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Abstract

metastatic pathways.

Background: Triple Negative subset of (TN) Breast Cancers (BC), a close associate of the basal-like subtype (with limited
discordance) is an aggressive form of the disease which convey unpredictable, and poor prognosis due to limited
treatment options and lack of proven effective targeted therapies.

Methods: We conducted an expression study of 240 formalin-fixed, paraffin-embedded (FFPE) primary biopsies from
two cohorts, including 130 TN tumors, to identify molecular mechanisms of TN disease.

Results: The annotation of differentially expressed genes in TN tumors contained an overrepresentation of canonical Wnt
signaling components in our cohort and others. These observations were supported by upregulation of experimentally
induced oncogenic Wnt/B-catenin genes in TN tumors, recapitulated using targets induced by Wnt3A. A functional
blockade of Wnt/3-catenin pathway by either a pharmacological Wnt-antagonist, WntC59, sulidac sulfide, or B-catenin
(functional read out of Wnt/B-catenin pathway) SIRNA mediated genetic manipulation demonstrated that a functional
perturbation of the pathway is causal to the metastasis- associated phenotypes including fibronectin-directed migration,
F-actin organization, and invasion in TNBC cells. A classifier, trained on microarray data from (-catenin transfected
mammary cells, identified a disproportionate number of TNBC breast tumors as compared to other breast cancer
subtypes in a meta-analysis of 11 studies and 1,878 breast cancer patients, including the two cohorts published here.
Patients identified by the Wnt/-catenin classifier had a greater risk of lung and brain, but not bone metastases.

Conclusion: These data implicate transcriptional Wnt signaling as a hallmark of TNBC disease associated with specific
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Background

Stratification of breast cancer (BC) into distinct histo-
logical or molecular subtypes has clinical utility for prog-
nosis of outcome and prediction of treatment [1]. Breast
cancer subtypes based on clinical or molecular character-
istics are typically referred to as hormone-receptor posi-
tive (HR+) or luminal, HER2-amplified, and triple negative
(TN) or basal-like. TNBC are defined by negative of ex-
pression of ER, PR, and HER2 amplification and are
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associated with a higher grade, undifferentiated metaplas-
tic histology, stem cell-like characteristics, invasiveness,
higher metastatic potential, and inconsistently effective
therapies. Triple negative and basal-like subtypes have a
significant overlap, and lack standardized clinical markers
that differentiate the two subtypes, something that under-
lines the inherent heterogeneous nature of these subtypes
[2-4]. Triple negative and basal-like subtypes portend
some of the worst prognoses in BC [5,6], and have the
most challenging diagnosis among BC patients due to the
potential aggressive nature of the disease and limited
number of therapeutic options available. Studies of Shah
et al. indicated that understanding the biology and thera-
peutic responses of patients with TNBC will require the
determination of individual tumor clonal genotypes [7].
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Despite of making considerable progress in cancer re-
search, the mortality rate of TNBC has remained un-
changed in the last decade primarily due to the lack of
specific target identification. The allure of the emerging
genomic technologies in cancer in their ability to generate
new biomarkers that predict how individual patients will
respond to various treatments has not been completely
successful in TNBC. Only recently, the first comprehen-
sive genomic analysis of a basal-like breast cancer was per-
formed by using massively parallel sequencing technology
[8]. Despite a few recent reports that indicated the in-
volvement of certain genes/signaling molecules related to
tumorigenic pathways [4,9-11] in these subsets, there
remains an unmet need for an in-depth study to identify
driver pathways in these closely associated subtypes of BC.

We analyzed mRNA expression from archival formalin-
fixed paraffin-embedded (FFPE) tumor specimens from
two breast cancer cohorts. Our data, together with meta-
analysis of previous breast cancer microarray studies, indi-
cate Wnt pathway activation in TNBC subtypes and pro-
vides evidence for an increased Wnt/p-catenin signaling
associated with high grade, poor prognosis, and metastatic
disease. In light of reports from Reis-Filho’s team [12],
who established a preferential increase in B-catenin pro-
tein (immunohistochemistry) in TNBC patients, our study
not only identifies clinical markers associated with Wnt
signaling such as histological grade 3 tumors and triple
negative pathological subtype, but also indicated an upreg-
ulated state of Wnt signaling increasing the risk for brain
and lung metastases, thus classifying Wnt signaling as a
rational target in TNBC. The inhibition of metastasis-
associated phenotypes, integrin-directed migration and
invasion following Wnt-antagogist, WntC59 as well as -
catenin SiRNA provided mechanistic proof of concept for
the involvement of this pathway in the progression of the
disease and its clinical outcome.

Methods

Study cohorts

Archived FFPE tumor specimens were obtained from
St. Mary’s Hospital, Montreal, Quebec, Canada (Quebec
cohort) and Grady Memorial Hospital, Atlanta, GA
(Georgia cohort) according to institutional guidelines
(Emory University). Tumor content (> 50% inclusion cri-
teria) was assessed by a board certified pathologist. Cohort
sizes of 107 and 166 patients from St. Mary’s and Grady
Hospitals respectively were analyzed at the Emory
Biomarker Service Center (Winship Cancer Institute,
Atlanta, GA). Both Georgia and Quebec samples (FFPE)
were acquired following the acceptance of our protocols
by the ethics committees (Emory University, USA for
Georgia study and Canada for Quebec study) of the re-
spective institutions. Archived FFPE samples were used
for the study. All archived FFPE tumour specimens were
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obtained from St Mary’s Hospital (Montreal, Quebec,
Canada) according to institutional guidelines.

Data Deposition: Microarray data curetted under GEO
series accession numbers [GSE17650 & GSE18539].

