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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. While the multi-step model of
pediatric leukemogenesis suggests interplay between constitutional and somatic genomes, the role of inherited genetic
variability remains largely undescribed. Nonsyndromic familial ALL, although extremely rare, provides the ideal setting to
study inherited contributions to ALL. Toward this goal, we sequenced the exomes of a childhood ALL family consisting of
mother, father and two non-twinned siblings diagnosed with concordant pre-B hyperdiploid ALL and previously shown
to have inherited a rare form of PRDM9, a histone H3 methyltransferase involved in crossing-over at recombination
hotspots and Holliday junctions. We postulated that inheritance of additional rare disadvantaging variants in predisposing
cancer genes could affect genomic stability and lead to increased risk of hyperdiploid ALL within this family.

Methods: \Whole exomes were captured using Agilent’s SureSelect kit and sequenced on the Life Technologies SOLID
System. We applied a data reduction strategy to identify candidate variants shared by both affected siblings. Under a
recessive disease model, we focused on rare non-synonymous or frame-shift variants in leukemia predisposing pathways.

Results: Though the family was nonsyndromic, we identified a combination of rare variants in Fanconi anemia (FA) genes
FANCP/SLX4 (compound heterozygote - r5137976282/rs79842542) and FANCA (rs61753269) and a rare homozygous
variant in the Holliday junction resolvase GENT (rs16981869). These variants, predicted to affect protein function, were
previously identified in familial breast cancer cases. Based on our in-house database of 369 childhood ALL exomes, the
sibs were the only patients to carry this particularly rare combination and only a single hyperdiploid patient was
heterozygote at both FANCP/SLX4 positions, while no FANCA variant allele carriers were identified. FANCA is the most
commonly mutated gene in FA and is essential for resolving DNA interstrand cross-links during replication. FANCP/SLX4
and GENT are involved in the cleavage of Holliday junctions and their mutated forms, in combination with the rare allele
of PRDM9, could alter Holliday junction resolution leading to nondisjunction of chromosomes and segregation defects.

Conclusion: Taken together, these results suggest that concomitant inheritance of rare variants in FANCA, FANCP/SLX4
and GENT on the specific genetic background of this familial case, could lead to increased genomic instability,
hematopoietic dysfunction, and higher risk of childhood leukemia.
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Background

ALL accounts for approximately 25 % of all pediatric can-
cer cases, however its etiology remains elusive [1]. Direct
evidence that childhood ALL has a genetic component is
provided by the high risk of developing the disease associ-
ated with certain inherited cancer-predisposing syndromes
such as Bloom’s syndrome, Down syndrome, Fanconi
anemia, neurofibromatosis and ataxia telangiectasia,
however they account for a trivial proportion of cases
(collectively <5 %) [2]. A heritable basis for ALL outside
these syndromes is largely undefined. Genome-wide associ-
ation studies provided the first unambiguous evidence that
common inherited genetic variation increases the risk of
developing childhood ALL [3-6]. The identification of
low-penetrance susceptibility alleles at 7p12.2 (IKZF1),
9pl12 (CDKN2A/CDKN2B), 10q21.2 (ARID5B) and
14q11.2 (CEBPE) in genes involved in transcriptional
regulation and differentiation of B-lymphocyte pro-
genitors, highlights the role of constitutional genetic
predisposition in childhood ALL onset. Yet these loci only
explain a small proportion of the familial risk associated
with childhood ALL [7] suggesting that the underlying
genetic architecture likely involves co-inheritance of mul-
tiple variants on a wide allelic spectrum with varying
penetrance. While large population-based cohorts will be
required to identify additional common ALL-predisposing
variants, families with multiple non-twinned ALL sibships,
though extremely rare [8, 9], represent ideal models to in-
vestigate the role of rare/private inherited genetic vari-
ation in disease etiology.

Through a recent international collaborative effort to
identify childhood ALL families, it was reported that ALL
sibs exhibit high subtype concordance, likely explained by
shared underlying genetic risk [8]. Here we report the case
of a nonsyndromic pre-B childhood ALL family with two
male non-twinned siblings diagnosed with hyperdiploid
pre-B ALL. The prenatal origins of hyperdiploid childhood
ALL and the need for additional postnatal mutations to
drive overt leukemogenesis are well established [10]. The
extent to which inherited genetic variation contributes to
the onset of hyperdiploid childhood ALL however is less
clear. The sibs were previously shown to have maternally
inherited a rare allelic form of PRDMY, a meiosis-specific
histone H3 methyltransferase that was suggested to influ-
ence genomic instability in ALL by potentially controlling
the location of genetic crossing-over at recombination
hotspots [11] and at Holliday junctions [12]. Based on
these data, we postulated that co-inheritance of additional
rare disadvantaging DNA variants is likely required to ex-
plain this familial case of ALL, the identification of which
could allow for better understanding of leukemogenesis
and benefit a much broader childhood ALL population.
Even though the family was otherwise asymptomatic, be-
cause the Fanconi anemia (FA) pathway is a well-known
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leukemia predisposing disorder and FA-associated gene
dysfunction has been linked to genomic instabilities, defects
in Holliday junction resolution [13] and aneuploidy
[14], we postulated that inherited rare disadvantaging
DNA variants in FA cancer predisposing genes/path-
way, in combination with PRDMY, could contribute to
the chromosome instabilities underlying this case of fa-
milial hyperdiploid childhood ALL.

