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Abstract
Background: Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the
prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One
stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and
growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these
cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new
HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met
expression and HGF response in cancer cells.

Methods: We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer
cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we
have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able
to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and
immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP
and PC3 models.

Results: We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM)
and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells.
Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory
effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an
LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a
concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum.
These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked
to expression of the known HGF receptor Met, as neither LNCaP nor clonally-derived C4-2 sub-line contain any
detectable Met protein. Even in the absence of Met, small GTPases are activated, linking HGF stimulation to
membrane protrusion and integrin activation. Membrane-localized nucelolin levels increase during cancer
progression, as modeled by both the PC3 and LNCaP prostate cancer progression cell lines.

Conclusion: We propose that cell surface localized nucleolin protein may function in these cells as a novel HGF
receptor. Membrane localized nucleolin binds heparin-bound growth factors (including HGF) and appears
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upregulated during prostate cancer progression. Antibodies against nucleolin are able to ameliorate the
stimulatory effects of HGF on met-negative prostate cancer cells. HGF-nucleolin interactions could be partially
responsible for the complexity of HGF responses and met expression reported in the literature.

Background
In the prostate, cell-matrix adhesion, cell motility and
invasive behaviors are regulated by an interplay of signals
between the epithelial cells and surrounding stromal cells
[1-6]. Signal reciprocity allows prostate stromal fibrob-
lasts to control epithelial cell proliferation [7], while epi-
thelial cells control such processes as stromal smooth
muscle maturation [8]. When signal reception or intercel-
lular signal interpretation alter adhesion-based behaviors,
tumor formation and cancer progression can result. Can-
cer cells are known to optimize their stromal growth envi-
ronments [6,9,10]. Indeed, the list of factors involved in
bi-directional epithelial-stromal cell interactions is long,
with representatives from many growth factor families,
and includes Hepatocyte Growth Factor (HGF) [11], a
subject of this study.

HGF regulates cell behaviors in organ development, tissue
regeneration and cancer [12-15]. HGF's source, reception
by, and effects on prostate cancer cells are discussed in
many review articles, as is the Met protein, the only
known cell surface receptor for HGF [16-21]. Once
secreted, it is likely that most HGF is immobilized within
the extracellular matrix of the stromal cells by binding
heparan sulfate proteoglycans [22-26]. HGF encounters
the Met receptor in the basal cells of the prostatic ducts
and acini, and in low numbers on the luminal cells of the
prostatic ducts and stromal smooth muscle cells [27-29].
During puberty, developing branches within the prostate
show high concentrations of Met in ductal tips and
respond to stromal stimulation [30,31], a hallmark for
HGF/Met-mediated activity. Met signaling is also critical
for ductal system formation in kidney, mammary gland,
liver, pancreas and lung [32-35]. High levels of Met
expression correlate with increased cell movement, and
indeed metastasis is linked to the uncontrolled branching
seen at earlier stages of prostate disease [36,37]. Further-
more, dysfunctional and high Met expression is found in
a variety of human cancers [38-41,21,42,43] and corre-
lates with some metastasis in animals [44,45].

Met expression levels during cancer progression remain
somewhat confusing, and conflicting reports are common
in the published literature. Met expression does appear to
increase during prostate disease progression, but the cor-
relation of Met expression with Gleason grade has been
tenuous. Approximately 50% of localized cancers (and
even more metastatic cancers) express Met [28,29,43,46].
In one study, Met elevations were found in 84% of local-

ized prostate cancers [29], but Humphry et al. [28]
reported that 45% of 108 cases show no correlation
between disease progression and Met expression; further,
the receptors in this study were localized by staining to
both the cell surface and the cytoplasm. There are two
other reports [43,46] of a clear increase in Met expression
correlating with higher grades of adenocarcinomas (with
metastases expressing more Met in bone than lymph node
[29]), but no correlation between Met expression and dis-
ease progression, in a 5-year follow up period [43]. Not
only are Met expression profiles not consistently linked to
disease outcome [21,42,43], but Met expression is also
confounding in the commonly-studied in vitro model sys-
tems. Met expression is higher in some metastatic prostate
cancer samples compared to less-progressed cells [47-49];
for example, met RNA and protein levels are elevated in
the androgen-independent cell lines DU145, PC3 and
PC3M, compared to androgen-dependent LNCaP cells
[27,28,43,50-54]. But, this correlation does not hold
within the LNCaP-derived cell lines themselves, since nei-
ther parental LNCaP nor its lineage-derived, androgen-
independent variant C4-2 actually express the HGF recep-
tor Met. Thus, although both HGF and Met are arguably
very important for prostate cancer progression, the details
of their functions remain far from clear.

Further complicating Met/HGF correlations and prostate
cancer models is the fact that high Met expression levels
do not always invoke concentration-dependent responses
to HGF treatment. For example, high-Met-expressing
DU145 prostate cancer cells showed concentration-
dependent responses to HGF, with increased cell motility
in both scatter and invasion assays, whereas PC3 cells
(with equally high levels of Met expression) did not
respond under the same conditions [28]. These, and other
contradictory reports of anti-apoptotic and pro-apoptotic
responses to HGF treatment, have led some investigators
to suggest that the lack of downstream signals explains
differences between cell types [55], or that these differ-
ences may be due to isoform variants of HGF and Met
themselves, or further that signaling pathway intermedi-
ates (such as PI3-kinase/Akt) may become saturated by
extra-cellular matrix adhesion [56-63] and can not further
be phosphorylated. We report here that cell adhesion to
extra-cellular matrix does appear to play a role in cell
spreading and migration response to HGF, as PC3 cells do
respond to HGF treatment under our serum containing
and starved growth conditions, but only when plated on
laminin substrata. We and others, have been unable to
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detect any Met expression in LNCaP and C4-2 cells at
either the protein or RNA levels (Figure 4; [21,43]), and
yet we find a clear concentration-dependent response to
HGF stimulation in these cells.

HGF likely acts through multiple isoforms, receptors and/
or signaling cascades to bring about a variety of cell
responses. Also called Scatter Factor (SF), HGF stimulates
motility in both endothelial and metastatic epithelial can-
cers [53,55,64,65], similar to the invasion-promoting fac-
tor plasminogen [19,66,67]. Not surprisingly, HGF levels
affect the function of prostate integrins [53,55], molecules
involved in cell adhesion and motility. In this study, we
have focused upon HGF's regulation of cell adhesive
behaviors in a collection of human prostate cancer cell
lines, including cell lines that do not express the Met
receptor for HGF, but nonetheless exhibit distinct, con-
centration-dependent responses to the growth factor and
to stromal-conditioned media (SCM). We previously
reported that SCM increased cell spreading in the meta-
static prostate cancer cell line C4-2, while having little
effect on attachment of the lineage-related, non-meta-
static LNCaP cell line [68]. We have now extended this
work, further identifying HGF as responsible for the
effects of SCM and describing HGF dose-dependent
effects on the adhesive behaviors of these cell lines. In
addition, we have especially searched for the responsible
HGF receptors in these cells, as we and others have found
both cell lines to lack the met protein, the one known
HGF receptor ([43] and this study). Here, we introduce
the protein nucleolin as a novel HGF binding partner in
prostate cancer cells. Nucleolin, an abundant nuclear pro-
tein [69,70], is also found on the cell surface, where it has
been shown to interact with heparin-bound growth fac-
tors [71-73], and where it functions as a cell surface recep-
tor and a shuttle protein for nuclear import [72,74-76].
Significantly, nucleolin is also currently the focus of a
phase II clinical trial as a cancer therapy target [77,78].

Methods
Cell culture and materials
Prostate epithelial and stromal cell lines were maintained
in T-media with 5% fetal bovine serum, at 37°C with 5%
CO2. Primary cultures of prostate stromal cells were
derived from the tissue surrounding prostatic adenocarci-
nomas, as described by Ozen et al. [79]. Conditioned
media were prepared by adding fresh media without
serum when cells reached 80% confluence and removing
it 48 h later. For signaling assays, cells were starved in
RPMI-1640 phenol red-free medium (Life Technologies,
Inc.) un-supplemented with serum. Laminin-1 (a kind gift
of Roy Ogle at the University of Virginia) was purified
from Engelbreth-Holme-Swarm (EHS) tumors according
to the method of Davis et al., based on the protocol of
Kleinman et al. [80,81]. Hepatocyte Growth Factor (HGF)

and all other chemicals were purchased from Sigma (St.
Louis, MO). Anti-FAK and HGF antibodies were from
Sigma (St. Louis, MO) and Santa Cruz Biotechnology
(Santa Cruz, CA). Antibodies to nucleolin were purchased
from Santa Cruz Biotechnology or received as a gift from
Dr. Deng at Pittsburgh Medical Center. Met antibodies, as
well as cdc-42 and Rac immuno-precipitation reagent
were purchased from both UpState Biotechnology (Lake
Placid, NY) and Transduction Laboratories (Lexington,
KY). Phospho-tyrosine antibodies were from Transduc-
tion Laboratories (Lexington, KY). Phospho-Akt (Ser 473)
antibody and Akt antibody were purchased from Cell Sig-
naling Technology Inc. (Beverly, MA). Anti-β actin anti-
body was from Abcam Inc. (Cambridge, MA). All
secondary-conjugated antibodies were from Jackson
Immunochemicals (West Grove, PA).