RNA preparation, quality control, and DASL assay

FEPE samples were analyzed using DASL (cDNA-mediated,
Annealing, Selection, Extension, and Ligation) expression
chemistry (Illumina, Inc., San Diego, CA), on the Illumina
human cancer panel and a custom panel with breast cancer
related genes. Depending upon tissue availability, specimens
were obtained via either three 5 pm sections or 0.5 mm
cores. Deparaffinization, RNA extraction and RNA purifica-
tion were carried out using commercially available RNA
High Pure Kit (Roche, Mannheim, Germany) modified as
previously described [13]. Prior to DASL analysis, RNA
quality was assessed via RPL13a TagMan assay using a
threshold Ct of less than 29.5. For samples that passed
QC, 200 ng of total RNA was used as input for the
DASL assay according to the manufacturer’s protocol
(llumina, San Diego, CA). When ample RNA was avail-
able, RNA replicates were run to test for reproducibility of
the DASL assay.

To determine whether the DASL assay yields compar-
able data to IHC data, the DASL assay gene intensity
(expression) data were compared with the available IHC
protein expression data for ER, PR and HER2 on the set
of tumor samples. Standard clinical IHC testing was
conducted for ER, PR and HER2 according to guidelines
based on ASCO/CAP. This is now stated in the Methods
section (p. 7, last sentence). “In total, we obtained 87
FFPE breast carcinomas that had previously been scored
for the breast cancer markers, ER, PR and HER2
by immunohistochemistry (IHC) according to guide-
lines based on the ASCO/CAP recommendations for
ER, PR and HER2 testing (ER/PR testing [http://
www.cap.org/apps/docs/laboratory_accreditation/summary_
of recommendations.pdf]; HER2 testing [http://www.
cap.org/apps/docs/committees/immunohistochemistry/
summary_of_recommendations.pdf])”. Once standard-
ized, the similar protocol was followed in both the co-
horts. The comparison of IHC data with DASL data for
ER, PR and HER2 had been carried out as mentioned in
our earlier publication. Our data show that the concord-
ance of DASL data with IHC data for all three receptors
is very high, which is consistent with our previous pub-
lished work relating mRNA and IHC protein levels [14].
Once standardized, the similar protocol was followed in
both the cohorts. A detailed list of the gene-composition
of the Illumina human cancer panel, and the breast can-
cer related genes has been published earlier by our
group [14]. We have added a supplementary table with
the gene-list (Additional file 1: Table S1, Additional file 2:
Table S2) to the revised-MS for the convenience of the
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reader. The detailed procedure to test the reproducibility
of the DASL assay has been already published by our
group [14] (The specific details are noted in the
Additional file 3 of the above mentioned published art-
icle). We used 80 replicates for the standard panel, and
100 replicates for breast cancer custom panel.

Biochemical analyses

Western blots were performed by solubilizing cell lines
with lysis buffer (150 mM NaCl, 6 mM Na2HPO4, 4 mM
NaH2PO4, 2 mM EDTA, 1% sodium deoxycholate,
1% NP-40, 0.1% SDS, 1% aprotinin, 0.2 M sodium
orthovanadate, and 0.1 M phenylarsineoxide), and ly-
sates were assayed for total protein (Bio-Rad protein
assay kit) using BSA as a standard. The normalized ly-
sates (20—40 pg protein) were resolved by 12.5% SDS-
PAGE and transferred to nitrocellulose membranes
[15]. Membranes were probed with anti-B-catenin
(Abcam Inc, Cambridge, MA) antibody, and visualized
with enhanced chemiluminescence reagent combined
with peroxidase-conjugated IgG [16].

In vitro knockdown of f-catenin protein by SiRNA

Breast cancer cell line (MDA-MB231) was seeded onto
6-well tissue culture dishes, and allowed to attach in cul-
ture medium supplemented with 10% FBS. A cell density
of 60% to 70% was used for the transient transfection
(Lipofectamine 2000) of [-catenin-specific SiRNA
(Invitrogen, NY; CTNNB1 VHS50819) into MDA-MB231
cells according to the manufacturer’s instructions. Trans-
fected cells were collected after 24, 48, and 72 hours for
analyses [16].

TCF/LEF promoter activity assay

A luciferase-based reporter gene was used to measure
promoter activity of the TCF/LEF transcription factor
[17]. For SiRNA based study, cells were transiently
transfected with beta-catenin SiRNA [18]. After beta-
catenin siRNA transfection for 24 hours, the cells were
transiently transfected with the reporter construct TOP-
flash or FOPflash. In brief, cells were co-transfected with
2.5 pug TOP flash, a synthetic luciferase-based promoter
plasmid (sensitive to the activity of the -catenin/ TCF-4
complex, containing three copies of the TCF-4 binding
site upstream of a firefly luciferase reporter gene) using
the Lipofectamine 2000. In the other set of cells, an equal
amount of the mutant form of the above promoter (FOP
flash) was co-transfected using the same transfection re-
agent. FOPflash has mutated copies of Tcf/Lef sites and is
used as a control for measuring nonspecific activation of
the reporter. Twenty hours after TOPflash or FOPflash
transfection, luciferase assay was performed. Relative lucif-
erase activity (in arbitrary units) was reported. In a separate
set of experiments, cells were co-transfected either with
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TOP flash or FOPflash using lipofectamine. After 12 hour
incubation, each set was treated with sulindac sulfide for
24 hours. The relative luciferase activity (TOP flash/FOP
flash) was calculated from triplicate experiments.

Cell line based phenotypic assays

Fibronectin directed migration assay was performed on
Wnt-antagonist, WntC59 (Cellagen Technology, LLC,
San Diego, CA) treated or B-catenin SiRNA transfected
MDA-MB231 cells by transwell assay and scratch assay.
Invasion assay was performed by transwell assay. Hapto-
taxis assays were carried out using transwell migration
chambers (Costar Corp.) as previously described [16].
Cells were added into the upper chamber of the trans-
well containing the through which they were allowed to
migrate over time to the fibronectin-coated side. Control
experiments involved coating both sides of the mem-
brane with fibronectin. In vitro wound healing assays
were performed as previously described [16]. In brief,
after coating plates with fibronectin, wounds were cre-
ated by scratching the confluent monolayer of cells. The
width of the “scratched” area was measured from ran-
domly chosen fields using either Olympus DP72 system
or Axiovert 200 M, Zeiss system. Student’s t test was
used to determine the statistical significance.

