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Abstract

Background: Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate
whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence.

Methods: A set of 4 genes, including CDH I (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and
RASSFIA (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP
(Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including
14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas)
and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis
(control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20
urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite
modification, methylation patterns were determined and correlated with standard clinic-histopathological
parameters.

Results: CDH | and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal
adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were
found between RARB and RASSFIA methylation and the clinical and histopathological parameters in bladder cancer,
a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001;
OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF/A gene, respectively, in relation to the control
group.

Conclusion: Indistinct DNA hypermethylation of CDHI and SFN genes between tumoral and normal urinary
bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer.
However, RARB and RASSF I A gene methylation appears to be an initial event in urinary bladder carcinogenesis and
should be considered as defining a panel of differentially methylated genes in this neoplasia in order to maximize
the diagnostic coverage of epigenetic markers, especially in studies aiming at early recurrence detection.
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Background

Urinary bladder cancer is the fourth most common malig-
nancy in the Western world, with a male:female ratio of
nearly four to one and a median age at diagnosis between
65 and 70 years [1]. Histologically, 90% to 95% of malig-
nant bladder tumors are urothelial carcinoma (UC), for-
merly designated transitional cell carcinoma (TCC) [2].
Although more than 70% of the lesions are detected as
non-invasive papillary carcinomas, which commonly
recur, a poor prognosis is related to tumors that are
already invasive at diagnosis (~20%) [3]. After transure-
thral resection of superficial bladder cancer, periodic cys-
toscopic monitoring is performed for early recurrence
detection, with some cases requiring intravesical prophy-
lactic instillation chemotherapy. Muscle invasive disease
calls for more aggressive treatment, often consisting of
radical cystectomy and bladder substitution [4].

At present, conventional diagnosis for urinary bladder
cancer is based on morphological, histological and path-
ological features. These criteria provide essential prognos-
tic information, but show insufficient power to precisely
predict patient outcome. The need for accurate predictive
markers has led to the search for molecular markers in
bladder cancer patients [5]. The use of genetic and epige-
netic alterations for the early detection of bladder cancer
is promising because it is believed that some molecular
events occur at the beginning of the carcinogenesis proc-
ess. Thus, molecular diagnosis may allow detection before
clinical or radiographic manifestations. In this context, a
sensitive and specific noninvasive test could prescreen
patients with clinical symptoms as well as those at high
risk, and would also be useful in monitoring patients
post-surgically for early detection of recurrence.

DNA-, RNA-based or/and immunohistochemical meth-
ods have been applied to identify new tumor markers or
to estimate risk of tumor progression in UC. Several DNA
alterations have been described in bladder cancer, such as
allele losses or deletions [6], gene amplifications [7], DNA
mutations [8] and microsatellite instabilities [9]. Further-
more, aberrant DNA methylation patterns have been rec-
ognized as common epigenetic changes in human cancer
and are already detected in early cancer stages [10]. DNA
methylation occurs on cytosine residues located at the 5'
position of guanines in CpG dinucleotides [11]. Its distri-
bution on the mammalian genome is not random and is
especially important in CpG-rich areas, also called CpG
islands. The promoter region of actively transcribing genes
is frequently rich in this dinucleotide sequence, almost
always unmethylated [12].

Dense DNA methylation in CpG islands of growth-regu-
lating gene promoter regions is now recognized as a com-
mon alternative mechanism for gene inactivation in
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human cancer, an event as important as somatic muta-
tions in coding regions of tumor suppressor genes (TSG)
[13]. Usually both genetic and epigenetic events represent
complementary hits involved in TSG inactivation [14]. A
large number of studies have shown that loci of epigenet-
ically inactivated TSG generally coincide with overlapping
regions of allelic losses in human cancer, including UC
[6,15-19]. In fact, loss of heterozygosity (LOH) assays
have been widely used as indirect approaches in the
search for a new TSG [20,21]. In the last few years, genetic
studies have indicated that allelic loss in many distinct
chromosomal regions, including 1p, 3p, and 16q, are
associated with UC tumorigenesis [17-19,21]. It is impor-
tant to notice that RASSFI1A (Ras association (RalGDS/AF-
6) domain family 1) and RARB (retinoic acid receptor,
beta) mapped at 3p (3p21.3 and 3p24, respectively), SFN
(stratifin, also known as 14-3-3c) located at 1p35.3, and
CDH1 (cadherin 1, type 1, E-cadherin [epithelial]) at
16g22.1, are epigenetically silenced TSGs located at loci
that overlap with LOH minimal regions in human cancer.