Semi-quantitative reverse transcription PCR
Total cellular RNA was isolated with RNA-STAT (BioTec-X,
Houston, TX). 5 μg of RNA was reverse transcribed using
the OmniScript RT Kit (Qiagen, Inc., Valencia, CA). The
primers used for met amplification were as follow: F-met
5'-GGTTGCTGATTTTGGTCAT-3' and B-met 5'-TTCG-
GGTTGTGGAGTCTT-3'.

Immunoprecipitation
Cells were allowed to grow to 80% confluency and then
serum starved for 48 hours. Plates were rinsed twice in ice-
cold phosphate buffered saline (PBS) and solubilized in
lysis buffer (1% NP-40, 50 mM Tris-HCl, 150 mM NaCl,
2 mM EDTA, 50 mg/ml leupeptin, 0.5% aprotinin, 1 mM
sodium orthovanadate, 1 mM PMSF). Insoluble material
was removed by centrifugation for 30 min at 10,000 × g at
4°C. Protein concentration was determined by BRC assay
(BioRad, Hercules, CA). 1–2 mg of protein was used for
each immunoprecipitation condition. Antibodies were
incubated with the cell lysate for 2 hrs at 4°C, and an
additional 30 min with Protein A/G-sepharose beads
(Sigma). The beads were washed three times with lysis
buffer and resuspended in SDS-PAGE loading buffer.
Samples were resolved on gradient (4–12%) or 10% poly-
acrylamide gels (Novex) and electro-blotted. After trans-
fer, the filters were blocked in BSA (5%) overnight at 4°C.
Filters were incubated with primary antibodies for 1 hr at
room temperature. Membranes were then probed for 1 hr
with peroxidase-conjugated secondary antibody (diluted
1:5000; Jackson Immunoresearch Labs, Bar Harbor, ME)
and the proteins were detected with Enhanced Chemi-
Luminescence (ECL)(Amersham Biosciences, Little Chal-
font, England).

Substrate adhesion and growth assay
Attachment assays were performed as previously
described in Edlund et al., and Vafa et al., [68,82]. Cell
lines were grown to confluence, trypsinized, and re-plated
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(1:8) on tissue culture dishes, where they were allowed to
grow for another two days before being lifted after a brief
treatment with 10 mM EDTA, 20 mM Hepes buffer in T-
media. After neutralizing the EDTA with CaCl2 and
MgSO4, the cells were washed with T-media containing
0.1% BSA. Cells were placed on laminin1-coated dishes,
allowed to adhere for 30 to 90 min with or without addi-
tion of either HGF or function blocking integrin antibod-
ies, and then fixed in para-formaldehyde (3.8%). The
percentage of spread cells was scored for each cell line,
based on cell membrane protrusion (lamellipodia and/or
filopodia), and all values were normalized to control cells
treated identically except for being subjected to condi-
tioned media or growth factors. This normalization step
was necessary because of the differences in speed of
attachment between the cell lines. Cell growth was quan-
tified using MTT [83,84].

ELISA detection of HGF
ELISAs were performed as suggested in Pharmigen
Research Products Catalog, 1999. Briefly, rabbit anti-
human HGF antibodies were diluted to a concentration of
1 μg/ml in 0.1 M Na2HPO4 and 0.1 M NaH2PO, pH 9.0.
Wells of a 96 well ELISA plate (Costar) were filled with 50
μl, sealed with parafilm, and incubated overnight at 4°C.
Plates were then brought to room temperature and anti-
bodies captured and removed. 200 μl of blocking buffer
(10% FBS in PBS) was added to each well and the plate
incubated at room temperature for 2 hours. The plate was
washed three times with PBS/Tween 20 (0.05%) (Sigma).
100 μl of standard or sample diluted in blocking buffer/
Tween 20 (0.05%) was added to each plate, which was
then sealed with parafilm and incubated at 4°C over-
night. The following day, the plate was washed four times
with PBS/Tween. 100 ul of the detection antibody, Goat
anti-human HGF antibody (Sigma), diluted to a concen-
tration of 0.01 μg/ml in blocking buffer/Tween 20, was
added to each well. After one hour incubation at room
temperature, and 4 washes with PBS/Tween 20, 100 μl of
avidin-horseradish peroxidase conjugated mouse anti-
goat IgG (Jackson ImmunoReseach) diluted 1:1000 in
blocking buffer/Tween 20 was added to each well. After
30 minutes incubation at room temperature and five
washes with PBS/Tween 20, 200 μl of Sigma Fast OPD
solution (Sigma) was added to each well. After 20 min-
utes, the plate was read at a wavelength of 405 nm using
a microplate reader (Molecular Devices, Sunnyvale, CA).
Data were analyzed using the Molecular Devices SOFT-
max program.

Cell migration
Cell migration assays were preformed according to prod-
uct instructions (CSM Inc. Phoenix, AZ). Chilled cell man-
ifolds were placed on Teflon-printed, precoated
microscope slides, subdivided into 10 wells, and filled

with ice-cold media. One μl of cell suspension (2500
cells) was added to each chamber and allowed to precipi-
tate by gravity and adhere to the coverslip. After two
hours, the manifold was moved to a cell incubator (37°C
under 5% CO2) and allowed to reach growth temperature
for 4 hours, at which point the cell sedimentation mani-
fold was removed and the coverslip submerged in media,
to which HGF was added. The area covered by cells was
recorded at 2 hrs and subsequently every 24 hours. The 2
hr area was used as a reference point for all succeeding
measurements. Results are presented as increases relative
to this area.

Protein sequencing of an HGF binding protein
The HGF and major co-immunoprecipitated product
from C4-2 cell lysates were excised from the gel and trans-
ferred to a siliconized tube, washed and destained in 50%
methanol overnight. The gel pieces were dehydrated in
aceto-nitrile, rehydrated in 10 mM dithiothreitol (DTT) in
0.1 M ammonium bicarbonate, and reduced at room tem-
perature for 30 minutes. The DTT solution was removed
and the samples alkylated in 50 mM iodoacetamide, in
0.1 M ammonium bicarbonate, for 30 minutes at room
temperature. Samples were then dehydrated again in
aceto-nitrile, rehydrated in 0.1 M ammonium bicarbo-
nate, dehydrated in aceto-nitrile and completely dried by
vacuum centrifugation. Finally, samples were rehydrated
for 10 minutes in 20 ng/ml trypsin in 50 mM ammonium
bicarbonate on ice. Any excess trypsin solution was
removed, and 50 mM ammonium bicarbonate added.
Samples were digested overnight at 37°C and the
sequences of generated peptides were identified by mass
specectrometry.

Cell lysis and Erk kinase assay
All cells were lysed in ice-cold lysis buffer (20 mMTris
PH7.4, 40 mM NaCl, 20 mM beta-glycerophosphate, 2
mM EGTA, 1 mM sodium orthovanadate, 2 mM DTT, 2
mM PMSF, 1μg/ml aprotinin, and 1μg/ml aprotinin). The
Map kinase assay was done with an assay kit (Upstate,
Lake Placid, NY). The kinase reaction was started by addi-
tion of kinase reaction buffer that contains 2 mg/ml
dephosphorylated myelin basic protein for each substrate,
20 mM MOPS (pH 7.2), 25 mM beta-Glycerophosphate,
5 mM EGTA, 0.4 mM MnCl2, 1 mM sodium orthovanad-
ate, 1 mM dithiothreitol, 75 mM MgCl2, and 500 μM ATP.
To prevent effects from other unknown kinases in the
lysate, 20 μM PKC inhibitor peptide, 2 μM PKA inhibitor
peptide, and 20 mM R24571 compound were added to
the kinase reaction buffer. The reaction was incubated for
20 min at 30°C, terminated by the addition of the LDS
sample buffer and loaded as aliquots for SDS-PAGE and
immunoblot analyses. Membrane enriched fractions were
purified as previously described [85].
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Immunoblot analyses
After centrifugation for 15 min at 15000 rpm in 4°C, the
lysate supernatant was collected. Protein concentration
was determined by BRC assay (BioRad, Hercules, CA).
Immunoblotting was performed using the NOVEX (Invit-
rogen, Carlsbad, CA) system. Briefly, 7.5 μg of cell extracts
and Erk kinase assay products were separated on 4–12%
Tris glycine PAGE gels and transferred onto a PVDF mem-
brane (Immoblin-P, Millipore, Billerica, MA). The mem-
brane was blocked 1 h at room temperature with TBST
blocking buffer [50 mM Tris-HCl (pH 8.0), 150 mM
NaCl, 0.05% Tween 20, and 5% nonfat milk]. The mem-
brane was incubated for 1 hr at room temperature with
primary anti-phosph MBP polyclonal antibody, anti-Erk
1,2 antibody, anti-PKB antibody, and anti-phosph PKB
antibody (Ser 473) in PBSN blocking buffer. A secondary
antibody (horseradish peroxidase-anti-rabbit or mouse
antibody) (Amersham Bioscience, Inc., Piscataway, NJ) at
a 1:5000 dilution was used in PBSN blocking buffer and
incubated for 1 hr at room temperature. ECL plus (Amer-
sham Bioscience, Inc.) reagent was used for detection.