Confocal microscopy and real-time video microscopy of
live cells

To study the cytoskeletal arrangement, HCC38 and
MDA-MB231TNBC cells were fixed, and permeabilized
with PHEMO buffer. Phalloidin 555 was used for
staining the cytoskeleton filamentous-actin and DAPI
as a counter stain. Cells were imaged using a Zeiss
(Thornwood, NY) LSM 510 Meta confocal microscope
with a Plan-Apochromat oil objective. Images were ac-
quired using Zeiss LSM 510 software and processed using
Adobe Photoshop CS3. To study the involvement of Wnt-
pathway in integrin-directed migration in real time, video
microscopy was performed. A scratch-would healing assay
was performed on the confluent layer of cells (grown on
fibronectin-coated glass-cover slip culture- dishes; Mattek,
Ashland, MA). Time-lapse images were acquired with a
Perkin Elmer Ultraview ERS (Norwalk, CT) disk-spinning
confocal system, mounted on a Zeiss Axiovert 200 M
inverted microscope equipped with a 37°C stage warmer,
incubator, and humidified CO2 perfusion system. Bright-
field images were acquired with a Hamamatsu Orca-ER
camera with a Plan-Neoflour 10x objective (NA 0.75; 1x1
binning) at 10 minutes intervals for each image set.

Data and statistical analysis

A full description can be found in the supplementary
methods. In brief, DASL transcript intensities were quantile
normalized in GenomeStudio and replicates were mean
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combined. Differential transcripts were determined using
permutation testing [19] with a false discovery rate (FDR)
less than 1% and a 1.5 fold-change. Hierarchical clustering
was performed using the “heatmap.2” function of the R/
Bioconductor package “gplots” [20]. KEGG signal trans-
duction pathways [21] were analyzed for overrepresenta-
tion in the triple negative subtype using Fisher’s exact test
and pathway expression was determined using the mean
of normalized pathway components. Differential pathway
regulation was assessed by a t-test with Bonferroni’s cor-
rection applied and permutation testing. HMEC onco-
genic data [22] was downloaded from Gene Expression
Omnibus (GEO) [23] and pathway expressions were
calculated as mean of differentially expressed genes with
induced genes weighted positively and inhibited genes
negatively. Analysis of Wnt regulation induced by Wnt3A
from Nguyen et al. [24] employed the same methods for
the LWS-81 genes. Meta-analysis data [25-32] were down-
loaded from GEO [23] and Affymetrix CEL files were
MAS 5.0 normalized with a target intensity of 600. Agilent
normalized series matrix files were downloaded and
duplicate samples between studies were removed. A
nearest shrunken centroid classifier implemented in the
R/Bioconductor package “pamr” [33] was trained on
[-catenin induced data from Bild et al. [22] and applied to
11 studies and 1,878 patients. Overrepresented patho-
logical subtype, intrinsic subtype, histological grade, and
lymph node status in Wnt + (Wnt classifier signature) pa-
tients were analyzed using Fisher’s exact test and Kaplan-
Meier survival curves were created in R/Bioconductor
using the “survival” package with significant differences in
risk calculated using the log-rank test. The details of the
analyses and statistical methods are presented in the sup-
plementary section as “Additional file 4”.

Results

Gene expression was reproducible and concordant with
clinical pathological subtype

Messenger RNA expression from FFPE samples were char-
acterized using cDNA-mediated, Annealing, Selection,
Extension, and Ligation (DASL) [34] for two populations
of breast cancer patients: one from Quebec, and the other
from Georgia. Quebec samples came from an unselected
patient population from a community hospital in Canada
whereas the Georgia cohort was preferentially selected
for TNBC. The Quebec cohort was representative of the
breast cancer population at the local hospital, whereas
the Georgia cohort was preferentially selected for TNBC
(Additional file 3: Figure S1H, K and L). Other inclusion
criteria required specimens with more than 50% tumor
content, matching pathology records for ER, PR, and
HER2, and at least 200 ng of RNA. RNA was extracted
and further quality controlled as previously described [13].
Samples were run on two DASL panels; one a commercially
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available panel targeted at cancer related genes, the other a
panel targeting genes relevant to breast cancer. RNA was
run on both DASL panels with technical replicates when
sufficient RNA was available, and had an average Pearson
correlation coefficient (R2) of 0.96. Common genes (152)
between the two DASL panels measured a correlation (R2)
of 0.88 (Additional file 3: Figure S1A-F). Expression of
ESR1 (transcript for ER), PGR (transcript for PR), and
ERBB2 (transcript for HER2) corresponded well to path-
ology immunohistochemistry (IHC) records. DASL expres-
sion of ESR1 and PGR were greater in HR + as compared
to TNBC and HER2+ subtypes, and likewise ERBB2 ex-
pression was higher in HER2+ samples compared to TNBC
and HR + subtypes in all cohorts (Additional file 3:
Figure S1G-L). These results are reproducible and con-
sistent with pathology records.

