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Abstract

Background: Triple-negative breast cancer (TNBC) with a BRCA1-like molecular signature has been demonstrated
to remarkably respond to platinum-based chemotherapy and might be suited for a future treatment with
poly(ADP-ribose)polymerase (PARP) inhibitors. In order to rapidly assess this signature we have previously
developed a multiplex-ligation-dependent probe amplification (MLPA)-based assay. Here we present an
independent validation of this assay to confirm its important clinical impact.

Methods: One-hundred-forty-four TNBC tumor specimens were analysed by the MLPA-based “BRCA1-like” test.
Classification into BRCA1-like vs. non-BRCA1-like samples was performed by our formerly established nearest
shrunken centroids classifier. Data were subsequently compared with the BRCA1-mutation/methylation status of the
samples. T-lymphocyte infiltration and expression of the main target of PARP inhibitors, PARP1, were assessed on a
subset of samples by immunohistochemistry. Data acquisition and interpretation was performed in a blinded
manner.

Results: In the studied TNBC cohort, 63 out of 144 (44 %) tumors were classified into the BRCA1-like category.
Among these, the MLPA test correctly predicted 15 out of 18 (83 %) samples with a pathogenic BRCA1-mutation
and 20 of 22 (91 %) samples exhibiting BRCA1-promoter methylation. Five false-negative samples were observed.
We identified high lymphocyte infiltration as one possible basis for misclassification. However, two falsely classified
BRCA1-mutated tumors were also characterized by rather non-BRCA1-associated histopathological features such as
borderline ER expression. The BRCA1-like vs. non-BRCA1-like signature was specifically enriched in high-grade (G3)
cancers (90 % vs. 58 %, p = 0.0004) and was also frequent in tumors with strong (3+) nuclear PARP1 expression
(37 % vs. 16 %; p = 0.087).
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Conclusions: This validation study confirmed the good performance of the initial MLPA assay which might thus
serve as a valuable tool to select patients for platinum-based chemotherapy regimens. Moreover, frequent PARP1
upregulation in BRCA1-like tumors may also point to susceptibility to treatment with PARP inhibitors. Limitations are
the requirement of high tumor content and high-quality DNA.
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Background
Triple-negative breast cancer (TNBC) accounts for 15–20 %
of all breast cancer cases and is characterized by lack of es-
trogen- and progesterone receptor (ER, PR)-expression as
well as lack of human epidermal growth factor receptor-2
(HER2) amplification [1, 2]. Due to the absence of thera-
peutic targets such as ER, PR or HER2, treatment options
for this aggressive subtype of breast cancer are currently
restricted to chemotherapy. Although a significant number
of patients responds well to conventional chemotherapy,
TNBC is generally associated with shorter disease-free and
overall survival rates compared to other breast cancer sub-
types and comprises about 25 % of all breast cancer-related
deaths [1, 3–6]. Alternative therapeutic approaches are
therefore highly needed, taking into account the different
molecular subtypes within the TNBC group.
Among the quite heterogeneous subgroup of TNBC, a

subset of predominantly basal-like cancers appears to
share molecular characteristics with BRCA1-associated
breast cancer, a phenotype recently described as “BRCA-
ness” [2, 7–9]. Indeed, at least 60–70 % of all breast
cancers caused by an inherited BRCA1 germline muta-
tion are diagnosed as TNBC, while inactivation of the
second major breast cancer susceptibility gene BRCA2 is
more frequently observed in hormone receptor-positive
breast cancers [10, 11]. Nevertheless, most of the TNBC
patients are presenting with sporadic breast cancer and
only 9–15 % of all patients within the TNBC subgroup
were reported to possess a BRCA1 mutation [10, 12].
Hence, apart from germline or somatic BRCA1 muta-
tions, BRCA1 hypermethylation [12–15] and/or loss of
heterozygosity (LOH) [16, 17] may give rise to a
BRCA1-like molecular profile in TNBC. Furthermore,
Weigman et al. [18] demonstrated frequent loss of several
other genes involved in BRCA1-dependent homologous
recombination repair in basal-like/triple-negative cancer,
most likely contributing to BRCA1-like features. Due to al-
ternative treatment options, information about the BRCA1-
like status may have important clinical implications: Various
studies have shown that deficiency in homologous recom-
bination (HR) sensitizes the respective tumors to DNA-
damaging agents such as platinum compounds [19–22], or
to poly(ADP-ribose)polymerase (PARP) inhibitors [23–25].
Accordingly, biomarkers to identify and select patients with
BRCA1-like signatures are urgently required.
Based on array comparative genomic hybridization
(CGH), we have previously established a BRCA1-like
classifier which was highly predictive for the presence of
typical BRCA1-associated genomic patterns in breast
cancer [26]. Moreover, the arrayCGH-derived BRCA1-
like profile proved to be a clinical predictive marker for
benefit from high dose platinum-containing chemother-
apy [22]. Since the arrayCGH technique cannot be easily
implemented in clinical routines, we subsequently translated
this rather complex method to a quantitative copy number
assay targeting the most specific BRCA1-associated genomic
regions (3q22-27, 5q12-14, 6p23-22, 12p13, 12q21-23,
13q31-34) by multiplex-ligation-dependent probe amplifica-
tion (MLPA). The BRCA1-like phenotype, also referred to
as “BRCAness”, was defined by applying the previously
established shrunken centroid algorithm [26]. In a first study
at The Netherlands Cancer Institute (NKI), Amsterdam,
Netherlands, the MLPA-based “BRCA1-like test” was able
to accurately predict BRCA1-like signatures with 85 % sensi-
tivity and 87 % specificity when compared to arrayCGH as
the reference method [27].
In order to evaluate its applicability across a wider