Statistical analyses
Results were analyzed for statistical significance using the
nonparametric Mann-Whitney U test, with significance at
P < 0.05.

Results
HGF in stromal-conditioned media (SCM) regulates 
prostate cancer cell adhesive behaviors
Previously, our laboratory characterized cell responses to
media conditioned by primary prostate stromal cells, and
found differences between the responses of parental, non-
metastatic, human prostate LNCaP cells and those of its
lineage-derived, metastatic C4-2 subline [86]. Prostate
SCM collected in serum-free conditions had little effect on
LNCaP cells, but increased cell spreading of C4-2 cells on
laminin-1 substrates by 150–200% (Figure 1A) [68]. C4-
2 cells were not the only prostate cancer cells to respond
this way to SCM; cell spreading also increased following
SCM treatment of DU145 (brain metastatic human pros-
tate cell line), PC3, and PC3M (a bone metastatic human
prostate cell line of shared lineage). The SCM collected
from five different primary cultures and three different
hosts all had similar effects when incubated with C4-2
cells (data not shown). Many growth factors stimulate
focal adhesion assembly and influence integrin activity
[87], but we report here that these cell spreading effects of
SCM can be ameliorated by anti-HGF antibodies (Figure
1B). Thus, the HGF in the SCM is a major regulator of cell
adhesion and cell spreading.

To measure HGF amounts present in the SCM, we used
ELISA's and found HGF to range from 14 to 24 ng/ml
(Table 1). Cell spreading responses to HGF are concentra-

Prostate cancer cell lines compared for their cell spreading responses to treatment with stromal cell-conditioned media (SCM)Figure 1
Prostate cancer cell lines compared for their cell spreading 
responses to treatment with stromal cell-conditioned media 
(SCM). (A) All cell lines, except LNCaP, increased cell 
spreading on laminin, following exposure to the SCM. (B) 
C4-2 cell attachment to laminin, following treatment with 
SCM or purified HGF. Cells were allowed to attach for 90 
min., at which point ~25% of untreated C4-2 cells showed 
membrane protrusions. Induction of cell spreading, as seen 
for both SCM and purified HGF, is reversible by addition of 
anti-HGF antibody. Conditioned media from three primary 
stromal cell lines gave similar results (data not shown). 
Experimental cell spreading is shown as a percentage of con-
trol, untreated cells. Statistically significant differences from 
the control in each group were below P =< 0.05 (*). For each 
data point n = 6 or more.
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tion-dependent for both PC3 and C4-2 prostate cancer
cell lines, but an effective dose 50 (EC50) for PC3 cells is
achieved at a lower concentration (5 ng/ml) than for C4-
2 cells (30 ng/ml) (Figure 2A). These differences in maxi-
mal stimulation could be due to synergism between HGF
and other growth factors in the SCM, to the combined
presence of both met and nucleolin in PC3 cells, and/or
to differences in nucleolin and met affinities for HGF.
HGF-enhanced C4-2 cell spreading was substrate depend-
ent and observed only on laminin-1 (LM) substrate (Fig-
ure 2B), not on fibronectin (FN), collagen-1 (Col-1) or
vitronectin (VN). C4-2 cell spreading and cell migration
respond inversely to HGF treatment; that is, cell spreading
is enhanced, whereas cell locomotion is decreased on
laminin. The inhibitory effects of HGF on cell migration
were observed at 10 ng/ml (Figure 3A and 3B). Like the
cell spreading effects, migration inhibition was seen only
on a laminin-1 substrate, not on FN. HGF migration
responses could not be explained by cell proliferation,
because C4-2 cell cycle progression appeared unaffected
by HGF (data not shown). Furthermore, all cellular adhe-
sion could be block by either α6 or β1 integrin function
blocking antibodies and no changes in surface expression
of laminin binding integrins were observed (data not
shown).

HGF-induced cell adhesion and migration responses are 
mediated by Met-independent receptors
Using RT-PCR, we assess met expression levels in prostate
cancer cell lines of different metastatic potential (LNCaP,
C4-2, PC3 and DU145). Met receptor transcript (262 bp)
was present in DU145, PC3, PC3M and HeLa cells, but
absent or at very low levels in both LNCaP and C4-2 cells
(Figure 4A). These results were further confirmed by West-
ern blot analyses. Doublets of c-Met were observed, with
similar results for both the N-terminal and C-terminal
Met antibodies, used to check for possible Met isoforms
differing in their cytoplasmic tails (Figure 4B and 4C).

The HGF-Met signaling cascade is well described and
known to regulate invasion and metastasis, as well as cell
proliferation, survival, differentiation and branching mor-
phogenesis. Interactions between active HGF and Met
result in αβ heterodimer formation, trans-autophosphor-
ylation, and the recruitment of signaling intermediates
[21,33]. We searched for Akt and Erk phosphorylation in

both PC3 and C4-2 cells, and confirmed that C4-2 cells do
not respond to HGF with a functional Met signaling sys-
tem. Following HGF stimulation, Met is phosophorylated

Effect of HGF on cell spreading and matrix requirementsFigure 2
Effect of HGF on cell spreading and matrix requirements. (A) 
Cell spreading behaviors on laminin substrata for PC3 and 
C4-2 cells exposed to variable concentrations of purified 
HGF. Because the cells differ in untreated attachment 
speeds, experiments were terminated at 30 minutes for PC3 
cells and 90 minutes for C4-2 cells. At these times, with high 
concentrations of HGF, filopodia and lamelipodia were visible 
in approximately 90% of PC3 cells and 65% of C4-2 cells. 
Both cell lines show a concentration-dependent increase in 
cell spreading. (B) HGF induction of C4-2 cell spreading is 
matrix-dependent, with spreading increasing only on laminin-
1 matrix (laminin, Fibronectin, Collagen I, and Vitronectin are 
LM, FN, CollI and VN, respectively). Experimental cell 
spreading is shown as a percentage of control, untreated 
cells. Statistically significant differences from the control in 
each group were below P =< 0.05 (*). For each data point n 
= 6 or more.
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Table 1: ELISA measurements of HGF concentrations in 
stromal-conditioned media from normal prostate stromal cells 
after 24 hr. culture

Stroma 1 18.5 (4.6)
Stroma 2 24.1 (2.3)
Stroma 3 16.4 (2.0)
Stroma 4 13.9 (1.5)
Stroma 5 22.6 (3.2)
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and activated only in PC3 cells, not C4-2 (Figure 5A and
5B). Furthermore, both Akt and Erk are activated in a
time-dependent manner in PC3 cells, but not in C4-2 cells
(Figure 5C). These findings disagree with a previous
report of a weak response to HGF, which may have been
due to activation of the PI3-kinase/Akt pathway by cell-
substrate adhesion that was further enhanced by HGF/SF
stimulation [88]. Our static stimulation of serum-starved
cells reveals clear enhancement of both Akt and Erk in
PC3, but not C4-2 cells. Since both RT-PCR and Western
blot were negative for met/Met in the LNCaP progression
model, their dose-dependent responses to HGF stimula-
tion suggest a Met-independent mechanism. This is fur-
ther shown by the activation of Rac upon HGF
stimulation in the C4-2 cells (Figure 5D and 5E).
Together, these results correlate well with our cell-spread-
ing and increased membrane ruffling data and further
argue for a Met-independent pathway for HGF response in
C4-2 cells.

Immunoprecipitation of PC3 and C4-2 total cell lysates
further confirms that Met is present in HGF-stimulated
PC3 cells and absent in C4-2 cells (Figure. 6A). HGF was

immobilized on agarose beads and incubated with cell
lysates. Immunoprecipitated product was then separated
and stained with an antibody against the Met cytoplasmic
domain. Control beads pulled down no detectable Met
protein from either PC3 or C4-2 lysates, as assayed by
both silver staining and immunoblotting (Figure 6A and
6B). Note that the silver-stained, immunoprecipitated
products of C4-2 cells contained two major bands of
approximately 60 kDa and 100 kDa. The lower band rep-