Whnt signaling is upregulated in TNBC

Differentially expressed transcripts in the TNBC subtype
of the Quebec and Georgia cohorts were annotated for
canonical signal transduction pathways using the KEGG
database [21]. After Bonferroni correction for multiple
hypotheses testing, the only significant result was the
Wnt signaling pathway in the Quebec cohort (p =0.048,
Fisher’s exact test; (Additional file 3: Figure S2A-C).
Further analysis of three published microarray studies,
including a 99 patient cohort with pathology subtype
from Memorial Sloan-Kettering Cancer Center (here-
after MSKCC-99) [35], a 186 patient cohort with intrinsic
subtype from University of North Carolina Chapel Hill
(hereafter UNCCH-186) [30], and a 159 patient cohort
also with intrinsic subtype from University Hospital,
Stockholm, Sweden (hereafter Stockholm-159) [31], the
only significant results were Wnt (p =0.001) and TGF-$
(p=0.035) in the Stockholm-159 basal-like BC subtype
(Additional file 3: Figure S2D-F). Canonical pathway
expression, assessed as the mean of normalized gene com-
ponents, was measured for differential regulation between
breast cancer subtypes. After correction for multiple
hypotheses, the most notable pathways included Wnt sig-
naling upregulated in the TNBC/basal-like BC subtypes
of the Quebec, UNCCH-186, and Stockholm-159 co-
horts; TGE-p in the TNBC subtypes of the Quebec and
UNCCH-186 cohort; and both ErbB and VEGF signal-
ing upregulated in the MSKCC-99 triple negative and
UNCCH-186 basal-like subtypes (p < 0.05, Additional
file 3: Figure S3). Of the 10 KEGG canonical signal
transduction pathways investigated, Wnt was the most
commonly overexpressed pathway in the TNBC sub-
types indicating pathway perturbation in these types
of breast cancers (Additional file 3: Figure S4). Based on
these data we proceeded to examine experimental data
sets to confirm these findings. Oncogenic signaling was
investigated using gene sets derived from adenoviral
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vector transfected human mammary epithelial cells
(HMECs) for B-catenin, E2F3, Myc, Ras, and Src genes
[22]. Transcripts uniquely induced and inhibited from
each HMEC model were used to define oncogenic path-
way expression in the same manner as that applied to the
canonical pathways, except in this case both those genes
expressed and inhibited were used to measure pathway
expression (see supplementary methods — HMEC Onco-
genic Pathways). Analysis of pathway regulation by sub-
type indicated Wnt/p-catenin as the most commonly
upregulated pathway in TNBC subtypes (Additional file 3:
Figure S5). Indeed, the Wnt pathway was upregulated
relative to the HR + or luminal subtypes in each cohort
examined (Additional file 3: Figure S6). Thus, these data
indicate that both oncogenic and canonical Wnt signaling
pathways are uniquely upregulated in the TNBC subtypes.
Expression of Wnt/p-catenin components in patients clas-
sified as Wnt-compared to Wnt+ (Wnt classifier signature)
in each of the 11 studies analyzed in the meta-analysis
shows greater expression of tumors classified as Wnt+
(Wnt classifier signature) (Additional file 3: Figure S7). To
further validate Wnt transcriptional activation in TNBC
subtypes an independent experimental Wnt gene set was
used to analyze breast cancer subtypes. This Wnt classifier
signature (mentioned in figure as Wnt+) is composed of
81 genes identified by treating lung cancer cell lines with
the Wnt3A ligand (hereafter LWS-81) [24]. Despite a
small overlap of the LWS-81 genes and probes available
on the breast cancer DASL panel (n =15), this gene set
clustered TNBC patients together in both Quebec and
Georgia cohorts (Figure 1). Moreover, Wnt signaling de-
fined by the LWS-81 genes was significantly upregulated
in TNBC as compared HR + or luminal subtypes in the
Quebec, Georgia, MSKCC-99, UNCCH-186, and
Stockholm-159 studies (Figure 2). These data, in agree-
ment with the P-catenin induced Wnt signaling from
Bild et al. [22] (Additional file 3: Figure S5), uniformly in-
dicate elevated oncogenic Wnt signaling in TNBC
subtypes.

Functional involvement of Wnt signaling in
metastasis—associated tumor cell phenotypes

TNBC is a highly metastatic disease. A transcriptionally
active B-catenin (unphosphorylated on Serines 33 and 37
as well as Threonine 41) [36] is a direct functional read-
out of Wnt/p-catenin signaling. As an independent line
of evidence for Wnt pathway activation in TNBC, and
its functional association with the metastatic disease, the
role of Wnt signaling was examined in vitro using TNBC
cell lines. A functional blockade of Wnt/B-catenin pathway
by either a pharmacological Wnt-antagonist, WntC59, or
[B-catenin SiRNA mediated genetic manipulation demon-
strated that a functional perturbation of the pathway is
causal to the metastasis- associated phenotypes including
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B GA BCP

Wnt

Figure 1 Unsupervised hierarchical cIustering of Wnt3A
induced genes from the LWS-81 signature (shown in the figure
as Wnt+) [24] common to the Breast Cancer DASL panel
segregated triple negative tumors (shown in black) from other
subtypes in both A) Quebec (QC-BCP) and B) Georgia (GA-BCP)
cohorts. Each row represents a transcript, and each column
represents a tumor sample, with triple negative denoted in
black, HER2+ in grey, and HR + in white. Yellow indicates genes
upregulated in response to Wnt3A and blue indicates genes
down regulated. High expression is represented by red and low
expression by green.

Patholo Subtype  Z-Score Expressuon
TN HER2+ HR+

fibronectin-mediated and invasion in TNBC cells.
Similarly, Wnt/p-catenin signaling attenuator, sulindac
sulfide also inhibited migration of TNBC cells on fi-
bronectin (data not shown). We observed that the treat-
ment with a pharmacological Wnt-antagonist, WntC59
blocked fibronectin-mediated migration and invasion in
MDA-MB231 cells (Figure 3A). This is consistent with
our observation that the SiRNA-mediated decrease in
levels of B-catenin protein at different time points follow-
ing tranfection of P-catenin SiRNA in MDA-MB231
cells (Figure 3B) caused significant inhibition of fibronectin-
mediated migration and invasion. Since F-actin organization
is one of the key effectors of cell movement, we tested
the effect of inhibition of Wnt-signals on the F-actin
organization in TNBC cells. Out data show that sulindac
sulfide substantially abrogated the cellular organization of
F-actin (Z-section) on fibronectin in MDA-MB231 and
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Figure 2 Lung cancer Wnt induced (LWS-81) genes [24] used to assess Wnt transcriptional regulation in the Quebec cohort profiled on
the A) human cancer panel (QC-HCP) and B) breast cancer panel (QC-BCP) as well as C) Georgia (GABCP), D) MSKCC-99 [29],
E) UNCCH-186 [30], and F) Stockholm-159 (STH-159) cohorts [31]. Significant p-values after Bonferroni's correction are shown relative to the

HCC38 TNBC cells (Figure 3C 1, ii and iii). Finally, we car-
ried out a real time video microscopy of the cell move-
ment following the inhibition of Wnt-signals in HCC38
TNBC cells (Additional files 5 and 6; two AVI files).