range of institutes and countries, we are presenting here
an independent validation of the MLPA-based test. The
assay was performed on a larger cohort of TNBC
patients at the Klinikum rechts der Isar, Technische
Universität München (TUM), Germany. MLPA data
were subsequently sent to the NKI and classified in a
blinded manner. Here we show that approximately half of
the TNBC sample set displays BRCA1-like characteristics.
Moreover, 83 % of the BRCA1-mutated and 91 % of the
-methylated tumors, respectively, were correctly classified
by the MLPA assay confirming the results of the initial
MLPA test. We also searched for further specifications
associated with a BRCA1-like signature in TNBC.

Methods
Patients and tumor specimens
Fresh frozen breast cancer specimens of the TNBC type
which had been collected between 1991 and 2006 at the
Department of Gynecology and Obstetrics, Klinikum
rechts der Isar, TUM, Munich, were retrospectively used
for this study. The TNBC tissues had been macrodis-
sected by a pathologist to assure high tumor content.
Samples were classified and assessed for HER2 and



Gross et al. BMC Cancer  (2016) 16:811 Page 3 of 10
steroid hormone receptor (ER, PR) expression at the
Department of Pathology as previously described [28].
ER and PR status were defined as negative at less or
equal to 3/12 immunoreactive score (Remmele’s score, [29]).
HER2-negativity was defined as either immunohistochemis-
try (IHC) score 0 or 1+ or no amplification demonstrated by
FISH in equivocal cases (IHC score 2+). Samples diagnosed
for breast cancer before 1999 were retrospectively assessed
for HER2 status by IHC and FISH.
For this validation study, 200 unselected cases with

documented primary TNBC were included according
to availability of fresh frozen tissue-derived material.
Out of this patient panel, sufficient amounts of high-
molecular-weight DNA could be extracted from 155
samples. A further 9 samples which did not meet in-
clusion criteria (due to falsely-assigned TNBC sub-
type, carcinoma in situ, neoadjuvant treatment) were
excluded from the final analysis. In cases (n = 2)
where multiple samples of one tumor were available,
only one randomly chosen sample was included
(Fig. 1, Flow Diagram). Matched samples which in-
cluded frozen tumor tissue and paraffin-embedded tis-
sue from the same patient were available for 62
individuals.
DNA preparation
For DNA preparation, nuclear fractions derived from
fresh frozen tumor tissues were used. The nuclear frac-
tions were generated during routine prognostic marker
assessment and were obtained by separation from the
cytosol preparation by ultracentrifugation [30]. DNA
was isolated using the QIAamp DNA Mini Kit (Qiagen,
Germany).
Patients with primary
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Fig. 1 Flow diagram of the study. TNBC, triple-negative breast cancer; DCIS
Analysis of BRCA1 mutations
Detection of small nucleotide alterations within the BRCA1
coding region was performed by”high resolution mel-
ting“(HRM) analysis as previously described [31] using a
Lightcycler 480 instrument and the Lightcycler 480 high
resolution melting master kit (Roche, Mannheim, Germany).
The reaction volume of 20 μl contained 50 ng tumor DNA,
4 mM MgCl2 and 10 μl HRM melting master solution. M13
tagged-PCR primer pairs [31] in a final concentration of 250
nM were used. Data analysis was performed with the Gene
Scanning module and normalized melting curves were visu-
alized as Difference Plots. Samples indicating differences in
melting were subsequently subjected to sequencing analysis
on an ABI 3100 capillary sequencer (Applied Biosystems,
Darmstadt, Germany). Only clear pathogenic frameshift,
nonsense or splice site aberrations were classified as BRCA1
mutations. International databases such as the BIC database
(Breast Cancer Information core: [http://www.research.nh-
gri.nih.gov]) were searched for these aberrations.
BRCA1 copy number variations in mutation carriers
were analysed by the MLPA-based P002-C1 test
(MRC-Holland, Amsterdam, The Netherlands) as de-
scribed previously [32].
Analysis of BRCA1 promoter methylation
500 ng DNA was subjected to bisulfite conversion
(Epitect Bisulfite Kit, Qiagen, Hilden, Germany) to convert
unmethylated cytosin to uracil. BRCA1 promoter methyla-
tion was assessed on a Lightcycler 480-instrument
by”methylation-specific high resolution melting” (MS-
HRM) analysis employing the Epitect HRM PCR Kit
(Qiagen). CpG sites in the studied region were located at
position −55 to position +44 relative to the transcription
 TNBC (n=200)

umor specimens eligible for MLPA (n=155)
igh-molecular-weight-DNA available )

