer tool was used [20].
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Statistical analysis
For the analysis of statistical significance the Student’s
t-test was used. P-values in the figures are indicated as
follows: * < 0.05, ** < 0.01 *** < 0.001.
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Epigenetic regulation of L1CAM in EC cell lines
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the mRNA level (Figure 1A). FACS analysis of stained cells
confirmed the differential expression at the cell surface
(Figure 1B).
It was reported before, that treatment of cells with the

DNA-demethylating agent 5-AzaC or the broad HDAC
inhibitor TSA can lead to L1CAM expression [10,11]. In-
deed, a significant induction of L1CAM was observed by
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with both compounds alone or in combination (Figure 2A).
Western blot analysis of cell lysates revealed that in ECC1,
HEC1A and MFE296 cells these changes were also present
at the L1CAM protein level (Figure 2B). In all cases the
combination of 5-AzaC and TSA showed the strongest
stimulatory effects.
We next tested the effect of the selective HDAC-1,2
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regulated L1CAM in a dose dependent manner (Figure 2C).
Collectively, these results confirmed and extended pub-
lished data showing that L1CAM can be regulated by epi-
genetic mechanisms.

Methylation of the L1CAM promoter in EC cell lines
The L1CAM promoter has two transcription start sites,
the first in front of the non-translated exon 0 (promoter 1)
and the second next to the first coding exon 1 (promoter 2)
[14,21,22]. Both sites are active in EC cell lines and are used
in a cell-type specific manner [14]. To verify that 5-AzaC
treatment changed the methylation status of L1CAM pro-
moter, we carried out MethyLight PCR reactions of a
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(Figure 3A). In contrast, in HEC1A cells no changes were
observed (Figure 3A). Proliferation control experiments run
in parallel suggested that these cells were mostly resistant
to treatment (not shown).
The degree of DNA methylation within the L1CAM

promoter region selected was quite different between
the EC cell lines (Figure 3B). The L1CAM positive lines
HEC1B and SPAC1L showed the lowest level of methy-
lation whereas the L1CAM negative cell lines were
highly methylated (see below).
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Table 1 Methylation status of the two CpG islands (CpG1 and CpG2) in the L1CAM promoter of EC cell lines