Methods

Patients

This nonsyndromic pre-B childhood ALL family is of self-
reported Moroccan origin (Fig. 1); three unaffected sibs
(two females and one male) could not be ascertained.
Family history includes death due to cancer of both mater-
nal and paternal grandfathers, colon cancer at age 69 and
prostate cancer at age 65, respectively. A consanguineous
marriage (first cousins) on the paternal side lead to mul-
tiple miscarriages and children with polymalformation
syndrome, one of which died at 1 week. The probands
were diagnosed with childhood ALL and were treated at
the Sainte-Justine UHC (SJUHC) in Montreal, Quebec,
but were otherwise healthy.

Sibling A, a 2 year old male, had a white blood cell
count (WBC) of 4.4 x 10°/L, 14 and 75.5 % lympho-
blast cells in the blood and bone marrow respectively,
and a platelet count of 315.0 x 10°/L. Cytogenetic ana-
lysis revealed hyperdiploidy with the following karyo-
type: 53,XY,+4,+6,+12,+15,+17,+18,+21, and fluorescent
in situ hybridization (FISH) identified a germline inver-
sion inv(2)(p11.2q13) that was also carried by the
mother. This recurrent pericentric inversion is stably
inherited without phenotypic or developmental conse-
quences and likely has no clinical relevance [15]. Sib A
was classified as standard risk and was enrolled on
Dana Farber Cancer Institute (DFCI) ALL Consortium
Protocol 95-01. He has been out of treatment for over
60 months with leukemia free-survival (LFS).

Sibling B, a 14 year old male, was diagnosed 3 years later
and was classified as high risk based on his age. He had a
WBC of 6.2 x 10°/L, 18 and 93 % lymphoblast cells in the
blood and bone marrow respectively, and a platelet count
of 57.0 x 10°/L. Cytogenetic analysis also revealed hyper-
diploidy: 54,XY,+X,+5,+8,+10,+14,+17,+18,+21, yet Sib B
did not carry his mother’s inv(2)(p11.2q13) inversion. Sib
B was enrolled on DFCI-ALL protocol 2000-01 for high-
risk patients; he has responded well to treatment and is
also over 60 months with LFS.

Whole exome sequence capture and sequencing

DNA was extracted from peripheral blood samples (ob-
tained after remission) from the sibship, and from both
parents using standard protocols as described previ-
ously [16]. Whole exomes were captured in solution
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Fig. 1 Family pedigree. The family is of self-reported Moroccan origin and consists of five siblings, including two non-twinned brothers diagnosed
with pre-B acute lymphoblastic leukemia (A and B) as well as two healthy females and one healthy male. Affected probands are represented by
the shaded squares; cousins with poly-malformation syndrome are represented by half-shaded circles. Sequenced individuals are identified by

FANCP (rs79842542 — G/A)
FANCP (rs137976282 — C/A)
FANCA (rs61753269 — C/G)
GEN1 (rs16981869 — G/G)

with Agilent’s SureSelect Human All Exon 50Mb kits, and
sequenced on the Life Technologies SOLID System (sibship
mean coverage =28.1X, parents mean coverage =19.4X).
Reads were aligned to the hgl9 reference genome using
SOLID LifeScope software (see Fig. 2 for complete sequen-
cing analysis workflow). PCR duplicates were removed
using Picard [17]. Base quality score recalibration was per-
formed using the Genome Analysis ToolKit (GATK) [18]
and QC Failure reads were removed. Cleaned BAM files
were used to create pileup files using SAMtools [19].

Variant calling and annotation

Single nucleotide variations (SN'Vs) and insertion and de-
letion (indels) were called from pileup files using SNooPer,
an in-house variant caller that is based on a machine
learning approach and developed to minimize false posi-
tive variant calling in low-depth sequencing data (manu-
script submitted and software available upon request).
Using this familial design, we were able to effectively
incorporate parental sequence information to remove
Mendelian inconsistencies, reduce false-positive sequen-
cing and alignment errors, and facilitate the identification
of candidate disease-predisposing variants shared by both
affected siblings. Variant frequencies were assessed using
1000 Genomes [20] and NHLBI GO Exome Sequencing
Project (ESP) [21] databases. ANNOVAR [22] was used
for non-synonymous SNV annotation. The effect of
non-synonymous variants on protein conformation and
function was assessed using Sift [23], Polyphen2 [24]
and functional analysis through hidden markov models

(Fathmm, version 2.3) [25]. Sift, Polyphen2 and Fathmm
consider a variant as putatively damaging when it presents
a score <0.05, 20.957 and < -1.5, respectively. SiPhy [26]
was used to detect bases under selection using multiple
alignment data from 29 mammal genomes; larger is the
score, more conserved is the site.