RASSF1A protein probably modulates some of the growth
inhibitory responses mediated by Ras, although its inter-
action with activated Ras remains unclear. This gene is
considered a bona fide tumor suppressor epigenetically
inactivated during human carcinogenesis, whose hyper-
methylation has also been reported in UC [22-30]. The
RARB gene is a member of the thyroid-steroid hormone
receptor superfamily of nuclear transcriptional regulators
that binds retinoic acid (the biologically active form of
vitamin A), and also mediates cellular signaling during
embryonic morphogenesis, cell growth, and differentia-
tion [31]. Retinoic acids exhibit tumor-suppressor activity
due to their antiproliferative and apoptosis-inducing
effects [32]. RARB has also presented high methylation
frequencies in urinary bladder tumors (varying from 15%
to 93%) [15,22,24,25,30].

Initially, it was suggested that loss of stratifin expression
could contribute to malignant transformation by disa-
bling the cell cycle arrest at the G2 checkpoint, allowing
the accumulation of genetic defects [33]. Subsequently,
the down-regulation of SFN gene in various human can-
cers was generally attributed to the hypermethylation of
its CpG island. To the best of our knowledge, there is only
one previous study addressing SFN hypermethylation in
UC where the highest frequency was found for squamous
cell carcinomas irrespective of their grade of cellular
malignancy (80%). Furthermore, the authors found
hypermethylation of 57.1% for high grade, high stage
nonpapillary TCC; 28.6% for low grade, low stage papil-
lary TCC; and 28% for undifferentiated small cell carcino-
mas, the lowest rate [34].
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The CDH1 gene encodes for a calcium-dependent cell-cell
adhesion glycoprotein, whose loss of function may con-
tribute to cancer progression by increasing proliferation,
invasion, or metastasis [35]. These findings suggest that
CDH1 is a tumor- and invasion-suppressor gene [36]. Its
relation to urinary bladder carcinogenesis was demon-
strated through the observation of altered expression due
to epigenetic changes in many studies, ranging from 9.5%
hypermethylation [29] up to 87% in TCCs [37]. However,
some studies have also evaluated TCCs, both in squamous
cells and in situ carcinoma, and have shown a variable
spectrum of hypermethylation for the same gene
[15,22,24,25,27,30,38-40].

In an effort to identify a possible association among epi-
genetic changes, urinary bladder cancer prognosis and
early-recurrence, we analyzed the methylation pattern of
CDH1, RARB, SFN and RASSF1A genes in 54 fresh sam-
ples of urinary bladder cancer, 14 of which were paired
with tumor-adjacent normal urothelium; 39 paraffin-
embedded UC primary tumor and/or recurrence matched
with 23 bladder washing sediments obtained from 20
patients under post-surgical monitoring. In addition, we
analyzed a hospital-based control group consisting of 24
bladder washings from patients that reported urological
complaints, but without any bladder tumor history and
showing negative cytology for tumor cell presence.

Methods

Sample collection and DNA extraction

Methylation patterns of RASSF1A, RARB, SFN, and CDH1
genes were determined in two cell lineages, 5637 and T24,
derived from non-invasive and invasive high-grade UC,
respectively. Fresh samples of tumoral urinary bladder tis-
sues were obtained from 54 patients (44 males and 10
females; median age of 67.85 years, ranging from 40 to 90
years) who underwent surgical treatment at Amaral Car-
valho Hospital, Jad, SP, Brazil. Patients were recruited
consecutively on the basis of tissue availability. Treatment
for each patient consisted of initial endoscopic tumor
resection and subsequent radical cystectomy for those
with muscle invasive disease. Non-muscle invasive
tumors underwent intravesical bacillus Calmette-Guerin
(BCG) therapy. Normal adjacent tissue samples were also
collected from each case. A tumor fragment and the
matched normal adjacent tissue were fixed in formalin
and embedded in paraffin. The corresponding hematoxy-
lin-eosin-stained sections were evaluated by the same
pathologist (JLVC) to determine tumor type, grade and
growth pattern. Samples were trimmed to maximize the
quantity of target tissue and only fragments with more
than 70% neoplastic cells were used for DNA extraction.
After this evaluation, only 14 normal adjacent tissue sam-
ples exhibited an epithelial layer. Tumors were staged
according to the 1998 WHO-ISUP classification [41].
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A control group included 24 urinary bladder washings
from patients that reported urological complaints, but
without any bladder tumor history and showing negative
cytology for tumor cell presence in the same bladder
washing cell samples.