To address the issue of whether or not the modulation
of Wnt-beta-catenin pathway causes the attenuation
of its downstream signals, we tested the expression of
active beta-catenin following beta-catenin SiRNA or sulin-
dac sulfide treatment in MDA-MB-231 cells (Figure 3D
left panel). Since active beta-catenin levels were decreased
in both the conditions, we also conducted the experiment
to study the transcriptional activity of beta-catenin. Our

data show a significant decrease in the relative luciferase
activity following beta-catenin SiRNA or sulindac sulfide
treatment in MDA-MB-231 cells (Figure 3D right panel).

Wnt/B-catenin signaling is associated with metastatic
disease

We have performed Kaplan-Meier survival curves of Wnt/
B-catenin positive (Wnt+: Wnt classifier signature) and
Wnt/B- catenin negative (Wnt-) patients with respect to
overall survival, recurrence-free survival, metastasis-free
survival, lung metastasis-free survival, brain metastasis-
free survival, and lung metastasis-free survival in TNBC
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abrogated the F-actin cytoskeletal organization in HCC38 TNBC cell line (Cii) as compared to the control (Ci) as well as in MDA-MB231 TNBC cell line
(Ciii). Active beta-catenin levels were semi-quantified in arbitrary units (Image J) following Western blot analyses from the clarified MDA-MB231 cell
lysates (beta-catenin SIRNA transfected cells and sulindac sulfide treated cells. Upper bar diagrams showed the relative desitometric expressions of
beta-catenin, and active beta-catenin. Beta-actin was used as the loading controls (D left panel). Relative luciferase activity (TOP Flash over FOP Flash)
measured in MDA-MB231 cells following beta-catenin SiRNA transfection and sulindac sulfide treatment was plotted (three different experiments).
Error bars represent standard error of the means (SDs), and statistical significance was determined by paired t-test. *P < 0.05 (D right panel).
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patients (Figure 4). To investigate the implications of Wnt
signaling, we used a nearest shrunken centroid classifier
[33] to stratify patients by Wnt/B-catenin transcriptional
activity. This Wnt/p-catenin classifier was trained to iden-
tify f-catenin transformed HMECs as opposed to normal
and other oncogenic (E2F3, Myc, Ras, and Src) models
[22] and subsequently applied to a meta-analysis of 11
studies and 1,878 expression profiles from primary breast
cancers [25-32,37] including the Quebec and Georgia co-
horts. Well known components of the Wnt signaling
pathway is represented in Figure 5. Wnt/p-catenin positive

(Wnt+) tumors accounted for 188 of the 1,878 patients.
Patients were subsequently analyzed for intrinsic and
pathology determined subtype, lymph node status, and
grade, as well as metastasis-free (MFS), recurrence-free
(RFS), and overall survival (OS). Complete pathology re-
cords for ER, PR, and HER2 were available for 310 pa-
tients, and of these 56 were categorized as Wnt+, 52 of
which were TNBC. This strongly supports earlier observa-
tions that Wnt/[B-catenin is preferentially activated in the
TNBC subtype (p=6.3 x 10-14, Fisher’s exact test). Ana-
lysis of 465 patients with intrinsic subtype found 53 of 71
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Wnt + tumors corresponded to the basal-like subtype,
likewise implicating elevated Wnt signaling in this subtype
(p=22 x 10-16). Data regarding spread of disease to
lymph nodes were available for 1,202 patients where
Wnt + patients composed 7.1% and 10.2% of lymph node
negative and positive cases, respectively, marginally associ-
ating Wnt signaling with positive lymph node status (p =
0.042). In contrast, analysis of 912 patients with histo-
logical grades 1, 2, and 3 consisted of 1.1%, 5.7%, and
15.2% of Wnt + patients, correlating Wnt signaling with
grade 3 carcinomas (p=4.0 x 10-11, Additional file 3:
Table S3). These data support our earlier observations of
elevated Wnt signaling in TNBC subtypes, and associate
Wnt signaling with high grade carcinomas. Survival ana-
lyses of breast cancer patients with elevated Wnt signaling
distinguish these cancers as having greater metastatic

potential and overall worse prognoses. Kaplan-Meier
survival curves for OS, RFS, and MES, including lung,
brain, and bone specific metastases where analyzed for
Wnt + and Wnt- patients stratified by pathology and in-
trinsic subtypes, grade, and lymph node status (Figure 6).
Significantly increased risk was found for Wnt + patients
with respect to OS, RES, and MFS (p <0.05, Figure 4).
However, these differences were most significant in the
metastatic setting (p = 9.6 x 10-7) and specifically in lung
and brain but not bone metastases (Figure 6A vi). Stratify-
ing patients by pathological determined subtype limited
this analysis to a much smaller cohort of patients with
both outcome and pathology records; however, Wnt +
TNBC patients had greater risk of lung metastases (p =
0.0393, Figure 4F). Other significant differences include a
worse prognosis for Grade 2 Wnt + patients with respect
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to OS as well as RES (Figure 6D), and increased risk for
lung and brain metastases for lymph node negative and
positive patients, respectively (Figure 6E). These data cumu-
latively suggest that increased Wnt/p-catenin signaling is as-
sociated with metastatic pathways to the brain and lung.