Results & discussion

The sibs were diagnosed with nonsyndromic childhood
ALL 3 years apart. We previously identified a rare PRDM9
allele segregating within the familly [11]. PRDMO is a his-
tone H3 methyltransferase involved in crossing-over at re-
combination hotspots and Holliday junctions. To further
characterize the underlying inherited genetic contribution
to this childhood ALL family in an unbiased manner, we
performed whole exome sequencing of the siblings and
both parents. Though the family was nonsyndromic and
asymptomatic for FA, this recessive disorder is linked to
hematopoietic dysfunction, chromosomal instability and
increased susceptibility to childhood ALL. Based on the
observed concordant hyperdiploid phenotype of both sib-
lings, we postulated that inherited rare disadvantaging
DNA variants in leukemia predisposing pathways like the
FA pathway could affect overall genomic instability and, in
combination with the rare allelic form of PRDMY, favour
nondisjunction of chromosomes leading to increased risk
of hyperdiploid pre-B ALL within this family. Under a re-
cessive disease model, we interrogated our exome data and
identified shared non-synonymous mutations that were
either compound heterozygous or homozygous variant
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(Table 1) and specifically screened genes associated with
the leukemia predisposing syndrome FA (FANCA, FANCB,
FANCC, FANCDI/BRCA2, FANCD2, FANCE, FANCE
FANCG, FANCI, FANC], FANCL, FANCM, FANCN/
PALB2, FANCO/RADS5I1C, FANCP/SLX4, FANCQ/XPF
and FANCS/BRCAI). Among the identified variants, we
identified a combination of missense variants in the FA gene
FANCP/SLX4 (compound heterozygous at rs137976282 and
rs79842542), corroborating the assumption of FA pathway
destabilization (Fig. 2). A more thorough investigation of the
other FA pathway genes led then to the identification
of a rare heterozygous variant in FANCA (rs61753269)
that was also shared by the sibs. Although this variant
was heterozygous, restricting the analysis to extremely
rare variants allowed us to identify potentially deleteri-
ous non-synonymous variations in FA genes that could
be contributing to inherited susceptibility to ALL in the
sibs. For FANCP/SLX4, both parents transmitted a pu-
tatively damaging allele to their affected offspring who
were therefore compound heterozygous at rs137976282
(ESP and 1000 Genomes general population MAF <0.001)
and rs79842542 (MAF =0.059 and 0.071 in 1000 Genomes
and ESP general populations respectively). While two of
the three in silico algorithms predicted that the compound
heterozygous variants in FANCP/SLX4 were likely deleteri-
ous (Sift score =0 for both alleles and Polyphen2 score =1
and 0.964 for rs79842542 and rs137976282 respectively),
only Fathmm predicted rs61753269 in FANCA to be
damaging (Fathmm score = -1.78) (Table 1). Neverthe-
less, the high conservation score at FANCA rs61753269
(SiPhy =12.742), combined with its extreme rarity in
the population (MAF <0.001 in 1000 Genomes and
ESP), suggest that this variant is under strong func-
tional constraint and therefore could have a specific
role on protein conformation. Although not a Fanconi
anemia gene per se, our exome data also revealed a
rare non-synonymous homozygous variant in GENI
(rs16981869, MAF =0.145394, ESP general population
homozygous frequency q* = 0.025), that was predicted
to be deleterious by all three algorithms. GENI is a
member of the FANCP/SLX4 complex involved in
Holliday junction resolution [27], and in conjunction
with PRDM9 and the FA genes identified here, could
be contributing to genomic instability in the sibs. Our in-
house exome database of 369 individuals from our child-
hood ALL cohort (103 patient-mother-father trios and 60
patients) from the QcALL cohort [28] (whole exome se-
quencing performed on Life Technologies SOLID System
or Illumina HiSeq 2500; data available upon request),
revealed a single heterozygote patient at both FANCP/
SLX4 positions, 0/369 variant allele carriers at FANCA
rs61753269 and 3/369 carriers of the homozygous allele
at GEN1 rs16981869 (one patient and two parents). Inter-
estingly, the only two other cases harbouring either both
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variants in FANCP/SLX4 or the homozygous variant in
GENI were also diagnosed with hyperdiploid pre-B ALL,
concordant with the sibship. Overall, the sibs were the only
two individuals who carried this particularly rare combin-
ation of damaging alleles at FANCA rs61753269, FANCP/
SLX4 rs137976282, rs79842542 and GEN1 rs16981869.