In addition, 20 patients in post-surgical monitoring, who
underwent cytology analysis to detect tumor recurrence,
were recruited at the Department of Urology from Botu-
catu Medical School, UNESP - Sao Paulo State University,
Brazil. From this group was collected a total of 23 urinary
bladder washings matched with 39 UC samples obtained
from the Department of Pathology archive. Among these
20 patients 9 presented recurrent tumors (analysis until
seven biopsies had been collected at distinct times) and
11 were primary tumors.

Genomic DNA from fresh bladder tissues, paraffin-
embedded samples and washout cell sediments were
obtained by standard sodium dodecyl sulfate/proteinase
K digestion, followed by phenol/chloroform extraction
and ethanol precipitation.

All samples were collected after patients or their relatives
had provided informed consent. Approval for research on
human subjects was obtained from the respective ethic
committees of both institutions and by the National
Research Ethics Committee (CONEP 9382) Brasilia, DF,
Brazil.

Bisulfite treatment and Methylation-Specific Polymerase
Chain Reaction (MSP)

The conversion of DNA by sodium bisulfite was per-
formed using an established protocol [42] with modifica-
tions. Initially, genomic DNA was denatured with 3 M
NaOH at 40°C for 15 min (final concentration of 0.3 M
NaOH). The urea/bisulfite and hydroquinone solution
(freshly prepared, pH 5.0) were then added to the dena-
tured DNA to yield final concentrations of 5.36 M, 3.44
M, and 0.5 mM, respectively, followed by 20 cycles of
incubation at 55°C for 15 min followed by denaturation
at 95°C for 30 sec in a PTC200 Peltier Termal Cycler (M]
Research, Madison, USA). DNA was purified with the
Wizard DNA Clean-UP System (Promega. Madison, WI,
USA), and DNA modification was completed by the addi-
tion of 5.0 ul of NaOH 3 M at room temperature for 15
min. Precipitation was carried out through the addition of
30 pl of ammonium acetate 5 M (pH 7.0), 350 pl of etha-
nol and 1 pl of glycogen (20 ng/uL) (Invitrogen Life Tech-
nologies, Carlsbad, CA, USA). The bisulfite-modified
DNA was resuspended in 20 pl of sterile water and stored
at-20°C.

The methylation pattern of promoter regions for CDH1,

RARB, SFN and RASSF1A genes was evaluated by a MSP
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approach. For each gene, previously described primers
specific to the methylated and unmethylated sequences
were used [33,43-45]. DNA from lymphocytes of healthy
volunteers treated with SssI methyltransferase (New Eng-
land Biolabs, Beverly, MA, USA) and then subjected to
bisulfite modification was used as positive controls for
methylated alleles. The reaction was performed in a total
volume of 50 pl containing 10 pg of genomic DNA, 10 U
of SssI methylase, 160 mM of S-adenosyl-metionina, 50
mM of NaCl, 10 mM of Tris-HCl, 10 mM of MgCl,, 1 mM
of DTIT pH 7.9, during 18 hours at 37°C.

Table 1 summarizes the oligonucleotide sequences,
annealing temperature and product size for MSP analysis.
To determine the methylation pattern within the CpG
island in 5'UTR of the CDH1 gene, a nested-PCR approach
was used as previously described in detail [46].

One-step MSP was performed to detect the methylation
pattern of RARB, SEN and RASSF1A genes, using specific
primers for the methylated and unmethylated sequences
in distinct reactions, accomplished in a total volume of 25
pl containing 0.25 uM of each primer, 200 uM of each
dNTP, 15 mM Tris-HCI, pH 8.0, 50 mM KCI, 1U of Ampl-
iTaq Gold (Applied Biosystems, Foster City, CA, USA) and
3 mM MgCl, for RARB and RASSF1A, and 2.5 mM MgCl,
for SEN.
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The amplified products were visualized after electrophore-
sis in 6% polyacrylamide gel and silver nitrate staining
[47]. Water blanks were included in each assay.

Statistical analysis

Descriptive mean and percentage statistics were used to
summarize patient data and gene hypermethylation sta-
tus. The presence of methylation and characteristics
including age, sex and clinico-histopathological parame-
ters were evaluated using Odds Ratio (OR) with Confi-
dence Interval (CI) of 95%. Pairwise associations
followed dichotomous variables defined according to
growth pattern (non-papillary versus papillary), differenti-
ation grade (low versus high), tumor invasiveness (nonin-
vasive versus invasive) [41], and presence or absence of
tumoral recurrence. Potential associations on the presence
of promoter methylation for each gene as well as the sen-
sitivity and specificity of the assay for tumor recurrence
were assessed using Fisher's Exact test with a 5% signifi-
cance level. Correlations between cytology and hyper-
methylation of bladder washings were considered to
assess the relative hazar of recurrence. All statistical evalu-
ations were performed using a computer-assisted program
(SPSS - Statistical Package for The Social Sciences v15.0,
SPSS Inc.).