Expression of met in prostate cancer cell linesFigure 4
Expression of met in prostate cancer cell lines. (A) Met RT-
PCR detection of six transcripts in prostate cell lines. Ampli-
fied fragments of control μ-globulin and the cytoplasmic 
domain of human met are shown on an ethidium-bromide 
stained agarose gel. The length of the h-met PCR product 
was 262 bp. Product levels were close to undetectable in 
LNCaP and C4-2 samples. (B) Western blot analysis of total 
cell lysates from same prostate cell lines and HeLa cells. 
Equal amounts of cell lysate were separated and immunoblot-
ted with antibodies against either the extracellular (B) or 
cytoplasmic (C) domains of Met. Met was detected by char-
acteristic double bands in all cell lines except LNCaP and C4-
2.
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Time course and quantification of C4-2 migratory behaviorsFigure 3
Time course and quantification of C4-2 migratory behaviors. 
C4-2 cells were plated in a defined circular area on laminin 
or fibronectin substrata, with different concentrations of 
HGF in the media. (A) Migration at 96 hr. time point, with 0 
or 100 ng/ml of HGF in the medium. (B) Time-dependent 
migration, in the presence of HGF, on different matrices. All 
values are normalized to the cell area at 0 hr. time point.
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(A, B) Immunoprecipitation of Met in C4-2 and PC3 with and without activation by HGFFigure 5
(A, B) Immunoprecipitation of Met in C4-2 and PC3 with and without activation by HGF. (C) Time-dependent activation of 
both Erk and Akt is visible in PC3 cells but not C4-2. (D, E) Rac is activated but not cdc42 upon HGF stimulation in C4-2 cells, 
as seen by immunoprecipitation of active GTPases.
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Precipitation of HGF binding proteins from C4-2 and PC3 cells, using beads coated with HGF or BSAFigure 6
Precipitation of HGF binding proteins from C4-2 and PC3 cells, using beads coated with HGF or BSA. (A) Met was precipitated 
in the PC3 cell line, while (B) in the C4-2 cell line two bands were precipitated using HGF coated beads but not with BSA con-
trol beads. The lower major band is HGF itself; the upper 100 kDa band was purified and sequenced. Western-blot analyses 
(C) and sequencing of the upper band confirmed it to be nucleolin (see table 2). (D) The importance of nucleolin to HGF-stim-
ulated spreading on laminin substrata was apparent when antibodies to nucleolin reduced the effect of HGF (E). The cell 
spreading behaviors were quantified and presented as the mean of triplicate experiments. Statistically significant differences 
from the control were at P =< 0.005 (*).
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resents HGF itself, as identified by Western blot (data not
shown), whereas the higher band was micro-sequenced
and identified as nucleolin, with an expected size of 98
kDa (Table 2).

Nucleolin is an HGF binding partner in the C4-2 prostate 
cancer cell line
Of the 98 kDa band isolated from total C4-2 cell lysates
(by columns of HGF-coated agarose beads), a total of 24
peptides were sequenced, corresponding to approxi-
mately 30% of the protein sequence of nucleolin, with
100% identity match to the previously published protein
sequence (NCBI#4885511; Table 2). The identity of the
100 kDa protein was further confirmed by Western blot-
ting to nucleolin (Figure. 6C). No other sequence homol-
ogies were found, suggesting that nucleolin is the major
protein in the 100 kDa band, and that nucleolin is the
major binding partner for HGF in C4-2 cells. Most com-
pellingly, antibodies against nucleolin were able to block
the cell spreading phenotype observed in HGF-treated
cells in our cell attachment assay system (Figure 6D and
6E); in other words, Met-negative C4-2 cells increased cell
spreading behavior when treated with HGF, and this
response could be abolished by the addition of antibodies
against the nucleolin protein (or HGF or specific integrin
subunits, data not shown). Although we do not see any
changes in the total nucleolin expression levels in the

cells, we do see an increase in the membrane-associated
nucleolin in both the LNCaP and PC3 progression models
(Figure 7). This strengthens the link between nucleolin
and HGF function, at the same time that it argues for cell
surface localization of the nucleolin protein during cancer
progression.

Discussion
We have used prostate cancer cell lines and stromal-con-
ditioned media to study the regulatory interplay between
prostate epithelial and stromal cells during prostate can-
cer progression, and have now begun to tease apart the

Nucleolin and Met expression profiles during disease pro-gression, as modeled across LNCaP and PC3 prostate cancer cell linesFigure 7
Nucleolin and Met expression profiles during disease pro-
gression, as modeled across LNCaP and PC3 prostate cancer 
cell lines. (A) Comparison of protein levels in total cell lysate 
and plasma membrane fractions by Western blotting. (B) 
Normalizing membrane nucleolin levels to levels in the less-
advanced parental cell lines of each progression model, 
reveals that membrane nucleolin levels are higher than 
parental in both C4-2 and PC3M. Nucleolin levels were 30% 
higher in prostate parental cells compared to normal (p69 
and RWPE-2) prostate epithelial cells (data not shown).
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Table 2: 24 peptides were sequenced from cell lysates, based on 
co-immunoprecipitation with purified HGF protein. All peptides 
showed 100% sequence homology to previously cloned nucleolin 
(NCBI#4885511). Numbers within the Table refer to the 
peptide's location within the published nucleolin sequence.

72–79 VAVATPAK
72–80 VAVATPAKK
296–318 QKVEGTEPTTAFNLFVGNLNFNK
325–333 TGISDVFAK
334–342 NDLAVVDVR
348–362 KEGYVDFESAEDLEK
349–362 FGYVDFESAEDLEK
363–370 ALELTGLK
404–410 VTQDELK
404–420 VTQDELKEVFEDAAEIR
411–420 EVFEDAAEIR
428–437 SKGIAYIEFK
430–437 GIAYIEFK
438–449 TEADAEKTFEEK
450–457 QGTEIDGR
458–467 SISLYYTGEK
478–486 NSTWSGESK
522–537 SKGYAFIEFASFEDAK
525–537 GYAFIEFASFEDAK
555–561 LELQGPR
578–597 GLSEDTTEETLKESFDGSVR
611–624 GFGFVDFNSEEDAK
625–636 EAMEDGEIDGNK
625–645 EAMEDGEIDGNKVTLDWAKPK
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relationships between stromally-derived HGF signal, Met
signal reception, integrin-based cell adhesive responses,
and a new HGF binding partner, the nucleolin protein.
We report here: 1) that it is the HGF in stromal-condi-
tioned media that affects C4-2 metastatic prostate cancer
cell adhesive behavior, 2) that this action is through the
integrins, and 3) that the dose-dependent response of
Met-negative C4-2 cells to HGF treatment can be abol-
ished through the addition of antibodies against the
nucleolin protein.

HGF response without Met and with nucleolin
A Met-independent pathway acting in the absence of Met
and/or alongside Met could increase the variety of possi-
ble cell responses to HGF. Classically, the binding of HGF
to Met induces receptor dimerization and phosphoryla-
tion of two conserved tyrosine sites; when these sites are
mutated, mice show similar phenotypes to those with
HGF or Met knockouts [89]. But C4-2 cells, which lack
this signaling pair, could be revealing spreading behaviors
due to low-affinity HGF sites that allow response to higher
levels of HGF (compared to Met-expressing PC3 cells; Fig-
ure 2). Past research on HGF affinity has identified some
binding sites in hepatocytes with 10-fold lower affinity
[90]. HGF interactions with proteoglycans and CD44 is
linked to enhanced Met signaling and possible Met auto-
phosphorylation [91,92]. Pollack et al. [93] suggest that in
Madin Darby canine kidney (MDCK) cells, low-affinity
binding of HGF in the presence of the Met receptor may
alter downstream responses. Thus, we are certainly not the
first to suggest either additional HGF receptors, or HGF
binding to heparin and oligosaccharide signaling systems
[94,95]. Our study is unique, however, in our identifica-
tion of the HGF binding partner nucleolin.

Nucleolin, originally called C23 [96], was first character-
ized as an abundant nuclear protein with a role in ribos-
ome biogenesis [69,70]. Because nucleolin synthesis
correlates positively with cell growth, the especially high
expression of nucleolin in tumor cells is not surprising
[97]. Nucleolin is further a major regulatory and phos-
phorylation target following androgen treatment [98,99].
Nucleolin's in vivo localization to the cell surface in
aggressive tumor cells [77,78,99,100] agrees with our in
vitro finding of membrane localization in both LNCaP
and PC3 progression model cell lines (Figure 7). This
membrane localization has recently generated interest in
the use of nucleolin as a tumor marker and therapeutic
target. A nucleolin functional inhibitor called AGRO100
(a guanine-rich oligonucletide) has been successful in
Phase I clinical trials, and Phase II trials are underway
[77,78,101]. Further evidence of nucleolin's role in cancer
progression comes from our unrelated, in vivo bio-pan-
ning study. While bio-panning with a 12-mer peptide
phage-display library, a peptide (designated L13) was

found to bind with high specificity to murine bone mar-
row. When human bone marrow endothelial cell lysates
were passed across an L13 column, the major species
eluted was found to be nucleolin ([102]and unpublished
observations). Indeed, a tumor homing peptide, F3, that
binds specifically to tumor endothelial cells was described
by Christian et al. [75] as interacting directly with nucleo-
lin. Together, there is now clear evidence of nucleolin's
involvement in cancer cell behavior and response to HGF,
although this protein's direct and/or indirect functions
remain to be discovered.

Nucleolin on the cell surface
Nucleolin is named for the fact that it makes up as much
as 10% of the total nucleolar protein [103], but it also
functions as a shuttle protein between the cytoplasm and
the nucleus, is found in clusters associated with the actin
cytoskeleton [104-106], and is sensitive to cytochalasin D
[104]. Nucleolin is present on the cell surfaces of a variety
of cell types [71,107,108], and surface-expressed nucleo-
lin appears to interact with an array of other proteins,
including viral proteins during infections [109,110], βFGF
and Midkine [111], and laminin-1 [112,113].