CpG 1 CpG 2

Cell line All CpG sites Methylated CpGs % All CpG sites Methylated CpGs %

EN1 225 136 60.4 70 24 34.3

MFE296 225 129 57.3 70 12 17.1

ECC1 287 116 40.4 70 7 10.0

Hec1A 225 80 35.5 84 3 3.6

SPAC1L 256 69 26.9 84 22 26.2

Hec1B 225 19 8.4 84 19 22,6
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Promoter 1 and promoter 2 of L1CAM co-localize with
two prominent CpG islands as depicted in Figure 4A. To
assess their methylation status, we carried out bisulfite
conversion and sequencing of the respective regions. The
data are schematically displayed in Figure 4B and statisti-
cally summarized in Table 1. Collectively, our results sug-
gested that the level of L1CAM expression is inversely
correlated with CpG island 1 methylation. In contrast, the
CpG island 2 showed no such correlation. The absence of
methylation in CpG islands is typically associated with the
activity of genes. It is therefore likely that the binding of
transcription factors associated with the regulation of
L1CAM in tumors such as β-catenin/TCF-LEF and SLUG
[14,22,23] could be facilitated.
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1 to 14) are shown. DNAs were extracted from punched areas (1 mm diam
endometrium is L1CAM negative.
Methylation of the L1CAM promoter in EC tumor tissues
It is now well known that the methylation patterns in cell
lines maintained in long term culture are fraught with po-
tential problems and may diverge from the parental tissue.
We therefore extended the MethyLight PCR analysis to
primary tumor tissues and extracted DNA from various
types of ECs and from normal endometrium tissue that
is L1CAM negative. DNAs were extracted from both
L1CAM positively or negatively stained tumor areas (see
Figure 5A). The results from the Methylight reaction from
paired areas of the same tumors are summarized in
Figure 5B and show that the L1CAM promoter methyla-
tion has a high degree of variability. A tendency for
hypermethylation was seen in the L1CAM positive
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staining areas of some EC tumors but the contrary was
noted in other samples (Figure 5B). The differences did
not reach statistical significance (not shown).
Comparison of L1CAM to NY-ESO-1 and MAGE-A3/4
L1CAM is localized on the X-chromosome in Xq28 in
close proximity to the loci for NY-ESO-1 and MAGE-A.
To analyse whether the latter genes, in relation to
L1CAM, are differentially regulated we compared the ef-
fects after treatment of cells with 5-AzaC, TSA or the
combination of both compounds. As expected, MAGE-
A4, A3 and NY-ESO-1 were up-regulated by 5-AzaC or
5-AzaC/TSA, however, the cell lines differed in their re-
sponsiveness. The weakest response to 5-AzaC was seen
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Figure 6 Analysis of MAGEA and NY-ESO-1 expression. RT-PCR analysis
TSA or both compounds. DMSO was used as a mock control. Cells were lys
as internal standard.
in HEC1A cells. There were no effects (or a minor effect
for HEC1A) of TSA treatment alone (Figure 6). The fail-
ure of TSA to up-regulate CT-X genes was confirmed by
Western blot analysis (data not shown). These results in-
dicated that in comparison to L1CAM the CT-X anti-
gens are less sensitive to TSA induced regulation but
equally sensitive to DNA methylation changes. More-
over, the sensitivity varied depending on the cell lines
tested and the CT-X antigen examined.
DNMT1 knock-down mediates upregulation
To further study the regulation of L1CAM and CT-X
genes by DNA-demethylation, we knocked-down the
major methyltransferase DNMT1. Significant depletion
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ed and mRNA was isolated and transcribed into cDNA. β-actin served
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was achieved in HEC1A and ECC1 cells compared to
siGFP controls (Figure 7A). In line with the results
obtained with 5-AzaC, the knock-down of DNMT1
upregulated the mRNA of L1CAM, MAGE-A4, MAGE-
A3 and NY-ESO-1 between 5–20 fold in HEC1A cells
and between 2–4 fold in ECC1 cells. In most cases the
up-regulation could be confirmed by Western blot ana-
lysis using specific antibodies (Figure 7C).
L1CAM is not expressed in human testis tissue
It is known that CT-X antigens are expressed in human
testis tissues. To further identify differences between
L1CAM and CT-X antigens, we compared the expres-
sion of L1CAM, NY-ESO-1 and MAGE-A4 on a human
testis tissue microarray using IHC staining. As shown in
Figure 8, MAGE-A4 and NY-ESO-1 immunoreactivities
were clearly detected but L1CAM staining was not. In
contrast, when tested on EC tissues (n = 5), L1CAM was
present but NY-ESO-1 and MAGE-A4 were not detected
(Figure 8). These findings further support a different
regulation of L1CAM and CT-X-antigens.
Conclusions
Alterations in DNA methylation pattern which often
occur during the pathogenesis of human tumours. Al-
though DNA hypermethylation and the silencing of
tumor suppressor genes has been the focus of such stud-
ies, a recent study in prostate cancer has shown that
DNA hypomethylation can occur in distinct pattern due
to longe-range epigenetic remodelling [12]. 35 activated
domains harbouring cancer-related genes were identified
present on nearly all chromosomes among them region
Xq28 on the X chromosome [12]. As L1CAM and CT-X
antigens are often expressed in tumors and are located
in close vicinity on the X-chromosome it was of interest
to investigate whether the regulation of these genes has
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similarities. Besides the methylation status of the re-
spective promoter region, the configuration of the chro-
matin is also important. The chromatin can be modified
by either histone acetyltransferases or HDACs, which
are involved in post-transcriptional modification of his-
tone proteins, resulting in chromatin remodelling [24].
Here we observed that L1CAM and CT-X antigens

NY-ESO-1 and MAGE-A3/4 are equally sensitive to
DNA methylation changes but differ in response to TSA
induced regulation. CT-X antigens are a group of pro-
teins that appear to be expressed only in germ cells,
trophoblasts and various tumour types such as in carcin-
omas of bladder, lung, ovary and liver [25]. Many
CT-genes have been identified so far, and they can
be generally grouped into those, encoded on the
X-chromosome (CT-X antigens) and those not encoded
on the X-chromosome (non-X CT antigens) [25]. Fre-
quently, tumours tend to co-express several CT-X genes
[26]. In human tumours the aberrant expression of the
CT genes which are normally epigenetically silenced dur-
ing vertebrate development [27] are up-regulated by al-
teration in the genetic imprinting of the X-chromosomal
regions [24]. Epigenetic mechanisms, i.e. an increased
histone acetylation and a reduced DNA-methylation are
involved in the aberrant activation of CT genes [24].
We found that in L1CAM high expressing EC cell

lines the promoter 1 was hypomethylated whereas in
low/negative cells this was not. Hypomethylation in the
L1CAM promoter could influence the binding of tran-
scription factors such as β-catenin/TCF-LEF and SLUG
that are known to be involved in the regulation of
L1CAM expression [14,22,23].
In contrast to the EC cell lines, a clear-cut difference

in L1CAM promoter methylation of ex vivo tumor tis-
sues was not found. Instead, we observed a high inter-
individual variability of promoter methylation. In areas
positive or negative for L1CAM within the same tumor
no consistent differences were observed. Only in 3 out
of 10 paired tumor samples from various EC types a ten-
dency for hypomethylation in L1CAM positive tumor
areas was noted. These findings contrast to the report
by Kato et al. [11]. The authors analysed colorectal
carcinoma cell lines and tumor tissues and found a
good correlation between L1CAM immunoreactivity and
methylation status [11]. It should be noted that the au-
thors did not compare L1CAM positive and negative
parts of the same tumor. Thus, in part the different find-
ings could reflect differences in the study design and
techniques employed. Another possibility is that add-
itional mechanisms of regulation are involved in tumor
tissues and that DNA methylation is not a critical factor
for dynamic expression changes of L1CAM in the tumor
microenvironment.
Finally, in contrast to the CT-X antigens NY-ESO-1

and MAGEA, there was no L1CAM expression detected
in human testis tissue. The methylation status of the
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L1CAM promoter in testis tissue remains to be eluci-
dated. These differences in regulation and expression in
tumors suggest that L1CAM is most likely not a CT-X
related antigen.
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