49 (set 1) + 30 (set 2) records with MLPA data 
4 duplicate measurements)

Exclusion: 
Non-TNBC  (n=2) 
DCIS (n=2) 
Neoadjuvant treatment (n=5) 
Multiple samples/ tumor (n=2)

cimens included in study (n=144)

meth.:  40 (29%)
 100 (71%)

 63 (44%)
like:  81 (56%)

, ductal carcinoma in situ; IHC, immunohistochemistry
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start site at nt 1581 (GenBank sequence #U37574) and
covered a transcription-relevant region described earlier by
Esteller et al. [15]. Primers are available on request. No
relevant amplification of BRCA1 pseudogene was observed.
In brief, 3 μl DNA of the bisulfite reaction was amplified in
a reaction volume of 25 μl including 1 μl of each primer
(10 μM) and 12.5 μl HRM EpiTect Master Mix. PCR and
melting procedures were performed according to the
EpiTect HRM protocol (Qiagen) for the Lightcycler 480-
instrument.
Normalized melting curves of the tumor DNA samples

were compared with serial dilutions of fully methylated
and unmethylated control DNA (Qiagen). In concord-
ance with the studies of Lips et al. [27], a tumor sample
was assigned as methylation-positive at a degree of
≥20 % methylated sequence. The HRM results were con-
firmed on a series of five samples by cloning of ampli-
cons (TOPO-TA cloning kit, Invitrogen, Hamburg,
Germany) and bisulfite sequencing of 20 clones per
sample as described [33].
Analysis of the BRCA1-like status by MLPA
MLPA analysis is a PCR-based method to analyse the rela-
tive copy number of distinct DNA target sequences. In this
study, the MLPA probemix P376-B2 for “BRCA1ness”
(MRC-Holland, Amsterdam, The Netherlands) was used
which contains 34 probes for BRCA1-associated regions, 2
probes for BRCA1 and BRCA2, respectively, and 10 control
probes specific for DNA sequences not associated with
breast cancer genes. Version B2 of the probemix contains
some minor changes in control probes, in comparison with
version B1 (ref. [27], original study). In order to compare
our data with the original study, data analysis was restricted
to 7 control probes by omitting the probes for regions
21q11, 2p11 and 11p15. The assay was performed according
to the standard MLPA protocol as described before [34].
One-hundred fifty-five TNBC samples which provided suffi-
cient amount of high-quality DNA (100 ng DNA) were ana-
lyzed at the Department of Gynecology and Obstetrics,
TUM. Three to four blood DNA samples received from
healthy donors and prepared with the same DNA isolation
kit as applied for the TNBC samples, were run together with
the tumor samples. For normalization, the relative peak
areas for each probe were calculated as fractions of the total
sum of peak areas in each sample. Subsequently, the fraction
of each peak was divided by the average peak fractions of
the corresponding probe in the control samples. Relative
quantities were finally transferred to an excel sheet and sent
to the NKI, Amsterdam, for BRCA1-like class prediction.
144 TNBC samples meeting our inclusion criteria (see Flow
chart, Fig. 1) were included for further data analysis. In case
of duplicate measurements, only the first experiment was
considered.
BRCA1-like class prediction was carried out at the
NKI, Amsterdam, using prediction analysis for microar-
rays (PAM) and R statistics as described before [27]. For
the MLPA classifier the cut-off value to classify a sample
as ‘BRCA1-like’ was set at ≥0.5. Below this score, a sam-
ple was classified as ‘non-BRCA1-like’. The NKI was not
aware of the BRCA1 mutation and methylation status in
the TNBC cohort.