A three-way interaction between nucleolin, HGF, and
integrins is suggested by our ability, in short-term assays,
to inhibit HGF's cell spreading effects using anti-nucleolin
antibodies (Figure 6D); Nucleolin inhibition, alone, how-
ever, in the absence of HGF stimulation, does not alter
C4-2 laminin adhesion (data not shown). Also, nucleolin
by itself is not able to sustain laminin adhesion, as we
were able to completely block cell spreading under stimu-
lated and un-stimulated conditions, using function-block-
ing antibodies to either β1 or α6 integrin (data not shown).
Yu et al. [114] studied the cellular distribution of nucleo-
lin after stimulation with ECM proteins, and report that,
following laminin stimulation, nucleolin translocates
from the cytoplasm to the nucleus and stimulates cell pro-
liferation. Following HGF stimulation, we do not detect
changes in laminin-binding integrin expression profiles
(data not shown), but we have previously seen changes in
integrin function (not expression) in these same prostate
cells [68]. Also possible is the movement of additional
nucleolin protein to the cell surface, providing direct
increase in laminin adhesion [72,112,114]. Nucleolin
may function as a generic GF-HS binding receptor, linking
HGF and integrin function. Like syndecan, nucleolin has
been found to bind HGF's heparin-binding domain,
thereby sequestering HGF on the cell surface. In our stud-
ies, nucleolin does not co-immunoprecipitate with other
heparin-binding growth factors (data not shown), but
HGF-Nucleolin interactions do respond to heparin com-
petition (data not shown). We are currently searching for
other components in nucleolin-HGF interactions using
BIAcore. The findings we report here, together with the
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nucleolin-focused independent clinical trial underway
[77,78], introduce nucleolin as an attractive target for
therapeutic regulation of prostate cancer, although the
details of its position in cancer cell HGF signaling remain
to be found.

Additional components in HGF/nucleolin interactions
We sought to begin placing nucleolin in or beside well-
described HGF-met signaling pathways affecting integrin-
based cell behaviors. Cell spreading and membrane ruf-
fling behaviors seen in C4-2's met-independent HGF cell
responses led us to look first at small GTPases (Figure 5).
We found that Rac is activated by HGF treatment of met-
negative C4-2 cells (Figure 5D,E). Rho, Rac and cdc42 are
part of the Ras small GTPase superfamily, and play key
roles in regulating cell shape, contraction, adhesion,
motility, and proliferation [115-117]. Members of this
GTPase superfamily are also known molecular triggers to
response cascades following growth factor stimulation
([118] and references within). Rac, in particular is a regu-
lator of the superoxide generating NADPH oxidase in
phagocytes [119]. The production of reactive oxygen spe-
cies (ROS) mediates activation of NF-κB-dependent gene
expression, essential for tumorigenesis and metastasis.

Conclusion
We have found evidence that HGF secreted by prostate
stromal cells regulates prostate cancer cell adhesive behav-
iors, even in cells that lack Met, the one known HGF
receptor. Further, we report that the nucleolin protein
expressed on the surfaces of these prostate cancer cells (in
increasing levels during disease progression) is involved
in the HGF regulatory interplay between stromal and epi-
thelial cells within the prostate, and possibly also at sites
of metastasis. A family of drugs targeting the nucleolin
protein are being developed for cancer therapy; these
AGRO100 drugs (named for Guanine-Rich Oligonucle-
otides) reportedly acted against cultured cell lines from
several different cancers and successfully stabilized dis-
ease in six of nine patients in phase I clinical trials. They
are now in phase II trials [77,78]. We have independently
identified nucleolin protein as having a role in cancer pro-
gression, and have now linked nucleolin's function to
prostate cancer cell reception of Hepatocyte Growth Fac-
tor (HGF) and integrin-based cell adhesive behaviors.

Abbreviations
Abbreviations are defined in the text

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
SI carried out the signaling pathway analyses upon HGF
stimulation in figure 5C. RAS: carried out PCR analyses of
met expression, and provided comments on the manu-
script draft. RD and LWKC provided concept ideas in the
early part of this work. They also provided comments on
the manuscript. AT, MB and ME have performed the sub-
stantial body of work presented in this manuscript. Each
contributed to the writing of the manuscript. All authors
read and approved the final manuscript.

Acknowledgements
This work was supported by grants to ME from the Georgia Cancer Coa-
lition and NIH CA098912 and CA120001. Also grants to LWK from NIH 
grant CA-76620, and the Kluge and CaPCURE Foundations

References
1. Chung LW, Hsieh CL, Law A, Sung SY, Gardner TA, Egawa M, Mat-

subara S, Zhau HE: New targets for therapy in prostate cancer:
modulation of stromal-epithelial interactions.  Urology 2003,
62(5 Suppl 1):44-54.

2. Tuxhorn JA, Ayala GE, Rowley DR: Reactive stroma in prostate
cancer progression.  J Urol 2001, 166(6):2472-2483.

3. McCawley LJ, Matrisian LM: Tumor progression: defining the soil
round the tumor seed.  Curr Biol 2001, 11(1):R25-27.

4. Liotta LA, Kohn EC: The microenvironment of the tumour-
host interface.  Nature 2001, 411(6835):375-379.

5. David Roodman G: Role of stromal-derived cytokines and
growth factors in bone metastasis.  Cancer 2003, 97(3
Suppl):733-738.

6. Chung LW, Baseman A, Assikis V, Zhau HE: Molecular insights
into prostate cancer progression: the missing link of tumor
microenvironment.  J Urol 2005, 173(1):10-20.

7. Nemeth JA, Lee C: Prostatic ductal system in rats: regional var-
iation in stromal organization.  Prostate 1996, 28(2):124-128.

8. Cunha GR, Battle E, Young P, Brody J, Donjacour A, Hayashi N, Kin-
bara H: Role of epithelial-mesenchymal interactions in the dif-
ferentiation and spatial organization of visceral smooth
muscle.  Epithelial Cell Biol 1992, 1(2):76-83.

9. Edlund M, Sung SY, Chung LW: Modulation of prostate cancer
growth in bone microenvironments.  J Cell Biochem 2004,
91(4):686-705.

10. Sung SY, Chung LW: Prostate tumor-stroma interaction:
molecular mechanisms and opportunities for therapeutic
targeting.  Differentiation 2002, 70(9–10):506-521.

11. Liotta LA, Rao CN: Tumor invasion and metastasis.  Monogr
Pathol 1986:183-192.

12. Ma H, Calderon TM, Kessel T, Ashton AW, Berman JW: Mecha-
nisms of hepatocyte growth factor-mediated vascular
smooth muscle cell migration.  Circ Res 2003, 93(11):1066-1073.

13. Santos OF, Moura LA, Rosen EM, Nigam SK: Modulation of HGF-
induced tubulogenesis and branching by multiple phosphor-
ylation mechanisms.  Dev Biol (N Y 1985) 1993, 159(2):535-548.

14. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF: Met,
metastasis, motility and more.  Nat Rev Mol Cell Biol 2003,
4(12):915-925.

15. Andermarcher E, Surani MA, Gherardi E: Co-expression of the
HGF/SF and c-met genes during early mouse embryogenesis
precedes reciprocal expression in adjacent tissues during
organogenesis.  Dev Genet 1996, 18(3):254-266.

16. Weidner KM, Sachs M, Birchmeier W: The Met receptor tyrosine
kinase transduces motility, proliferation, and morphogenic
signals of scatter factor/hepatocyte growth factor in epithe-
lial cells.  J Cell Biol 1993, 121(1):145-154.

17. Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G:
Sequence of MET protooncogene cDNA has features char-
acteristic of the tyrosine kinase family of growth-factor
receptors.  Proc Natl Acad Sci U S A 1987, 84(18):6379-6383.

18. Cooper CS, Park M, Blair DG, Tainsky MA, Huebner K, Croce CM,
Vande Woude GF: Molecular cloning of a new transforming
Page 12 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14607217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11696814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11166192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11357145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12548570
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15592017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15592017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15592017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604393
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1307941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1307941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1307941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14991761
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12492493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3762553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14576199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14576199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14576199
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14685170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14685170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8631159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8631159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8631159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8384622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8384622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8384622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2819873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2819873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2819873
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6590967


BMC Cancer 2006, 6:197 http://www.biomedcentral.com/1471-2407/6/197
gene from a chemically transformed human cell line.  Nature
1984, 311(5981):29-33.

19. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande
Woude GF, Aaronson SA: Identification of the hepatocyte
growth factor receptor as the c-met proto-oncogene prod-
uct.  Science 1991, 251(4995):802-804.

20. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C,
Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK: Scatter
factor and hepatocyte growth factor are indistinguishable
ligands for the MET receptor.  EMBO Journal 1991,
10(10):2867-2878.

21. Knudsen BS, Edlund M: Prostate cancer and the met hepato-
cyte growth factor receptor.  Adv Cancer Res 2004, 91:31-67.