Fanconi anemia is a recessive genetic disorder and most
frequent cause of inherited bone marrow failure. To date,
17 FA genes have been identified and mutations within
these genes have been shown to cause DNA repair defects
leading to genomic instability and aneuploidy, characteristic
of FA [29]. Given cumulative hematopoietic dysfunction
and excess chromosomal instability, FA patients are at
higher risk of developing hematopoietic malignancies in-
cluding leukemia [30]. Interestingly, the rare variants
FANCP/SLX4 rs137976282 and FANCA rs61753269 have
previously been identified in familial breast cancer cases
[31-34], however their pathological effects in cancer
predisposition remain unknown. FANCA, mutated in
over 60 % of FA cases, is an essential member of the
FA core complex involved in monoubiquitination of
the FANCI/D2 complex which in turn guides down-
stream activation of the DNA repair processes for
resolving DNA interstrand cross-links during replica-
tion [35]. Mono-allelic deletion of FANCA has been
suggested to promote genetic instabilities associated
with acute myeloid leukemia [36]. FANCP/SLX4 on the
other hand, is a downstream component of the FA path-
way that codes for a Holliday junction resolvase. It acts as
a docking platform for three structure-specific endonucle-
ases XPF-ERCC1, MUS81-EME1 and SLX1 [37]. Re-
cently identified as a FA gene, FANCP/SLX4 modulates
DNA repair and cellular responses to replication fork fail-
ure [38]. GEN1 codes for an endonuclease, and is a mem-
ber of the FANCP/SLX4 complex [27] shown to play a
role in the maintenance of centrosome integrity [39].
Along with PRDM9, GENI and the FANCP/SLX4 com-
plex are involved in the definition of Holliday junction
branch migration boundaries and the cleavage of static
and migrating Holliday junctions [12, 27, 37]. Efficient
DNA damage repair and simultaneous regulation of cell
cycle progression is critical for genomic stability. Interest-
ingly, a rare recessive homozygous variant in GENI has
been associated with bilateral breast cancer [40] and the
depletion of GEN1 or FANCP/SLX4 in Bloom’s syndrome
cells results in defects in chromosome condensation and
severe chromosome abnormalities, such as nondisjunction
of sister chromatids and abnormal mitosis leading to an-
euploidy [41, 42], highlighting their important role in
maintaining genome stability. Thus, mutated FANCP/
SLX4 and GENI, in combination with the rare allele of
PRDM9 also segregating within this family, could alter
Holliday junction resolution leading to nondisjunction of
chromosomes and segregation defects.



Table 1 Non-synonymous homozygous variants and compound heterozygous shared by both childhood pre-B ALL siblings

Gene SNP ID Chr  Position Ref  Sibs  Father Mother AA change 1000g MAF  ESP MAF/q2 Sift Polyphen2  Fathmm  SiPhy
Compound heterozygous — FANCP/SLX4 1579842542 16 3656625 GG AG AG GG R204C 0.06 0.071264/- 0 1 349 129
rs137976282 16 3658545 CC AC CcC AC G141wW 0 0.00077/- 0 0.96 52 7.27
CEP55 rs75139274 10 95278683 GG AG  AG GG R348K 0.03 0.074581/- 0.19 021 2.05 1144
152293277 10 95279506 AA  TA AA TA H378L 0.56 0.610257/- 013 048 221 14.69
DNAH2 rs140035206 17 7673930 AA  GA GA AA Y1385C 0 0.004075/- 0 1 -0.15 15.1
rs79350244 17 7734114 AA  CA AA CA 14023L 0.01 0.021913/- 1 0.52 381 152
rs117465420 17 7734476 AA TA  AA TA L4062F 0.01 0.021759/- 002 041 3.06 822
rs78354379 17 7736480 T AT AT T V4357D 0.05 0.008073/- 003 099 2.95 1212
PDE4DIP rs1778120 1 144879090 CC CT cT T K1410E - 0.124712/- 011 1 4.64 11.54
rs1698683 1 144916676 CC TC  CC TC We26* - 0.321203/- 0.16  NA 381 18.03
Homozygous GEN1 rs16981869 2 17946243 AA GG GA GA N143S 0.13 0.145394/0.025 0.03 081 -045 8.03
B3GALTL rs1041073 13 31891746 GG AA AG AG E370K 0.67 0.65539/0.442 028 096 -1.92 7.09
CA9 152071676 9 35674053 AA  AA AG AG V33L 0.32 0.269107/0.560 0 0.82 -0.66 8.01
CHIT rs2297950 1 203194186 CC TT TC TC G102S 0.29 0.285253/0.065 0O 1 3.81 7.76
CHRNB1 rs17856697 17 7348625 AA GG GA GA E32G 0.12 0.25585/0.052 008 0.77 -1.16 874
ERBB2 rs1058808 17 37884037 CcC GG GC GC P1170A 045 0.513532/0278 003 095 —-0.81 18.01
ZNF207 153795244 17 30692396 GG TT TG TG A240S 0.05 0.045748/0.001 041 075 0.85 20.21

(-) represents missing or not relevant information. (¥) represents stop codons. For these genes, either or both parents transmitted a putatively damaging allele to their affected offspring, who were therefore
compound heterozygous or homozygous, respectively. Genotype calls are provided for each sample (Sibs, Father and Mother) along with corresponding amino acid (AA) changes. Minor allele frequencies (MAF) were

derived from the 1000 Genomes (general population, updated in October 2014) and the NHLBI GO Exome Sequencing Project (general population, ESP6500). The frequencies of homozygous variants (q°) were