Table I: Oligonucleotide sequences, annealing temperatures, and product size for MSP analysis.

Gene (MS) Primers 5'- 3'
CDHI
Methylated allele GTAGTTACGTATTTATTTTTAGTGGCGT
CF

CGAATACGT CGAATCGAACCG (R)
TGGTTGTAGTTATGTATTTATTTTTAGTG
GTGTT (F)
ACACCAATACAACAAATCAAACCAAA

(R)

GAACGCGAGCGATTCGAGT (F)
GACCAATCCAACCGAAACG (R)
GGATTGGGATGTTGAGAATG (F)
CAACCAATCCAACCAAAACAA (R)

Unmethylated allele

RARB
Methylated allele

Unmethylated allele

SFN

Methylated allele GGTAGTTTTTATGAAAGGCGTC (F)
CCTCTAACCGCCCACCACG (R)
ATGGTAGTTTTTATGAAAGGTGTT (F)

CCCTCTAACCACCCACCACA (R)

Unmethylated allele

RASSFIA
Methylated allele ~ GGGTTTTGCGAGAGCGCG (F)
GCTAACAAACGCGAACCG (R)

GGTTTTGTGAGAGTGTGTTTAG (F)

CACTAACAAACACAAACCAAAC (R)

Unmethylated allele

Position of interrogated CpGs*

Ta (°C) Product size (bp) Ref.

-14; 4,7 53 112 [43]
68; 73; 78; 82; 88
53 120
T 1135 1175 122 55 158 [44]
231; 236; 249
55 143
153; 156 56 106 [33]
219; 228
56 104
-66; -60; -58 55 169 [45]
77; 82; 84; 94
55 169

MSP — Methylation-Specific Polymerase Chain Reaction; MS — methylation status; * in relation to transcription start site; Ta — Annealing

temperature; bp — base pair; F — forward primer; R — reverse primer.
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Results

MSP analysis in cell lineages

MSP analysis of DNA from 5637 and T24 cell lines evi-
denced hypermethylation at the CDHI1 and RASSF1A
gene promoter regions. None of them showed this pattern
for the RARB gene. The methylation of SFN was observed
in 5637 cells, but was not present in T24.

MSP analysis in matched tumoral and adjacent bladder
tissue samples

Fifty-four matched tumoral and adjacent tissue samples
were collected. Remarkably, after histopathology, the
presence of normal epithelial cell layer in normal adjacent
biopsies was confirmed in only 14 pairs. Thus, MSP anal-
ysis was performed on 49 UCs obtained from unrelated
patients, 14 of them matched with normal tissue samples,
3 squamous cell carcinomas and 2 adenocarcinomas.
Table 2 summarizes the relevant clinical and histopatho-
logical characteristics in the group of 49 UC patients. On
average, these patients received 30 months of follow-up
monitoring. Twenty-five UC patients showed recurrence:
20 (40.8%) were recurrent at the moment of the study
sample collection, since they had a positive history of pre-
vious UC confirmed by a histological diagnosis before the
date of the most recent surgery (0.7 to 7.5 years); and 5
had their primary tumor evaluated, but exhibited recur-
rence within a short time period (Table 3).

After genomic DNA treatment with sodium bisulfite and
MSP analysis, both amplicons for unmethylated and
methylated alleles, respectively, were detected in CDH1
and SFN gene target regions in all 49 fresh UC samples.
Among histopathologically normal tumor-adjacent uri-
nary bladder tissues, the same methylation pattern was
found, except in one sample which showed only the
unmethylated alleles for SFN gene.

Table 2: Clinical and histopathological data from patients with
UC tumors.