Discussion

Our study demonstrates two major findings that are
consistent with current knowledge and advance our un-
derstanding of subset specific breast cancer etiology. First,
using novel technologies to characterize FFPE materials
we ascertained data consistent with clinical pathological
subtype that also identified canonical and oncogenic Wnt
signaling as an activated pathway in TNBC. These findings
were confirmed using multiple published studies in di-
verse cohorts of patients across different microarray plat-
forms, as well as independent experiments that identified
Wnt induced targets which were consistently upregulated
in TNBC subtypes. In the context of reports indicating as-
sociations of Wnt signaling with the basal-like subtype
[38,39], these data strongly suggest that the Wnt pathway
is preferentially activated in TNBC subtypes, and may rep-
resent a possible therapeutic target in the treatment of

these cancers. Reis-Filho’s group reported that -catenin
pathway activation in BC is associated with the TNBC
phenotype but not with CTNNB1 mutation [12]. We have
observed (by immuno-fluorescence) a higher level of
[B-catenin (active) in the nucleus of MDA-MB231 TNBC
cells as compared to non-TNBC (MCF7 and BT474) cell
lines (data not shown).

Khramtsov et al.,, and others reported the association
of Wnt signaling in TNBC with higher metastasis and
poor prognosis [40,41]. This observation can be ex-
plained by the fact that Wnt-B-catenin pathway plays a
critical role in the regulation of metastasis-associated
phenotypes in tumor cells. Breast cancer metastases are
osteolytic in nature, and osteolytic bone lesions are
formed due to tumor-induced bone resorption and
destruction [42]. Regulatory mechanisms underlying
osteolytic metastasis to bone is a vicious cycle reflecting
complex interplay of molecules which is propagated by
four contributors: tumor cells, osteoblasts, osteoclasts
and factors within bone matrix [43,44]. Wnt-pathway has
emerged as a crucial regulator of bone formation, and re-
generation as Wnt signaling stimulates bone formation,
and is also reported as a therapeutic target for bone
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diseases [45,46]. Wnt signaling in osteoblasts regulates ex-
pression of the receptor activator of NFkappaB ligand, and
inhibits osteoclastogenesis in vitro [47] (while Dickkopfl,

a secreted Wnt/beta-catenin antagonist, produced by
breast tumor cells is an important mechanistic link be-
tween primary breast tumors, and secondary osteolytic



Dey et al. BMC Cancer 2013, 13:537
http://www.biomedcentral.com/1471-2407/13/537

bone metastases [42]. In case of hormone-receptor posi-
tive tumors, it has been reported that in contrast to its
role in breast cancer initiation, estrogen signaling has a
protective effect in later stages, where estrogen receptor
(ER) loss associates with aggressive metastatic disease
[48]. In the context of the above mentioned reports, it ap-
pears that Wnt-positivity in hormone-receptor positive
patients (HR+/Wnt+) may have a negative regulatory
influence on bone metastases as observed by the lower
rate of bone metastatic events as compared to hormone
receptors-positive Wnt-negative patients (HR+/Wnt-).

In our data, both TNBC and HER2+ have somewhat
similar/identical average levels of wnt-expression, and
expression of wnt/beta-catenin genes (Figure 2 and
Additional file 3: Figure S5). This similarity in the ex-
pression pattern(s) between the TNBC and the HER2+
group can be due to an intrinsic heterogeneity within
HER2-enriched/amplified subtype. Indeed, it has been
shown that, when only HER2-amplified breast cancers
are taken into account, approximately 50% are ER-
positive [49]. Hence the other 50% are ER-negative HER2-
amplified breast cancers. Previous comparative genomic
hybridization (CGH) studies have demonstrated that
ER- negative disease differs significantly from ER-positive
cancers in terms of the pattern, type, and complexity of
genetic aberrations [50-53]. Furthermore, data at the
European Society for Medical Oncology (ESMO) Vienna
2012 congress on the duration of adjuvant trastuzumab
therapy hint at a difference between HER2 + /ER +
and HER2 + /ER - disease, in keeping with the concept
that HER2 + /luminal is biologically distinct from HER2 +
/HER2-enriched disease, which is predominantly ER -
[30,54]. Sircoulomb et al. have shown that ER + and ER-
ERBB2-amplified BCs are different and the WNT/b
catenin signaling pathway was involved in ERERBB2-
amplified BCs [55]. Thus it is highly possible that ER-
negative HER2-amplified tumors present within the
HER2-amplified group in our study can influence the levels
of wnt-expression and expression of wnt/[-catenin genes.

Wnt-C59 is a potent and selective Wnt signaling
modulator with IC50 <0.11 nM in Wnt-Luc reporter
assay for Wnt pathway inhibition, and with chemical/
physical properties, suitable for in vitro/in vivo studies.
Wnt-C59 prevents palmitylation of Wnt proteins by Por-
cupine, thereby blocking Wnt secretion and activity,
similar to Wnt inhibitors IWP-2, IWP-3 and IWP-4.
The observed inhibition of integrin-directed migration
and invasion of MDA-MB231 cells following Wnt-C59
treatment in our results provides mechanistic explan-
ation to our observation that, (1) Wnt signaling is upreg-
ulated in TNBC, and (2) Wnt/p-catenin signaling is
associated with metastatic disease. Recently, Craig et al.,
have reported genome and transcriptome sequencing in
prospective metastatic triple negative breast cancer [56].
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To further ascertain the functional significance of the
pathway in metastatic disease, we also genetically manip-
ulated the cellular levels of P-catenin, the functional
readout of Wnt/f-catenin pathway (Figure 5). Together,
our functional data demonstrate a direct involvement of
Wnt-B-catenin pathway in the metastasis-associated phe-
notypes in tumor cell (Figure 3 and Additional file 5). We
have studied the cause-effect relationship of Wnt-p-
catenin pathway with metastasis in TNBC cell line models
using three tools, genetic (beta-catenin SiRNA), pharma-
cological (Wnt-B-catenin pathway modulator; Wnt-C59),
and functional (sulindac sulfide). Our data show that
perturbation of the Wnt-B-catenin pathway abrogated
metastasis-associated phenotypes in TNBC cells fol-
lowing attenuation of beta-catenin transcriptional activity,
proving a direct mechanism based relationship between
Wnt-B-catenin pathway and metastasis in TNBC. The re-
sults of the study may have implications for therapeutic
target identification in future. The functional data would
benefit from validation in other in vitro models.