obtained from ESP6500 and were presented when relevant. The putative effect of these substitutions on the protein function was assessed in silico using Sift (<0.05) [23], Polyphen2 (>0.957) [24] and Fathmm (<-1.5)
[25]. SiPhy was used to identify bases under selection (larger is the score, more conserved is the site) [26]
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While autosomal recessive FA patients are known to
present with malformations [43], it has been reported that
heterozygous carriers of a FA gene may be predisposed to
some of the same congenital malformations or develop-
mental abnormalities that are common among homozy-
gotes [44]. Although the sibs had no apparent physical
abnormalities, family history revealed a consanguineous
marriage on the paternal side (Fig. 1) resulting in multiple
miscarriages and polymalformation syndrome in surviving
offspring. Given that both rare FANCP/SLX4 rs137976282
and FANCA rs61753269 variants were paternally inherited
we could hypothesize an underlying recessive disorder af-
fecting the FA pathway; however this remains highly
speculative without further genotype information on the
extended family. Overall, these data support a functional
role for the rare variants identified in FANCA, FANCP/
SLX4 and GENI in disrupting the FA pathway and Holliday
junction resolution, and as a result, they could lead to gen-
omic instability and hematopoietic dysfunction, and in-
creased risk of ALL within this family. However functional
assays are required to confirm these observations.

Despite the fact that both siblings were asymptomatic
and were not diagnosed with an ALL-linked genetic dis-
order, the possibility of an underlying FA condition exists
and an undiagnosed disorder, although rare, cannot be ex-
cluded. One may argue that pure, nonsyndromic ALL
families are unlikely and that genetic interrogation of such
families will ultimately reveal underlying inherited disor-
ders associated with increased risk of ALL. Indeed, our re-
sults show that the study of familial or inherited forms of
ALL can further our understanding of the genetic causes
underlying more common, sporadic forms and shed light
on otherwise asymptomatic genetic syndromes.

Finally, though our rare variant analysis strongly suggests
FANCP/SLX4 and FANCA as the most likely candidates,
we cannot exclude the possibility that additional inherited
genetic variants, rare or common, outside of the FA path-
way could contribute to ALL onset within the family. For
example, we identified common non-synonymous variants
in PDE4DIP and CEP55 (Table 1). Though these centroso-
mal proteins have been involved in myeloproliferative dis-
order [45] and carcinogenesis [46] and could promote
abnormal cell division and hyperdiploidy, as evidenced re-
cently by Paulsson et al [47], the identified variants had
high MAFs and were predicted to have benign effects on
protein function, making them unlikely candidates here.
Furthermore, the sibs carry common ALL susceptibility
alleles at known GWAS loci [3-6, 28] (Table 2), that
under an additive effects model could lead up to a 2- to
10-fold increase in risk [9]. Given the male-specific in-
heritance, we also looked for shared deleterious vari-
ants on the X chromosome but found no evidence of
X-linked genes contributing to ALL in this family. The
exomes of the siblings were also screened for shared de
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Table 2 Childhood ALL susceptibility loci genotyped in siblings

Aand B
Gene SNP ID Ref A B
ARID5B rs7073837 CC - AA
rs10994982 GG GA AA
rs10740055 AA - cC
rs10821936 T - CcC
157089424 T - GG
CEBPE 152239633 CC cT T
DDC rs7809758 AA AG AG
rs880028 T TC TC
rs3779084 T TC TC
152242041 CcC GG CG
IKZF1 156964823 GG GA GA
rs11978267 AA - AG
rs4132601 T - TG
1$6944602 GG GG GG
OR2C3 1881797 T T -
CDKN2A rs36228834 T T T

(-) represents missing information

novo mutations that could result from gonadal mosaicism.
Putative de novo events were defined as private mutations
shared by both siblings, and therefore unknown in public
databases, and showing no evidence of heritability from
either parent, i.e. no reads supporting the variation in the
parental exomes considering a minimum coverage of 8X
at the given position in the exome sequencing data. Al-
though no candidate de novo mutation fitting our criteria
was identified, the limited coverage of parental exomes
may have hindered this analysis. The investigation of more
complex genetic models including gene-gene and eventu-
ally gene-environment interactions could also reveal add-
itional ALL risk factors.

Conclusions

Nonsyndromic families with multiple non-twinned siblings
diagnosed with childhood ALL are extremely rare but rep-
resent an interesting model to characterize the influence of
inherited genetic burden on disease onset. This unique set-
ting can also facilitate the identification of novel genes/
pathways involved in driving the leukemic process and fur-
ther our understanding of the mechanisms involved in
childhood pre-B ALL and its subtypes. Here, we used
next-generation sequencing technologies to sequence
the whole-exomes of a childhood ALL family consisting
of mother, father and two male affected sibs. Both
brothers were diagnosed with pre-B hyperdiploid childhood
ALL and their similar clinical and molecular characteristics
suggested shared etiologic factors. Though functional valid-
ation studies are required to substantiate the role of these
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variants in hyperdiploid pre-B childhood ALL, our data
suggest that concomitant inheritance of rare variants in
FA genes FANCA, FANCP/SLX4, in combination with
rare mutations in the endonuclease GENI and the meiotic
recombination gene PRDMY, could lead to increased
DNA damage and genomic instability, and thus contribute
to hyperdiploid leukemia predisposition.