22. Lyon M, Deakin JA, Mizuno K, Nakamura T, Gallagher JT: Interac-
tion of hepatocyte growth factor with heparan sulfate. Eluci-
dation of the major heparan sulfate structural determinants.
J Biol Chem 1994, 269(15):11216-11223.

23. Hartmann G, Prospero T, Brinkmann V, Ozcelik C, Winter G, Hepple
J, Batley S, Bladt F, Sachs M, Birchmeier C, et al.: Engineered
mutants of HGF/SF with reduced binding to heparan sul-
phate proteoglycans, decreased clearance and enhanced
activity in vivo.  Curr Biol 1998, 8(3):125-134.

24. Lamszus K, Joseph A, Jin L, Yao Y, Chowdhury S, Fuchs A, Polverini
PJ, Goldberg ID, Rosen EM: Scatter factor binds to throm-
bospondin and other extracellular matrix components.  Am J
Pathol 1996, 149(3):805-819.

25. Weidner KM, Behrens J, Vandekerckhove J, Birchmeier W: Scatter
factor: molecular characteristics and effect on the invasive-
ness of epithelial cells.  J Cell Biol 1990, 111(5 Pt 1):2097-2108.

26. Rosen EM, Goldberg ID, Kacinski BM, Buckholz T, Vinter DW:
Smooth muscle releases an epithelial cell scatter factor
which binds to heparin.  In Vitro Cell Dev Biol 1989, 25(2):163-173.

27. Gmyrek GA, Walburg M, Webb CP, Yu HM, You X, Vaughan ED,
Vande Woude GF, Knudsen BS: Normal and malignant prostate
epithelial cells differ in their response to hepatocyte growth
factor/scatter factor.  Am J Pathol 2001, 159(2):579-590.

28. Humphrey PA, Zhu X, Zarnegar R, Swanson PE, Ratliff TL, Vollmer
RT, Day ML: Hepatocyte growth factor and its receptor (c-
MET) in prostatic carcinoma.  Am J Pathol 1995, 147(2):386-396.

29. Pisters LL, Troncoso P, Zhau HE, Li W, von Eschenbach AC, Chung
LW: c-met proto-oncogene expression in benign and malig-
nant human prostate tissues.  J Urol 1995, 154(1):293-298.

30. Xue Y, Smedts F, Ruijter ET, Debruyne FM, de la Rosette JJ, Schalken
JA: Branching activity in the human prostate: a closer look at
the structure of small glandular buds.  Eur Urol 2001,
39(2):222-231.

31. Xue Y, Sonke G, Schoots C, Schalken J, Verhofstad A, de la Rosette J,
Smedts F: Proliferative activity and branching morphogenesis
in the human prostate: a closer look at pre- and postnatal
prostate growth.  Prostate 2001, 49(2):132-139.

32. Rosen EM, Nigam SK, Goldberg ID: Scatter factor and the c-met
receptor: a paradigm for mesenchymal/epithelial interac-
tion.  J Cell Biol 1994, 127(6 Pt 2):1783-1787.

33. Rosario M, Birchmeier W: How to make tubes: signaling by the
Met receptor tyrosine kinase.  Trends Cell Biol 2003,
13(6):328-335.

34. Birchmeier C, Gherardi E: Developmental roles of HGF/SF and
its receptor, the c-Met tyrosine kinase.  Trends Cell Biol 1998,
8(10):404-410.

35. Brinkmann V, Foroutan H, Sachs M, Weidner KM, Birchmeier W:
Hepatocyte growth factor/scatter factor induces a variety of
tissue-specific morphogenic programs in epithelial cells.  J Cell
Biol 1995, 131(6 Pt 1):1573-1586.

36. McNeal JE: Morphogenesis of prostatic carcinoma.  Cancer
1965, 18(12):1659-1666.

37. Bonkhoff H: Morphogenesis of prostate cancer.  Eur Urol 2001,
39(Suppl 4):5-7.

38. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, Schmidt L,
Zbar B, Vande Woude GF: A novel germ line juxtamembrane
Met mutation in human gastric cancer.  Oncogene 2000,
19(43):4947-4953.

39. Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD,
Valente G, Giordano S, Cortesina G, Comoglio PM: Somatic muta-
tions of the MET oncogene are selected during metastatic
spread of human HNSC carcinomas.  Oncogene 2000,
19(12):1547-1555.

40. Schmidt L, Junker K, Nakaigawa N, Kinjerski T, Weirich G, Miller M,
Lubensky I, Neumann HP, Brauch H, Decker J, et al.: Novel muta-
tions of the MET proto-oncogene in papillary renal carcino-
mas.  Oncogene 1999, 18(14):2343-2350.

41. Jeffers M, Schmidt L, Nakaigawa N, Webb CP, Weirich G, Kishida T,
Zbar B, Vande Woude GF: Activating mutations for the met
tyrosine kinase receptor in human cancer.  Proc Natl Acad Sci U
S A 1997, 94(21):11445-11450.

42. Lengyel E, Prechtel D, Resau JH, Gauger K, Welk A, Lindemann K,
Salanti G, Richter T, Knudsen B, Vande Woude GF, et al.: C-Met
overexpression in node-positive breast cancer identifies
patients with poor clinical outcome independent of Her2/
neu.  Int J Cancer 2005, 113(4):678-682.

43. Knudsen BS, Gmyrek GA, Inra J, Scherr DS, Vaughan ED, Nanus DM,
Kattan MW, Gerald WL, Vande Woude GF: High expression of
the Met receptor in prostate cancer metastasis to bone.  Urol-
ogy 2002, 60(6):1113-1117.

44. Jeffers M, Fiscella M, Webb CP, Anver M, Koochekpour S, Vande
Woude GF: The mutationally activated Met receptor medi-
ates motility and metastasis.  Proc Natl Acad Sci U S A 1998,
95(24):14417-14422.

45. Jeffers M, Rong S, Woude GF: Hepatocyte growth factor/scatter
factor-Met signaling in tumorigenicity and invasion/metasta-
sis.  J Mol Med 1996, 74(9):505-513.

46. Watanabe M, Fukutome K, Kato H, Murata M, Kawamura J, Shiraishi
T, Yatani R: Progression-linked overexpression of c-Met in
prostatic intraepithelial neoplasia and latent as well as clini-
cal prostate cancers.  Cancer Lett 1999, 141(1–2):173-178.

47. Kurimoto S, Moriyama N, Horie S, Sakai M, Kameyama S, Akimoto Y,
Hirano H, Kawabe K: Co-expression of hepatocyte growth fac-
tor and its receptor in human prostate cancer.  Histochem J
1998, 30(1):27-32.

48. Tsuka H, Mori H, Li B, Kanamaru H, Matsukawa S, Okada K:
Enhanced hepatocyte growth factor level in human prostate
cancer treated with endocrine therapy.  Int J Oncol 1998,
13(1):169-176.

49. Tsuka H, Mori H, Li B, Kanamaru H, Matsukawa S, Okada K: Expres-
sion of c-MET/HGF receptor mRNA and protein in human
non-malignant and malignant prostate tissues.  Int J Oncol
1998, 13(5):927-934.

50. Nagakawa O, Murakami K, Yamaura T, Fujiuchi Y, Murata J, Fuse H,
Saiki I: Expression of membrane-type 1 matrix metalloprotei-
nase (MT1-MMP) on prostate cancer cell lines.  Cancer Lett
2000, 155(2):173-179.

51. Qadan LR, Perez-Stable CM, Schwall RH, Burnstein KL, Ostenson RC,
Howard GA, Roos BA: Hepatocyte growth factor and vitamin
D cooperatively inhibit androgen-unresponsive prostate
cancer cell lines.  Endocrinology 2000, 141(7):2567-2573.

52. Nishimura T, Toda S, Mitsumoto T, Oono S, Sugihara H: Effects of
hepatocyte growth factor, transforming growth factor-beta1
and epidermal growth factor on bovine corneal epithelial
cells under epithelial-keratocyte interaction in reconstruc-
tion culture.  Exp Eye Res 1998, 66(1):105-116.

53. Nishimura K, Kitamura M, Miura H, Nonomura N, Takada S, Takahara
S, Matsumoto K, Nakamura T, Matsumiya K: Prostate stromal cell-
derived hepatocyte growth factor induces invasion of pros-
tate cancer cell line DU145 through tumor-stromal interac-
tion.  Prostate 1999, 41(3):145-153.

54. Nishimura K, Matsumiya K, Miura H, Tsujimura A, Nonomura N, Mat-
sumoto K, Nakamura T, Okuyama A: Effects of hepatocyte
growth factor on urokinase-type plasminogen activator
(uPA) and uPA receptor in DU145 prostate cancer cells.  Int
J Androl 2003, 26(3):175-179.

55. Nishimura K, Kitamura M, Takada S, Nonomura N, Tsujimura A, Mat-
sumiya K, Miki T, Matsumoto K, Okuyama A: Regulation of inva-
sive potential of human prostate cancer cell lines by
hepatocyte growth factor.  Int J Urol 1998, 5(3):276-281.

56. Chan AM, Rubin JS, Bottaro DP, Hirschfield DW, Chedid M, Aaron-
son SA: Identification of a competitive HGF antagonist
encoded by an alternative transcript.  Science 1991,
254(5036):1382-1385.