Furthermore, other observations in this analysis in-
clude upregulation of Myc regulated genes (Additional
file 3: Figure S5) that is consistent with recent reports
identifying this Wnt transcriptional target [57] as upreg-
ulated in the basal-like subtype [58]. Thus, these data in-
dicate that a significant subset of TNBC is characterized
by Wnt activation. Notable Wnt transcriptional targets
upregulated in TNBC (Figure 5) included matrix metal-
lopeptidase 7 (MMP?7) [59], inteleukin 8 (IL8) [60], MYC
[57], VEGF [61], frizzled 7 (FZD7) [62], survivin (BIRC5)
[61], CD44 [63], MET [38,64], peroxisome proliferator-
activated receptor gamma (PPARD) [65], uPAR (PLAUR)
[66], and snail (SNAI1) [67] (Figure 5). Furthermore, sev-
eral Wnt antagonists were downregulated in the TNBC
subtypes such as the androgen receptor (AR) [68,69],
FOXA1 [70], and MYB [71]. These data highlight some of
the Wnt components differentially regulated in TNBC.

In addition to the observed upregulation of Wnt signal-
ing in TNBC, we also found association of Wnt signaling
with metastatic disease. The Wnt/B-catenin classifier
trained to identify oncogenic -catenin signaling identified
a disproportionate number of TNBC patients, supporting
earlier observations of preferential Wnt activation in this
subtype. Importantly, this classifier identified patients that
were more likely to experience lung and brain metastases.
These two metastatic routes have been associated with
the basal-like subtype where Wnt signaling was noted
as upregulated [39], and more recently, Wnt has been
causally implicated in lung metastases [24]. Our analyses
further establish these findings and suggest that Wnt sig-
naling confers a greater risk of lung metastases within the
TNBC subtype (Figure 4F). There are certain limitations
of the study. Sample size of HER2 enriched/amplified
group in both Quebec and Georgia cohorts is lower than
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HR + and TNBC groups. We have restricted our study
only to the 3 major clinical treatment categories of breast
cancer, HR+, HER2+ and TNBC based on comprehensive
gene expression profiling. However, clinically, each of
three major categories of breast cancer is also a heteroge-
neous group by themselves. Several recent studies have
described that even the relatively small class of breast
tumors like TNBC can be further divided into five or six
subclasses, each with its own molecular features, and
unique sensitivity to therapeutic agents. A number of
hypotheses have been proposed to explain the origin of
inter-tumor heterogeneity in breast cancer, including
subtype-specific tumor cell-of-origin and transforming
events [72,73]. We also have not stratified our study in the
node-negative and node-positive settings.

Targeting the Wnt pathway has traditionally been diffi-
cult, but emerging modalities provide potential oppor-
tunities. Examples of small molecule inhibitors include
sulindac, XAV939, ICG-001, and thiazolidinediones (TZDs)
(Figure 5). Sulindac is a non-steroidal anti-inflammatory
drug (NSAID) which also inhibits Wnt signaling by binding
the PDZ domain of disheveled (DVL1) [74,75] and like
other NSAIDS, inhibits cyclooxygenase-2 (COX2), a gene
recently implicated in breast cancer metastasis to the brain
[25,76]. XAV939 is a small molecule inhibitor that has re-
cently been identified as targeting the poly-ADP ribose
polymerase (PARP) gene tankyrase, which degrades Axin
and allows B-catenin to avoid phospohorylation, subsequent
poly-ubiquitination, and proteasomal degradation. We have
observed that both sulindac and XAV939 blocks metastasis
associated phenotypes (e.g. integrin-dependent migration,
matrigel invasion, vascular mimicry) and clonogenic growth
in TNBC cells lines (data not shown).

Conclusion

Our study contributes not only by identifying clinical
markers associated with Wnt signaling such as histo-
logical grade 3 tumors and TNBC pathological subtype,
but also increased risk for brain and lung metastases,
thus recognizing Wnt signaling as a rational target in
TNBC. The results of the study have implications for
therapeutic target identification and the design of future
clinical trials for this aggressive group of breast cancer.
More genomic studies like this, however, are needed to
create a genetic landscape of TNBC which will be utilized
to differentiate “driver mutations” from “carrier mutations”
and will guide therapeutics development. Individualized
treatment will be possible only once we fully appreciate
the biology of these genetic abnormalities.