Clinical and histopathological features

Patients, n 49
Sex, n (%)

Male 40 (81.6%)
Female 9 (18.4%)
Age, n (%)*

< 60 years 9 (18.7%)
> 60 years 39 (81.3%)
Growth pattern, n (%)

Papillary 33 (67.3%)
Non-papillary 16 (32.7%)
Muscle invasion, n (%)

Noninvasive 30 (61.2%)
Invasive 19 (38,8%)

* 48 patients contributed to this information
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RARB and RASSF1A hypermethylation were detected in
40 (81.6%) and 11 (22.5%) UC samples, respectively. The
comparison of 14 matched normal and tumoral urinary
bladder samples exhibited a concordant pattern for pres-
ence of RARB hypermethylation in 12 pairs; in two pairs
(cases 12 and 42, Figure 1) RARB hypermethylation was
restricted to normal tissue. Absence of RASSF1A hyper-
methylation was a common feature in 9 bladder tissue
pairs. Only one case showed hypermethylation in both
normal and tumoral tissues (case 11, Figure 1) and, in 3
matched samples (cases 22, 29 and 36, Figure 1) it was
restricted to the tumor specimens. Adjusted ORs for these
data as well as demographic, physician and histopatho-
logical parameters related to the RARB and RASSF1A DNA
methylation patterns in 49 UC samples are shown in
Table 3.

The adenocarcinomas analyzed showed hypermethyla-
tion for both, RARB and RASSF1A genes. Two of the squa-
mous cell carcinomas showed the same methylation
pattern for RARB, and one for RASSF1A.

MSP analysis in exfoliated cells (bladder washings) in
cancer-free controls and in bladder cancer patients

In the control group, of the 24 urinary bladder exfoliated
cell samples submitted to cytological analysis from
patients (median age of 61.4, ranging from 26 to 82 years)
with negative diagnosis for cancer (four of them with cys-
titis), 2/23 (8.3%) and 8/16 (50%) exhibited RARB and
RASSF1A hypermethylation, respectively. In addition,
higher frequencies of methylation were detected for
CDH1 (91.3%) and SFN (95.5%) genes. Compared to the
results shown by the biopsy analysis of UCs, RARB had a
sensitivity of 95% and specificity of 71% by Fisher's Exact
test (p < 0.0001; OR = 48.89); for the same parameters,
RASSF1A showed 58% and 17%, respectively (p < 0.05;
OR =0.29) (Table 4).

In the third sample set, hypermethylation identified in
tumor DNA from archival UC samples was used as a
molecular tag to predict tumor recurrence in the corre-
sponding DNA obtained from cells of urinary bladder
washings from UC patients under post-surgical monitor-
ing. The comparative analysis between MSP from washout
cells and corresponding primary and/or recurrence tumor
sample was done for RARB and RASSF1A genes, including
23 urinary bladder washings and 39 paraffin-embedded
UC samples from 20 patients (median age of 68.65, rang-
ing from 42 to 84 years) (Figure 2). Among 39 tissue sam-
ples, RARB hypermethylation was identified in 14/38
fragments (36.8%) analyzed. Twelve patients showed at
least one tumor fragment hypermethylated for RARB
gene. Due to limited tissue volume, RASSF1A gene was
analyzed in a subset of 15 fragments from 11 patients,

Page 5 of 12

(page number not for citation purposes)



BMC Cancer 2008, 8:238

http://www.biomedcentral.com/1471-2407/8/238

Table 3: Clinical and histopathological prevalence parameters and DNA methylation pattern for RARB and RASSFIA genes in 49 fresh

urinary bladder carcinoma tissues.

Variable RARB OR (95% CI) RASSFIA OR (95% CI)
N@®@) P@ N@®@) P@

Age#

< 60 years I 8 1.0 (ref) 6 3 1.0 (ref)

> 60 years 8 31 0.48 (0.05—4.45) 31 8 0.51 (0.10-2.52)

Sex*

Female 3 6 1.0 (ref) 9 0 na p() = 0,097

Male 6 34 2.83 (0.55-14.54) 29 I

Growth pattern*®)

Non-papillary 2 7 1.0 (ref) 12 4 1.0 (ref)

Papillary 14 26 0.53 (0.09-2.90) 26 7 0.80 (0.19-3.29)

Differentiation grade*(®)

Low 5 16 1.0 (ref) 18 3 1.0 (ref)

High 4 24 1.88 (0.44-8.07) 20 8 2.40 (0.55-10.46)

Muscle invasion*()

Noninvasive 7 23 1.0 (ref) 24 6 1.0 (ref)

Invasive 2 17 2.59 (0.48-14.05) 14 5 1.43 (0.37-5.55)

Post-surgery recurrence*

Absence 4(0120) 22(4/20) 1.0 (ref) 19(3/20) 7(1/20) 1.0 (ref)

Presence 5(1120) 18(15/20) 0.65 (0.15-2.80) 19(13120) 4(3/20) 0.57 (0.14-2.27)

#Includes 48 samples; *Includes 49 samples; N — methylation negative; P — methylation positive; (a) patients that showed recurrence among those
that were under recurrence at time of the tumor sample collection; (b) according to recommendations of WHO-ISUP 1998 [43]; OR — odds ratio;
Cl — confidence interval; ref — referent category; na — not applicable; (1) Fisher's Exact test (o = 0.05).

with methylation detected in 9/15 of them (60%); these
hypermethylated tumors were from 7 patients.