57. Chan A, Rubin J, Bottaro D, Hirschfield D, Chedid M, Aaronson SA:
Isoforms of human HGF and their biological activities.  EXS
1993, 65:67-79.

58. Ferracini R, Longati P, Naldini L, Vigna E, Comoglio PM: Identifica-
tion of the major autophosphorylation site of the Met/hepa-
Page 13 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6590967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1846706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1846706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1846706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655405
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15327888
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8157651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8157651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9443912
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8780385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8780385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2146276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2146276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2146276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2537811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2537811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2537811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7639332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7639332
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7539865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7539865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11223684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11223684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11582592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11582592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11582592
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7806559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7806559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7806559
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12791299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12791299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9789329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9789329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8522613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8522613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8522613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4158629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11340277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11042681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11042681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10734314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10327054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10327054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10327054
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9326629
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15455388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12475693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9826715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9826715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8892055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10454259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10454259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10454259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9539204
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9625818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9625818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9625818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9772281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9772281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9772281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10822133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10822133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10875259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10875259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10875259
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9533836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10517872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10517872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10517872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12755996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12755996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12755996
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9624561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9624561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9624561
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1720571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1720571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8380745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8380745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655790


BMC Cancer 2006, 6:197 http://www.biomedcentral.com/1471-2407/6/197
tocyte growth factor receptor tyrosine kinase.  J Biol Chem
1991, 266(29):19558-19564.

59. Gandino L, Longati P, Medico E, Prat M, Comoglio PM: Phosphor-
ylation of serine 985 negatively regulates the hepatocyte
growth factor receptor kinase.  J Biol Chem 1994,
269(3):1815-1820.

60. Prat M, Crepaldi T, Gandino L, Giordano S, Longati P, Comoglio P: C-
terminal truncated forms of Met, the hepatocyte growth fac-
tor receptor.  Mol Cell Biol 1991, 11(12):5954-5962.

61. Rodrigues GA, Naujokas MA, Park M: Alternative splicing gener-
ates isoforms of the met receptor tyrosine kinase which
undergo differential processing.  Mol Cell Biol 1991,
11(6):2962-2970.

62. Rodrigues GA, Park M: Isoforms of the met receptor tyrosine
kinase.  EXS 1993, 65:167-179.

63. Wordinger RJ, Clark AF, Agarwal R, Lambert W, Wilson SE: Expres-
sion of alternatively spliced growth factor receptor isoforms
in the human trabecular meshwork.  Invest Ophthalmol Vis Sci
1999, 40(1):242-247.

64. Meiners S, Brinkmann V, Naundorf H, Birchmeier W: Role of mor-
phogenetic factors in metastasis of mammary carcinoma
cells.  Oncogene 1998, 16(1):9-20.

65. Birchmeier W, Brinkmann V, Niemann C, Meiners S, DiCesare S,
Naundorf H, Sachs M: Role of HGF/SF and c-Met in morphogen-
esis and metastasis of epithelial cells.  Ciba Found Symp 1997,
212:230-240.

66. Kim SJ, Shiba E, Tsukamoto F, Izukura M, Taguchi T, Yoneda K, Tanji
Y, Kimoto Y, Takai SI: The expression of urokinase type plas-
minogen activator is a novel prognostic factor in dukes B and
C colorectal cancer.  Oncol Rep 1998, 5(2):431-435.

67. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura
A, Tashiro K, Shimizu S: Molecular cloning and expression of
human hepatocyte growth factor.  Nature 1989,
342(6248):440-443.

68. Edlund M, Miyamoto T, Sikes RA, Ogle R, Laurie GW, Farach-Carson
MC, Otey CA, Zhau HE, Chung LW: Integrin expression and
usage by prostate cancer cell lines on laminin substrata.  Cell
Growth Differ 2001, 12(2):99-107.

69. Ginisty H, Sicard H, Roger B, Bouvet P: Structure and functions of
nucleolin.  J Cell Sci 1999, 112(Pt 6):761-772.

70. Srivastava M, Pollard HB: Molecular dissection of nucleolin's role
in growth and cell proliferation: new insights.  FASEB J 1999,
13(14):1911-1922.

71. Shibata Y, Muramatsu T, Hirai M, Inui T, Kimura T, Saito H, McCor-
mick LM, Bu G, Kadomatsu K: Nuclear targeting by the growth
factor midkine.  Mol Cell Biol 2002, 22(19):6788-6796.

72. Joo EJ, ten Dam GB, van Kuppevelt TH, Toida T, Linhardt RJ, Kim YS:
Nucleolin: acharan sulfate-binding protein on the surface of
cancer cells.  Glycobiology 2005, 15(1):1-9.

73. Callebaut C, Nisole S, Briand JP, Krust B, Hovanessian AG: Inhibi-
tion of HIV infection by the cytokine midkine.  Virology 2001,
281(2):248-264.

74. Said EA, Krust B, Nisole S, Svab J, Briand JP, Hovanessian AG: The
anti-HIV cytokine midkine binds the cell surface-expressed
nucleolin as a low affinity receptor.  J Biol Chem 2002,
277(40):37492-37502.

75. Christian S, Pilch J, Akerman ME, Porkka K, Laakkonen P, Ruoslahti E:
Nucleolin expressed at the cell surface is a marker of
endothelial cells in angiogenic blood vessels.  J Cell Biol 2003,
163(4):871-878.

76. Legrand D, Vigie K, Said EA, Elass E, Masson M, Slomianny MC, Car-
pentier M, Briand JP, Mazurier J, Hovanessian AG: Surface nucleolin
participates in both the binding and endocytosis of lactofer-
rin in target cells.  Eur J Biochem 2004, 271(2):303-317.

77. Laber DA, Choudry MA, Taft BS, Bhupalam L, Sharma VR, Hendler FJ,
Barnhart KM: A phase I study of AGRO100 in advanced can-
cer.  Journal of Clinical Oncology 2004, 22(14S):3112.

78. Barnhart KM, Laber DA, Bates PJ, Trent JO, Miller DM: AGRO100:
The translation from lab to clinic of a tumor-targeted
nucleic acid aptamer.  Journal of Clinical Oncology 2004,
22(14S):3126.

79. Ozen M, Multani AS, Chang S-M, Von Eschenbach AC, Chung LWK,
Pathak S: Establishment of an in vitro cell model system to
study human prostate carcinogenesis: involvement of chro-
mosome 5 in early stages of neoplastic transformation.  Inter-
nation Journal of Oncology 1996, 8:883-888.

80. Kleinman HK, McGarvey ML, Hassell JR, Martin GR: Formation of
a supramolecular complex is involved in the reconstitution
of basement membrane components.  Biochemistry 1983,
22(21):4969-4974.

81. Davis LA, Ogle RC, Little CD: Embryonic heart mesenchymal
cell migration in laminin.  Dev Biol (N Y 1985) 1989, 133(1):37-43.

82. Vafa A, Zhang Y, Sikes RA, Marengo SR: Overexpression of
p185erbB2/neu in the NbE prostatic epithelial cell line
increases cellular spreading and the expression of integrin
alpha6beta1.  Int J Oncol 1998, 13(6):1191-1197.

83. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB: Evalu-
ation of a tetrazolium-based semiautomated colorimetric
assay: assessment of radiosensitivity.  Cancer Res 1987,
47(4):943-946.

84. Romijn JC, Verkoelen CF, Schroeder FH: Application of the MTT
assay to human prostate cancer cell lines in vitro: establish-
ment of test conditions and assessment of hormone-stimu-
lated growth and drug-induced cytostatic and cytotoxic
effects.  Prostate 1988, 12(1):99-110.

85. Smart EJ, Ying YS, Mineo C, Anderson RG: A detergent-free
method for purifying caveolae membrane from tissue cul-
ture cells.  Proc Natl Acad Sci U S A 1995, 92(22):10104-10108.

86. Wu HC, Hsieh JT, Gleave ME, Brown NM, Pathak S, Chung LW: Der-
ivation of androgen-independent human LNCaP prostatic
cancer cell sublines: role of bone stromal cells.  Int J Cancer
1994, 57(3):406-412.

87. Yamada KM, Even-Ram S: Integrin regulation of growth factor
receptors.  Nat Cell Biol 2002, 4(4):E75-76.

88. You X, Yu HM, Cohen-Gould L, Cao B, Symons M, Vande Woude GF,
Knudsen BS: Regulation of migration of primary prostate epi-
thelial cells by secreted factors from prostate stromal cells.
Exp Cell Res 2003, 288(2):246-256.

89. Comoglio PM: Pathway specificity for Met signalling.  Nat Cell
Biol 2001, 3(7):E161-162.

90. Zarnegar R, DeFrances MC, Oliver L, Michalopoulos G: Identifica-
tion and partial characterization of receptor binding sites for
HGF on rat hepatocytes.  Biochem Biophys Res Commun 1990,
173(3):1179-1185.

91. Wielenga VJ, van der Voort R, Taher TE, Smit L, Beuling EA, van
Krimpen C, Spaargaren M, Pals ST: Expression of c-Met and
heparan-sulfate proteoglycan forms of CD44 in colorectal
cancer.  Am J Pathol 2000, 157(5):1563-1573.