Additional files

Introduction to Additional file 3: Details of Figure SI:
Assay reproducibility in the Quebec cohort measured by
a distribution of Pearson R2 coefficients between RNA
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replicates on the A) human, and B) breast cancer (BC)
DASL panels. C) Overlap of gene content on the human
(dashed line) and BC (solid line) DASL panels, and D)
replicated samples on both platforms. E) Distribution of
inter-platform Pearson R2 correlations for samples run
on both platforms, and F) a Venn diagram of differen-
tially regulated genes found using the overlap of patients
and genes on the human and BC DASL panels. Expres-
sion of ESR1, PGR, and ERBB2 by pathology determined
subtype for HR + (white), HER2+ (grey), and TN (black)
subtypes in the Quebec cohort on the G) human and I)
BC DASL panels, as well as the K) Georgia cohort on
the BC DASL panel correspond with expected clinical
pathological subtype. Cohort sizes by pathology subtype
for the Quebec cohort on the H) human and J) BC
DASL panels, as well as the L) Georgia cohort on the
BC DASL panel are depicted by pie charts. Details of
Figure S2: Analysis of upregulated probes in TNBC as
compared to other subtypes in context with KEGG [21]
signal transduction pathways. Overrepresented probes in
each pathway were compared to the number of pathway
probes available on the specific platform and the total
number of probes upregulated using Fisher’s exact test.
A) Quebec cohort on the human cancer DASL panel
(QC-HCP), B) Quebec on the BC DASL panel (QC-
BCP), C) Georgia cohort on the BC DASL panel (GA-
BCP), D) MSKCC-99 [29], E) UNCCH-186 [30], and F)
Stockholm-159. P-values were Bonferroni corrected and
significant pathways (p <0.05) are in bold. Details of
Figure S3: Pathway expression of canonical KEGG signal
transduction pathways [21] were measured as the nor-
malized mean of the pathway components and subse-
quently used to calculate pathway perturbation between
BC subtypes (see Additional file 4). Pathways that were
differentially expressed relative to the TNBC subtype
have significance lines and a corresponding p-value with
Bonferroni’s correction for multiple hypothesis testing
applied. Analyses included cohorts from Quebec profiled
on the A) human (QCHCP) and B) BC DASL panels
(QC-BCP), C) Georgia on the BC DASL panel (GA-
BCP), D) MSKCC-99 [29], E) UNCCH-186 [30] and F)
Stockholm-159 [31]. Details of Figure S4: Canonical
Wnt expression of KEGG [21] pathway components.
Pathway regulation was higher in TNBC as compared to
other subtypes in A & B) Quebec (QC-HCP & QC-
BCP), C) Georgia (GABCP), D) MSKCC-99 [29], E)
UNCCH-186 [30], and F) Stockholm-159 cohorts. Sig-
nificant p-values after Bonferroni’s correction are shown
relative to the TNBC subtypes (see Additional file 4).
Details of Figure S5: Pathway expression of experimen-
tally derived oncogenic signaling pathways from Bild
et al. [22] measured between BC subtypes (see
Additional file 4). Pathways that were differentially
expressed after Bonferroni’s correction are in bold.
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Analysis include cohorts from Quebec profiled on the A)
human (QC-HCP) and B) BC DASL panels (QCBCP), C)
Georgia on the BC DASL panel (GA-BCP), D) MSKCC-
99 [29], E) UNCCH-186 [30], and F) Stockholm-159 [31].
Hierarchical clustering of pathway expression depicts pat-
terns in pathway regulation (rows) in context with BC
subtype (columns). Details of Figure S6: Experimentally in-
duced Wnt/p-catenin pathway expression from Bild et al.
[22]. Pathway regulation was assessed in the Quebec co-
hort on the A) human (QC-HCP) and B) BC DASL panels
(QC-BCP), C) Georgia (GA-BCP), D) MSKCC-99 [29], E)
UNCCH-186 [30], and F) Stockholm-159 cohorts. Signifi-
cant p-values after Bonferroni’s correction are shown rela-
tive to the TNBC subtypes.

Additional file 1: Table S1. lllumia Cancer Panel.
Additional file 2: Table S2. Custom Cancer Panel.

Additional file 3: Figure S1-Table S3: Assay reproducibility in the
Quebec cohort measured by a distribution of Pearson R2 coefficients
between RNA replicates. Figure S2: Analysis of upregulated probes in
TNBC as compared to other subtypes in context with KEGG [21] signal
transduction pathways. P-values were Bonferroni corrected and significant
pathways (p <0.05) are in bold. Figure S3: Pathway expression of canon-
ical KEGG signal transduction pathways [21] were measured as the nor-
malized mean of the pathway components and subsequently used to
calculate pathway perturbation between BC subtypes (see Additional file
4). Figure S4: Canonical Wnt expression of KEGG [21] pathway compo-
nents. Significant p-values after Bonferroni's correction are shown relative
to the TNBC subtypes (see Additional file 4). Figure S5: Pathway expres-
sion of experimentally derived oncogenic signaling pathways from Bild

et al. [22] measured between BC subtypes (see Additional file 4). Hierarch-
ical clustering of pathway expression depicts patterns in pathway regula-
tion (rows) in context with BC subtype (columns). Figure S6:
Experimentally induced Wnt/B-catenin pathway expression from Bild

et al. [22]. Significant p-values after Bonferroni's correction are shown rela-
tive to the TNBC subtypes. Figure S7: Expression of Wnt/B-catenin com-
ponents in patients classified as Wnt compared to Wnt + (Wnt classifier
signature) in each of the 11 studies analyzed in the meta-analysis shows
greater expression of tumors classified as Wnt + (Wnt classifier signature).
Table S3: Table identifying the number of patients from each cohort in a
meta-analysis of 11 studies and 1,878 patients with pathological or intrin-
sic determined subtype, grade, and lymph node status. Each category is
broken down by total number of Wnt + (Wnt classifier signature) and
Whnt- patients identified by the Wnt/B-catenin classifier and then analyzed
for overrepresentation using Fisher's exact test.

Additional file 4: Supplementary Analysis and Statistical Methods.

Additional file 5: Real-time Video Microscopy: A scratch-would
healing assay was performed on the confluent layer of cells (grown
on fibronectin-coated glass-cover slip culture- dishes; Mattek,
Ashland, MA). Time-lapse images are acquired with a Perkin Elmer
Ultraview ERS (Norwalk, CT) disk-spinning confocal system, mounted on
a Zeiss Axiovert 200 M inverted microscope equipped with a 37°C stage
warmer, incubator, and humidified CO2 perfusion system. Bright-field
images are acquired with a Hamamatsu Orca-ER camera with a
Plan-Neoflour 10x objective (NA 0.75; 1x1 binning) at 10 minutes intervals
for each image set. HCC38 cells were treated with sulindac sulfide, and
their movement was compared with the vehicle treated cells.

Additional file 6: Real-time Video Microscopy.
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TN: Triple negative; HR: Hormone receptor; ER: Estrogen receptor;

PR: Progesterone receptor; HER2: Human epidermal growth factor receptor 2;
OS: Overall survival; RFS: Recurrence-free survival; MFS: Metastasis-free
survival; DASL: cDNA mediated annealing, selection, and ligation.
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