Consent

The Sainte-Justine UHC Research Ethics Board approved
the protocol. Written informed consent was obtained
from the participants for publication of this report and
any accompanying images. A copy of the written consent
is available for review by the Editor of this journal.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

DS is the principle investigator and takes primary responsibility for the paper.
JFS, JH, and DS contributed to the conception and design of the study. JFS, PC,
MO and CR were involved in sample and library preparation. JFS performed
whole-exome and statistical analyses. VS provided bioinformatics support. JFS
and JH wrote the paper and DS contributed to the interpretation of the data
and was involved in critical manuscript revision. All authors approved the final
version.

Acknowledgements

The authors are indebted to the patients and their parents for participating
in this study. This study was supported by research funds provided by the
Terry Fox Research Institute and the Canadian Institutes for Health Research.
JFS is the recipient of a Réseau de médecine génétique appliquée (RMGA)
Fellowship. DS holds the Francois-Karl-Viau Research Chair in Pediatric
Oncogenomics. Whole exome sequencing was performed at the Child
Health Genomics Platform of the Sainte-Justine UHC Research Center;
Computations were made on the supercomputer Briarée from Université de
Montréal, managed by Calcul Québec and Compute Canada. The operation
of this supercomputer is funded by the Canada Foundation for Innovation
(CFI), NanoQuébec, RMGA and the Fonds de recherche du Québec - Nature
et technologies (FRQ-NT).

Author details

'Sainte-Justine UHC Research Center, University of Montreal, Montreal, Qc,
Canada. “Department of Pediatrics, Faculty of Medicine, University of
Montreal, Montreal, Qc, Canada. *Division of Hematology-Oncology,
Sainte-Justine UHC Research Center, 3175 Céte Ste-Catherine, Montréal
(Québec) H3T 1C5, Canada.

Received: 2 December 2014 Accepted: 14 July 2015
Published online: 23 July 2015

References

1. Pui CH, Mullighan CG, Evans WE, Relling MV. Pediatric acute lymphoblastic
leukemia: where are we going and how do we get there? Blood.
2012;120(6):1165-74. doi:10.1182/blood-2012-05-378943.

2. Horwitz M. The genetics of familial leukemia. Leukemia. 1997;11(8):1347-59.

3. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, Price A, Olver B, Sheridan E, et al.
Loci on 7p12.2,10g21.2 and 14q11.2 are associated with risk of childhood acute
lymphoblastic leukemia. Nat Genet. 2009:41(9):1006-10. doi:10.1038/ng.430.

4. Trevifo LR, Shimasaki N, Yang W, Panetta JC, Cheng C, Pei D, et al. Germline
genetic variation in an organic anion transporter polypeptide associated
with methotrexate pharmacokinetics and clinical effects. J Clin Oncol.
2009;27(35):5972-8. doi:10.1200/JC0O.2008.20.4156.

5. Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M,
et al. Verification of the susceptibility loci on 7p12.2,10921.2, and 14q11.2 in
precursor B-cell acute lymphoblastic leukemia of childhood. Blood.
2010;115(9):1765-7. doi:10.1182/blood-2009-09-241513.

20.

21.
22.

23.

24,

25.

26.

27.

28.

Page 8 of 9

Sherborne AL, Hosking FJ, Prasad RB, Kumar R, Koehler R, Vijayakrishnan J, et al.
Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic
leukemia risk. Nat Genet. 2010;42(6):492-4. doi:10.1038/ng.585.

Kharazmi E, da Silva Filho MI, Pukkala E, Sundquist K, Thomsen H, Hemminki K.
Familial risks for childhood acute lymphocytic leukaemia in Sweden and Finland:
Far exceeding the effects of known germline variants. Br J Haematol.
2012,159(5):585-8. doi:10.1111/bjh.12069.

Schmiegelow K Lausten Thomsen U, Baruchel A, Pacheco CE, Pieters R,
Pombo-de-Oliveira MS, et al. High concordance of subtypes of childhood acute
lymphoblastic leukemia within families: lessons from sibships with multiple cases
of leukemia. Leukemia. 2012,26(4)675-81. doi:10.1038/leu.2011.274.
Pombo-de-Oliveira MS, Emerenciano M, Winn AP, Costa |, Mansur MB,

Ford AM. Concordant B-cell precursor acute lymphoblastic leukemia in
non-twinned siblings. Blood Cells Mol Dis. 2015;54(1):110-5. doi:10.1016/
jbcmd.2014.07.011.

Bateman CM, Alpar D, Ford AM, Colman SM, Wren D, Morgan M, Kearney L,
Greaves M. Evolutionary trajectories of hyperdiploid ALL in monozygotic
twins. Leukemia. 2015;29(1):58-65. doi:10.1038/leu.2014.177.

Hussin J, Sinnett D, Casals F, Idaghdour Y, Bruat V, Saillour V, et al. Rare
allelic forms of PRDM9 associated with childhood leukemogenesis. Genome
Res. 2013,23(3):419-30. doi:10.1101/gr.144188.112.

Baker CL, Walker M, Kajita S, Petkov PM, Paigen K. PRDM9 binding organizes
hotspot nucleosomes and limits Holliday junction migration. Genome Res.
2014;24(5):724-32. doi:10.1101/gr.170167.113.

Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, et al.
Human SLX4 is a Holliday junction resolvase subunit that binds multiple
DNA repair/recombination endonucleases. Cell. 2009;138(1):78-89.
doi:10.1016/j.cell.2009.06.029.

Kim H, Andrea ADD. Regulation of DNA cross-link repair by the Fanconi anemia/
BRCA pathway. Genes Dev. 2012;26(13):1393-408. doi:10.1101/gad.195248.112.
Hysert M, Bruyere H, Cété GB, Dawson AJ, Dolling JA, Fetni R, et al. Prenatal
cytogenetic assessment and inv(2)(p11.2q13). Prenat Diagn. 2006,26(9):810-3.
Baccichet A, Qualman SK, Sinnett D. Allelic loss in childhood acute
lymphoblastic leukemia. Leuk Res. 1997,21(9).817-23.
http://picard.sourceforge.net

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,

et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing
next-generation DNA sequencing data. Genome Res. 2010,20(9):1297-303.
doi:10.1101/gr.107524.110.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. 1000 Genome
Project Data Processing Subgroup. The Sequence alignment/map (SAM) format
and SAMtools. Bioinformatics. 2009,25:2078-9. doi:10.1093/bioinformatics/btp352.
1000 Genomes Project Consortium, Abecasis GR, Altshuler D, Auton A,
Brooks LD, Durbin RM, et al. A map of human genome variation from
population-scale sequencing. Nature. 2010;467(7319):1061-73.
doi:10.1038/nature09534.

http//evs.gs.washington.edu/EVS/

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res.
2010;38(16):2164. doi:10.1093/nar/gkq603.

Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous
variants on protein function using the SIFT algorithm. Nat Protoc.
2009;4(7):1073-81. doi:10.1038/nprot.2009.86.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P,
Kondrashov AS, Sunyaev SR. A method and server for predicting
damaging missense mutations. Nat Methods. 2010;7(4):248-9.
doi:10.1038/nmeth0410-248.

Shihab HA, Gough J, Cooper DN, Day IN, Gaunt TR. Predicting the
functional consequences of cancer-associated amino acid substitutions.
Bioinformatics. 2013;29(12):1504-10. doi:10.1093/bioinformatics/btt182.
Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X.
Identifying novel constrained elements by exploiting biased

substitution patterns. Bioinformatics. 2009,25(12):i54-62. doi:10.1093/
bioinformatics/btp190.

Ip SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC. Identification of Holliday
junction resolvases from humans and yeast. Nature, 2008;456(7220):357-61.
doi:10.1038/nature07470.

Healy J, Richer C, Bourgey M, Kritikou EA, Sinnett D. Replication analysis
confirms the association of ARID5B with childhood B-cell acute
lymphoblastic leukemia. Haematologica. 2010;95(9):1608-11.
doi:10.3324/haematol.2010.022459.


http://dx.doi.org/10.1182/blood-2012-05-378943
http://dx.doi.org/10.1038/ng.430
http://dx.doi.org/10.1200/JCO.2008.20.4156
http://dx.doi.org/10.1182/blood-2009-09-241513
http://dx.doi.org/10.1038/ng.585
http://dx.doi.org/10.1111/bjh.12069
http://dx.doi.org/10.1038/leu.2011.274
http://dx.doi.org/10.1016/j.bcmd.2014.07.011
http://dx.doi.org/10.1016/j.bcmd.2014.07.011
http://dx.doi.org/10.1038/leu.2014.177
http://dx.doi.org/10.1101/gr.144188.112
http://dx.doi.org/10.1101/gr.170167.113
http://dx.doi.org/10.1016/j.cell.2009.06.029
http://dx.doi.org/10.1101/gad.195248.112
http://picard.sourceforge.net
http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1038/nature09534
http://evs.gs.washington.edu/EVS/
http://dx.doi.org/10.1093/nar/gkq603
http://dx.doi.org/10.1038/nprot.2009.86
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1093/bioinformatics/btt182
http://dx.doi.org/10.1093/bioinformatics/btp190
http://dx.doi.org/10.1093/bioinformatics/btp190
http://dx.doi.org/10.1038/nature07470
http://dx.doi.org/10.3324/haematol.2010.022459

Spinella et al. BMC Cancer (2015) 15:539

29.

30.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

Wang AT, Smogorzewska A. SnapShot: Fanconi anemia and associated
proteins. Cell. 2015;160(1-2):354-354.e1. doi:10.1016/j.cell.2014.12.031.
Wang W. Emergence of a DNA-damage response network consisting of
Fanconi anaemia and BRCA proteins. Nat Rev Genet. 2007;8(10):735-48.
Ferndndez-Rodriguez J, Quiles F, Blanco |, Teulé A, Feliubadalo L, Valle JD,
et al. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer
families. BMC Cancer. 2012;12:84. doi:10.1186/1471-2407-12-84.

Catucci 11, Colombo M, Verderio P, Bernard L, Ficarazzi F, Mariette F, et al.
Sequencing analysis of SLX4/FANCP gene in ltalian familial breast cancer
cases. PLoS One. 2012;7(2):231038. doi:10.1371/journal.pone.0031038.