92. van der Voort R, Taher TE, Wielenga VJ, Spaargaren M, Prevo R, Smit
L, David G, Hartmann G, Gherardi E, Pals ST: Heparan sulfate-
modified CD44 promotes hepatocyte growth factor/scatter
factor-induced signal transduction through the receptor
tyrosine kinase c-Met.  J Biol Chem 1999, 274(10):6499-6506.

93. Pollack AL, Apodaca G, Mostov KE: Hepatocyte growth factor
induces MDCK cell morphogenesis without causing loss of
tight junction functional integrity.  Am J Physiol Cell Physiol 2004,
286(3):C482-494.

94. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M,
Pals ST: Cell surface proteoglycan syndecan-1 mediates hepa-
tocyte growth factor binding and promotes Met signaling in
multiple myeloma.  Blood 2002, 99(4):1405-1410.

95. Matsumoto K, Nakamura T: Hepatocyte growth factor: reno-
tropic role and potential therapeutics for renal diseases.  Kid-
ney Int 2001, 59(6):2023-2038.

96. Orrick LR, Olson MO, Busch H: Comparison of nucleolar pro-
teins of normal rat liver and Novikoff hepatoma ascites cells
by two-dimensional polyacrylamide gel electrophoresis.  Proc
Natl Acad Sci U S A 1973, 70(5):1316-1320.

97. Derenzini M, Sirri V, Trere D, Ochs RL: The quantity of nucleolar
proteins nucleolin and protein B23 is related to cell doubling
time in human cancer cells.  Lab Invest 1995, 73(4):497-502.

98. Tawfic S, Goueli SA, Olson MO, Ahmed K: Androgenic regulation
of phosphorylation and stability of nucleolar protein nucleo-
lin in rat ventral prostate.  Prostate 1994, 24(2):101-106.

99. Xu LL, Su YP, Labiche R, Segawa T, Shanmugam N, McLeod DG, Moul
JW, Srivastava S: Quantitative expression profile of androgen-
regulated genes in prostate cancer cells and identification of
prostate-specific genes.  Int J Cancer 2001, 92(3):322-328.

100. Mi Y, Thomas SD, Xu X, Casson LK, Miller DM, Bates PJ: Apoptosis
in leukemia cells is accompanied by alterations in the levels
and localization of nucleolin.  J Biol Chem 2003,
278(10):8572-8579.
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1655790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8294430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8294430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8294430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1944272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1710022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1710022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1710022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8380736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8380736
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9888450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9888450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9888450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9467938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9467938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9467938
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9524774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9524774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9468574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9468574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9468574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2531289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2531289
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11243469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11243469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10036227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10036227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10544174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12215536
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15329357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15329357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15329357
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11277697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11277697
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147681
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14638862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14638862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14638862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14717698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15284264
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6227336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6227336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6227336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9824630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9824630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9824630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3802101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3802101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3802101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3126493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3126493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3126493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8169003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8169003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8169003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11944037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11944037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12915116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12915116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11433311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2148475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2148475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2148475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11073815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11073815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11073815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10037743
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11830493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11830493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11830493
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11380804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11380804
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4351171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4351171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4351171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7474921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7474921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7474921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8309845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8309845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8309845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11291065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11291065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11291065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12506112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12506112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12506112


BMC Cancer 2006, 6:197 http://www.biomedcentral.com/1471-2407/6/197
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

101. Bates PJ, Kahlon JB, Thomas SD, Trent JO, Miller DM: Antiprolifer-
ative activity of G-rich oligonucleotides correlates with pro-
tein binding.  J Biol Chem 1999, 274(37):26369-26377.

102. Sikes RA, Cooper CR, Beck GL, Pruitt F, Brown ML, Balian G: Bone
stromal cells as therapeutics targets in osseous metastasis.
Volume 15. Kluwer Academic Publishers, Boston MA; 2005. 

103. Bugler B, Caizergues-Ferrer M, Bouche G, Bourbon H, Amalric F:
Detection and localization of a class of proteins immunolog-
ically related to a 100-kDa nucleolar protein.  Eur J Biochem
1982, 128(2–3):475-480.

104. Hovanessian AG, Puvion-Dutilleul F, Nisole S, Svab J, Perret E, Deng
JS, Krust B: The cell-surface-expressed nucleolin is associated
with the actin cytoskeleton.  Exp Cell Res 2000, 261(2):312-328.

105. Pfeifle J, Anderer FA: Isolation and characterization of phos-
phoprotein pp 105 from simian virus 40-transformed mouse
fibroblasts.  Biochim Biophys Acta 1983, 762(1):86-93.

106. Pfeifle J, Hagmann W, Anderer FA: Cell adhesion-dependent dif-
ferences in endogenous protein phosphorylation on the sur-
face of various cell lines.  Biochim Biophys Acta 1981,
670(2):274-284.

107. Borer RA, Lehner CF, Eppenberger HM, Nigg EA: Major nucleolar
proteins shuttle between nucleus and cytoplasm.  Cell 1989,
56(3):379-390.

108. Larrucea S, Gonzalez-Rubio C, Cambronero R, Ballou B, Bonay P,
Lopez-Granados E, Bouvet P, Fontan G, Fresno M, Lopez-Trascasa M:
Cellular adhesion mediated by factor J, a complement inhib-
itor. Evidence for nucleolin involvement.  J Biol Chem 1998,
273(48):31718-31725.

109. Becker J, Craig EA: Heat-shock proteins as molecular chaper-
ones.  Eur J Biochem 1994, 219(1–2):11-23.

110. Lee CH, Chang SC, Chen CJ, Chang MF: The nucleolin binding
activity of hepatitis delta antigen is associated with nucleolus
targeting.  J Biol Chem 1998, 273(13):7650-7656.

111. Take M, Tsutsui J, Obama H, Ozawa M, Nakayama T, Maruyama I,
Arima T, Muramatsu T: Identification of nucleolin as a binding
protein for midkine (MK) and heparin-binding growth asso-
ciated molecule (HB-GAM).  J Biochem (Tokyo) 1994,
116(5):1063-1068.

112. Kleinman HK, Weeks BS, Cannon FB, Sweeney TM, Sephel GC,
Clement B, Zain M, Olson MO, Jucker M, Burrous BA: Identifica-
tion of a 110-kDa nonintegrin cell surface laminin-binding
protein which recognizes an A chain neurite-promoting pep-
tide.  Arch Biochem Biophys 1991, 290(2):320-325.

113. Kibbey MC, Johnson B, Petryshyn R, Jucker M, Kleinman HK: A 110-
kD nuclear shuttling protein, nucleolin, binds to the neurite-
promoting IKVAV site of laminin-1.  J Neurosci Res 1995,
42(3):314-322.

114. Yu D, Schwartz MZ, Petryshyn R: Effect of laminin on the nuclear
localization of nucleolin in rat intestinal epithelial IEC-6 cells.
Biochem Biophys Res Commun 1998, 247(1):186-192.

115. Lozano E, Betson M, Braga VM: Tumor progression: Small
GTPases and loss of cell-cell adhesion.  Bioessays 2003,
25(5):452-463.

116. Titus B, Schwartz MA, Theodorescu D: Rho proteins in cell migra-
tion and metastasis.  Crit Rev Eukaryot Gene Expr 2005,
15(2):103-114.

117. Gomez del Pulgar T, Benitah SA, Valeron PF, Espina C, Lacal JC: Rho
GTPase expression in tumourigenesis: evidence for a signifi-
cant link.  Bioessays 2005, 27(6):602-613.

118. Schwartz M: Rho signalling at a glance.  J Cell Sci 2004, 117(Pt
23):5457-5458.

119. Ridley AJ: Intracellular regulation. Rac and Bcr regulate
phagocytic phoxes.  Curr Biol 1995, 5(7):710-712.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2407/6/197/pre
pub
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10473594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7151790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7151790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7151790
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11112338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11112338
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6299384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6299384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6299384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6271243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6271243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6271243
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2914325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2914325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9822633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8306977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8306977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9516470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9516470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9516470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7896734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1834017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1834017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1834017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8583499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8583499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8583499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9636677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9636677
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12717816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12717816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16022631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15509861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7583110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7583110
http://www.biomedcentral.com/1471-2407/6/197/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Cell culture and materials
	Semi-quantitative reverse transcription PCR
	Immunoprecipitation

	Substrate adhesion and growth assay
	ELISA detection of HGF
	Cell migration
	Protein sequencing of an HGF binding protein
	Cell lysis and Erk kinase assay
	Immunoblot analyses
	Statistical analyses

	Results
	HGF in stromal-conditioned media (SCM) regulates prostate cancer cell adhesive behaviors
	HGF-induced cell adhesion and migration responses are mediated by Met-independent receptors
	Nucleolin is an HGF binding partner in the C4-2 prostate cancer cell line

	Discussion
	HGF response without Met and with nucleolin
	Nucleolin on the cell surface
	Additional components in HGF/nucleolin interactions

	Conclusion
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