Patients showing at least one hypermethylated tumor
fragment for RARB and/or RASSF1A were considered
informative cases for further comparisons. The MSP
results were challenged by cytological analysis during the
post-surgical monitoring: 5/12 patients showed positive
cytology at the time of cell collection to MSP analysis, but
only one of these exhibited RARB hypermethylation in
the same washout cells. MSP analysis results of RASSF1A
gene in 7 informative patients were discordant because
none of the 4 recurrent cases by cytological analysis
showed the epigenetic marker; contrarily, RASSF1A hyper-
methylation was detected in 2 of the 3 non-recurrent
cases. Table 5 exhibits the sensitivity and specificity of
MSP analysis in relation to the gold-standard cytological
evaluation for tumor recurrence detection.

Discussion

Epigenetic alterations are a hallmark of human cancer. In
particular, DNA hypermethylation is a common mecha-
nism for inactivating tumor-suppressor and other cancer
genes in tumor cells [48]. The aberrant methylation pat-
terns have been used as targets for the detection of tumor
cells in clinical specimens such as tissue biopsies or body
fluids [49].

In our MSP analysis performed on DNA obtained from
fresh tumor samples, a hypermethylated pattern predom-
inated for CDH1 and SFN genes. Commonly, a large spec-
trum of hypermethylation frequencies has been reported
for several genes in bladder cancer. For example, CDH1
gene methylation frequencies range from 9.5% to 84%
[15,22,25,27,30,37-40], independently of histological
classification. We detected CDH1 hypermethylation fre-
quency of 100% in bladder UCs, squamous cell carcino-
mas and adenocarcinomas samples, as well as in normal
adjacent urinary bladder tissue and in exfoliated urothe-
lial cells from cancer-free controls. Similarly, the SEN gene
was also hypermethylated in these samples. Costa et al.
[50] also detected high frequencies of CDH1 methylation
in clear cell renal carcinomas and normal renal tissues
(82.7% and 87.1%, respectively); in addition, SFN was
hypermethylated in 100% of normal and tumoral renal
tissues analyzed.

Interpretation of differential DNA-methylation patterns
in cancer has proven difficult, in part because the func-
tional consequences depend on the genomic region
involved, the specific CpG dinucleotides, and the inter-
and intratumoral heterogeneity. Apart from this, method-
ological issues such as the different primer sets interrogat-
ing methylation at distinct CpG dinucleotides of a specific
promoter region could explain the range of frequencies
reported in the literature. In our study, the protocol used
(which included the addition of urea in the DNA modifi-
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CDHI, RARB, SFN andRASSFIAmethylation patterns observed in fresh UC samples paired with normal adjacent
urinary bladder tissue. M — methylated allele; U — unmethylated allele; N — normal tissue; T — tumoral tissue.

cation step in order to improve the efficiency of unmeth-
ylated cytosine conversion [42]) and the CDHI gene
analysis based on the nested-PCR approach may have
contributed to the high methylation prevalence observed.

The dynamic nature of epigenetic alterations is partially
due to polymorphisms in some methyl group metabolism
genes [51,52] and in genes coding for proteins that medi-
ate these changes (DNA methyltransferases, methyl-CpG-
binding domain proteins) [53]. In addition, genomic pro-

Table 4: Accuracy patterns in urinary bladder tumor biopsies and control group bladder washings (cell sediment samples from bladder
washings of patients classified as cancer-free by cytological analysis).