Litim N, Labrie Y, Desjardins S, Ouellette G, Plourde K. Belleau P; INHERIT
BRCAs, Durocher F. Polymorphic variations in the FANCA gene in high-risk
non-BRCA1/2 breast cancer individuals from the French Canadian
population. Mol Oncol. 2013;7(1):85-100. doi:10.1016/j.molonc.2012.08.002.
Seal S, Barfoot R, Jayatilake H, Smith P, Renwick A, Bascombe L, et al.
Rahman N; Breast Cancer Susceptibility Collaboration. Evaluation of Fanconi
Anemia genes in familial breast cancer predisposition. Cancer Res.
2003;63(24):8596-9.

Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of
Watson and Crick DNA crosslinks. Nature. 2013:493(7432):356-63.
doi:10.1038/nature11863.

Tischkowitz MD, Morgan NV, Grimwade D, Eddy C, Ball S, Vorechovsky |,

et al. Deletion and reduced expression of the Fanconi anemia FANCA gene
in sporadic acute myeloid leukemia. Leukemia. 2004;18(3):420-5.

Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ,
et al. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is
required for DNA repair. Cell. 2009;138(1):63-77. doi:10.1016/j.cell.2009.06.030.
Kim'Y, Spitz GS, Veturi U, Lach FP, Auerbach AD, Smogorzewska A.
Regulation of multiple DNA repair pathways by the Fanconi anemia protein
SLX4. Blood. 2013;121(1):54-63. doi:10.1182/blood-2012-07-441212.

Gao M, Rendtlew Danielsen J, Wei LZ, Zhou DP, Xu Q, Li MM, et al. A novel role
of human holliday junction resolvase GEN1 in the maintenance of centrosome
integrity. PLoS One. 2012;7(11):249687. doi:10.1371/journal pone.0049687.
Kuligina ES, Sokolenko AP, Mitiushkina NV, Abysheva SN, Preobrazhenskaya
EV, Gorodnova TV, et al. Value of bilateral breast cancer for identification of
rare recessive at-risk alleles: evidence for the role of homozygous GEN1
€.2515_2519delAAGTT mutation. Familial Cancer. 2013;12(1):129-32.
doi:10.1007/510689-012-9575-x.

Wechsler T, Newman S, West SC. Aberrant chromosome morphology in
human cells defective for Holliday junction resolution. Nature.
2011;471(7340):642-6. doi:10.1038/nature09790.

Rodrigue A, Coulombe Y, Jacquet K, Gagné JP, Roques C, Gobeil S, et al. The
RADS51 paralogs ensure cellular protection against mitotic defects and
aneuploidy. J Cell Sci. 2013;126(Pt 1):348-59. doi:10.1242/jcs.114595.
Giampietro PF, Adler-Brecher B, Verlander PC, Pavlakis SG, Davis JG,
Auerbach AD. The need for more accurate and timely diagnosis in Fanconi
anemia: a report from the International Fanconi Anemia Registry. Pediatrics.
1993,91(6):1116-20.

Welshimer K, Swift M. Congenital malformations and developmental
disabilities in ataxia-telangiectasia, Fanconi anemia, and xeroderma
pigmentosum families. Am J Hum Genet. 1982;34(5):781-93.

Wilkinson K, Velloso ER, Lopes LF, Lee C, Aster JC, Shipp MA, et al. Cloning
of the t(1;5)(g23;933) in a myeloproliferative disorder associated with
eosinophilia: involvement of PDGFRB and response to imatinib. Blood.
2003;102(12):4187-90.

Jeffery J, Sinha D, Srihari S, Kalimutho M, Khanna KK. Beyond cytokinesis:

Page 9 of 9

the emerging roles of CEP55 in tumorigenesis. Oncogene. 2015. (
doi:10.1038/0nc.2015.128.

Paulsson K, Lilliebjorn H, Biloglav A, Olsson L, Rissler M, Castor A, et al. The
genomic landscape of high hyperdiploid childhood acute lymphoblastic
leukemia. Nat Genet. 2015;47(6):672-6. doi:10.1038/ng.3301.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J



http://dx.doi.org/10.1016/j.cell.2014.12.031
http://dx.doi.org/10.1186/1471-2407-12-84
http://dx.doi.org/10.1371/journal.pone.0031038
http://dx.doi.org/10.1016/j.molonc.2012.08.002
http://dx.doi.org/10.1038/nature11863
http://dx.doi.org/10.1016/j.cell.2009.06.030
http://dx.doi.org/10.1182/blood-2012-07-441212
http://dx.doi.org/10.1371/journal.pone.0049687
http://dx.doi.org/10.1007/s10689-012-9575-x
http://dx.doi.org/10.1038/nature09790
http://dx.doi.org/10.1242/jcs.114595
http://dx.doi.org/10.1038/onc.2015.128
http://dx.doi.org/10.1038/ng.3301

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Patients
	Whole exome sequence capture and sequencing
	Variant calling and annotation

	Results & discussion
	Conclusions
	Consent

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