Sample Accuracy patterns (%)
RARB RASSFIA
OR Sens. Spec. p(H OR Sens. Spec. p(H
(95% CI) (95% CI)
Control group 1.0 (ref) 95% 71% 0.0001 1.0 (ref) 58% 17% 0.005
Tumor biopsies 48.89 (9.69-246.67) 0.29 (0.09-0.95)

Sens. — Sensitivity; Spec. — Specificity; ref — referent category; Cl — confidence interval; (1) Fisher's Exact test (o. = 0.05)
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Figure 2

A) Cytological analysis of bladder washing sediment negative for the presence of tumor cells (case |1). B) Posi-
tive cytology illustrating a tumor recurrent case during the post-surgical monitoring. X 400, Giemsa staining. C) Comparative
MSP results from case || in tumor tissue (TCC) and in the exfoliated cells from the correspondent bladder washing for RARB
and RASSFIA genes. M — methylated allele; U — unmethylated allele. D) Distribution of MSP results among the third set of sam-
ples including 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical
monitoring and comparison with the cytological analysis.
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Table 5: Accuracy estimatives from MSP for RARB and RASSFIA genes observed in primary and/or previous recurrence of urinary

bladder carcinoma and respective washout.

Gene Accuracy patterns (%)
Sensitivity Specificity PPV NPV p(®H
Sediment of washout cells
RARB 116 (16.7) 13/14 (92.8) 1/2 (50.0) 13/18 (72.2) 0.521
RASSFIA 0/4 (0.00) 5/10 (50.0) 0/5 (0.00) 5/9 (55.5) 0.220
Fixed and paraffin-embedded bladder cancer tissue
RARB 5/6 (83.3) 7/14 (50.0) 5/12 (41.6) 7/8 (87.5) 0.324
RASSFIA 4/4 (100.0) 4/7 (57.1) 4/7 (57.1) 4/4 (100.0) 0.193

Cytology results were used as reference to detect the recurrence.

(I Fisher's Exact test (o = 0.05); PPV — positive predictive value; NPV — negative predictive value

files of DNA methylation are also influenced by aging
[38,54], dietary intake [55,56] and environmental expo-
sure [53,57,58]. In this context, DNA methylation hetero-
geneous patterns should be expected and already detected
for some genomic regions as reported by Eckkhardt et al.
[59]. These authors have found that 30.2% of investigated
loci on chromosomes 6, 20, and 22 exhibit heterogeneity
of methylation status, mainly due to the mosaic patterns
in the studied tissue. Furthermore, 10% of the analyzed
regions showed tissue-specific differences in DNA methyl-
ation.

We observed hypermethylated CDH1, SFN, and RARB
genes in the normal-adjacent tissue of urinary bladder
tumor. Aberrant methylation patterns have been associ-
ated with chronic inflammation [60,61], viral infection
[62] and aging [63]. Smith and Pereira-Smith [64] have
previously reported that epigenetic alterations are
involved in both the etiology and consequences of aging.
Thus, hypermethylation in normal tissue as detected in
the present study agrees with the results previously found
by Bornman et al. [38], who observed a similar pattern for
CDHI1 in normal bladder tissue from patients older than
70 years. Furthermore, aberrant methylation patterns of
the CDH1 promoter region were also described in pre-
adenoma stages of colorectal cancer, in hyperplasic polyps
[65,66] and in ulcerative colitis (a chronic inflammatory
condition of the large intestine that predisposes to cancer)
[60,67]. During breast cancer progression, CDH1 gene
methylation occurs in about 30% of the ductal carcino-
mas in situ, with a significant increase in invasive and met-
astatic lesions [68]. Moreover, this gene has been also
found methylated in pre-malignant and invasive bladder
cancers. In mammary tissue, SFN is usually unmethylated
in normal epithelium, but methylated in atypical hyper-
plasias, intraductal papillomas, ductal in situ carcinomas,
infiltrating carcinomas and in stromal cells [69,70]. SEN
and CDH1 methylation have been reported in peripheral

blood cells [70] as well as in infiltrating leukocytes in
breast cancer [71]. Overall, these observations suggest that
both genes, CDH1 and SFN, are not effective biomarkers
for MSP analysis in bladder cancer.

The MSP analysis of RARB and RASSF1A genes showed
respective hypermethylation of 82.9% and 24.4% in 49
UCs analyzed. Investigating the methylation at the same
CpG dinucleotides, Maruyama et al. [22], and Catto et al.
[25], found 15% and 24% hypermethylation for RARB,
and 35% and 54% for RASSF1A, respectively. In order to
verify the specificity of RARB and RASSF1A hypermethyl-
ation in relation to malignant phenotype in bladder tis-
sue, we evaluated these genes in exfoliated urothelial cells
from patients without cancer (control group): RARB and
RASSF1A hypermethylation were detected in 8.3% and
33.3%, respectively. The comparison of these data
revealed that RARB hypermethylation provides better
diagnostic coverage and specificity than RASSF1A hyper-
methylation. However, the hypermethylated pattern of
these genes in normal adjacent tissue in matched samples,
especially for the RARB gene, was an unexpected finding.
In this context, we could hypothesize that molecular alter-
ations precede morphological changes in the exposed uri-
nary bladder epithelium, since patients with bladder
neoplasia frequently show genetic instability on appar-
ently normal mucosa besides alterations of surrounding
tissue [72]. Aberrant methylation patterns appear to
reflect a pre-malignant characteristic of the urinary blad-
der mainly because UC is a neoplasia with multifocal
lesions and elevated recurrence indices [73], thus corrob-
orating the hypothesis that epigenetic alterations in cancer
may preexist in morphologically normal cells [74].

Thus, genetic and epigenetic alterations may be present
before cancer detection by imaging or traditional pathol-
ogy investigations. Therefore, molecular tests that target
these alterations have conceptual advantages for the suc-
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cessful early detection of neoplasias [48]. DNA represents
an ideal substrate for molecular detection because it is
robust, survives adverse conditions that many clinical
specimens undergo and, can be readily amplified by pow-
erful PCR-based approaches [75]. Tiny amounts of DNA
from early pre-neoplastic lesions or small cancers can be
used to permit the sensitive detection of one cancer cell in
a background of hundreds of normal cells.

Hence, the predictive value of MSP in identifying tumor
cells in washing sediments was evaluated in bladder can-
cer patients under post-surgical monitoring to detect
tumor recurrence. Positive cytology was found in 33.3%
of patients with urinary bladder tumor history. The hyper-
methylation patterns of RARB and RASSFIA genes
observed in cells obtained from urinary bladder washing
sediments were not concordant: some hypermethylated
cases in tumor tissue and recurrence by cytological analy-
sis did not show this marker in the same exfoliated cells.
Contrarily, in four cases, the cells taken from urinary blad-
der washings exhibiting hypermethylation for these genes
did not match the hypermethylation of the correspondent
TCC. The heterogeneity of the intra- and intertumoral
methylation patterns could partially explain these discrep-
ancies. Thus, hypermethylation could already be present
in the urinary bladder epithelium of cancer patients but
not necessarily in cells exfoliated from the urinary bladder
of cancer-free patients. RARB hypermethylation con-
firmed the presence of tumor cells in only 1 out of 5 recur-
rent cases and was absent in all cases showing negative
cytology. Importantly, for the eight patients whose tumors
did not present RARB methylation, the paired cell wash-
ing sediments DNA were also negative for methylation.
This finding corroborates the idea that the methylation
pattern of this gene is specific for tumor cells. RASSF1A
gene MSP analysis in washout cells showed discordant
results since its hypermethylation was not detected in 4
recurrent cases, although 2 negative cases for tumor cells
using cytology showed this tumor tag, which suggest that
these patients are under high risk for tumor recurrence.
Some studies using promoter hypermethylation identi-
fied in tumor DNA as a target for cancer detection in the
correspondent urine sample have shown sensitivities
ranging from 49% to 91% [15,26,30,75]. Recently, Yu et
al. [76] included the RASSFIA in an 11-gene set to assess-
ment of DNA methylation in urine sediments for sensi-
tive/specific detection of bladder cancer. Although two
studies have reported that the overall methylation sensi-
tivity was significantly higher than cytology [15,77], sev-
eral factors may contribute to the lower sensitivities of
MSP analysis in cells from urinary bladder fluids includ-
ing the incomplete diagnostic coverage of selected gene
sets, limited quantity of cells sampled, and the intrinsic
heterogeneity of methylation patterns in the exposed epi-
thelium, among others.

http://www.biomedcentral.com/1471-2407/8/238

Conclusion

In the literature, no single gene was found to be consist-
ently methylated in most bladder tumors. Thus, panels of
genes that are methylated in urinary bladder cancer have
been investigated to define methylation profiles associ-
ated with urinary bladder cancer diagnosis, prognosis and
early recurrence detection. DNA hypermethylation of
CDH1 and SFN genes was detected indistinctly among
urinary bladder tumoral and normal tissues as well as in
urinary bladder exfoliated cells, suggesting that these epi-
genetic features do not satisfy enough specificity criteria
for use as prognostic or early detection markers. The meth-
ylation of RARB and RASSF1A genes appears to be an ini-
tial event in urinary bladder carcinogenesis maintained
during tumor progression and should be included in the
panels of differentially methylated genes in urinary blad-
der cancer in order to maximize the diagnostic coverage of
epigenetic markers.

Abbreviations
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