Immunohistochemistry
PARP1 protein expression was measured by immunohis-
tochemistry (IHC) using tissue microarrays (TMA) [28].
TMA sections were deparaffinized and rehydrated
through a graded ethanol series finishing with distilled
water. Endogenous peroxidase was inhibited by treatment
with 3 % hydrogen peroxide. Mouse anti-human PARP
antiserum was purchased from BD Pharmingen (catalogue
number 551024, clone 7D3-6; San Diego, USA) and
applied in a dilution of 1:1500 [35]. Staining was per-
formed with the Dako EnVision Detection System (Dako,
Hamburg, Germany) which uses a peroxidase-conjugated
polymer backbone coupled to secondary antibody mole-
cules, and diaminobenzidine (DAB+) as chromogenic sub-
strate. Nuclei of the cells were finally counterstained with
hematoxylin. Cytosolic and nuclear PARP1 staining inten-
sity, respectively, was assessed by a pathologist in 62
specimens and assigned as absent (0), low (1+), moderate
(2+) or strong (3+) staining. Positive controls for PARP1
expression were luminal epithelium of normal breast and
BT474 breast cancer cells. Furthermore, additional mam-
mary tissue sections were included in each run as negative
controls by omission of primary antibody [36].
Immune cell infiltration was estimated in 53 TMA

sections by assessment of CD3 antigen. Staining was
performed with the mouse monoclonal antibody MRQ-
39 (Cell Marque, Rocklin, CA). Following deparaffiniza-
tion, antigen retrieval was performed by incubation for
30 min at 95 °C, pH 8.4. Primary antibodies (CD3 1:500)
were incubated for 30 min at RT followed by detection
of primary antibody using the UV HRP UNIV MULT
and UV DAB Kits (Ventana, Tucson, AZ) and counter-
staining with hematoxylin. The percentage of positive
cells was assessed and classified as no infiltration (0),
low numbers of positive cells (1+) and high numbers of
positive cells (2+).

Statistics
Statistical analysis was performed with the IBM SPSS
Statistics version 19.0 (SPSS Inc.). Associations between
genetic and categorical clinical data were assessed by the
Chi-square test. All statistical tests were conducted two-
sided and a p-value <0.05 was considered indicative for
statistical significance. This study was designed accord-
ing to the REporting recommendations for tumor



Table 2 Sensitivity of the MLPA test

BRCA1
mutation

BRCA1
methylation

BRCA1 mutation/
methylation

Total 18 22 40

BRCA1-like (≥0.5) 15 20 35

False negative 3 2 5

Sensitivity (%) 83 91 87.5

BRCA1-like classification with cut-off value ≥ 0.5, non-BRCA1-like classification
with cut-off value < 0.5
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MARKer prognostic studies (REMARK) guidelines [37].
Data are available on request.

Results
Validation of the MLPA-based BRCA1-like test
The validation set contained 144 breast cancer patients
with triple-negative subtype. In this patient set, 18
tumors had a germline or somatic BRCA1 mutation
(Table 1), 22 additional specimens exhibited positive
BRCA1 promoter methylation. The MLPA assay initially
classified 63 (44 %) tumor specimens as BRCA1-like.
We next evaluated whether all BRCA1-aberrant tumors
had been correctly classified. As illustrated in Table 2,
the presence of a BRCA1 mutation or promoter methy-
lation was predicted with a sensitivity of 83 and 91 %,
respectively.
We looked in more detail onto the false negative data

(Table 3). Three misclassified samples carrying a BRCA1
mutation showed clear heterozygosity at the mutation
site and indicated only marginal copy number alterations
within the entire BRCA1 gene (P002-C1 BRCA1 probe-
mix). Moreover, the mutations L639X and K1727X were
associated with a distinct phenotype which may indeed
reflect the expression of a non-BRCA1-like profile: The
L639X-related tumor exhibited a ductulo-lobular-like
phenotype and only borderline ER negativity (3/12
Table 1 BRCA1 mutations in 140 TNBC specimens

Sample Exon Nucleotide position
(BIC nomenclaturea)

1 2 c.185_187delAG

2 5 c.300 T > G

3 5 c.300 T > G

4 5 c.331 + 1G > T

5 7 c.560 + 1delGb

6 11 c.2035 T > A

7 11 c.3600del11

8 11 c.3600del11

9 11 c.3600del11

10 11 c.3819del5

11 11 c.3875del4

12 11 c.3875del4

13 16 c.5007G > Tb

14 19 c.5298A > T

15 20 c.5370C > T

16 20 c.5385–5386insC

17 20 c.5385–5386insC

18 21 IVS21 + 1G > T
aBIC, Breast Cancer Information core:[http://research.nhgri.nih.gov/bic/]; all variants
BIC database
bnot found in public data bases
c blood test negative; n.a., not available
immunoreactive score). Similarly, the carrier of the
BRCA1 mutation K1727X had received endocrine ther-
apy reflecting rather ER positivity. Two further discord-
ant samples did not show conspicuous histopathological
features, but displayed a BRCA1-like parameter close to
the cut-off score 0.5. For one of them, showing positive
BRCA1 methylation, high T-lymphocyte infiltration
could be assessed because a matched tumor section of
the same patient was available. Thus, normal cell con-
tamination might be a source of misclassification in
some samples with values close to the cut-off. We esti-
mated the number of TNBCs with high T-lymphocyte
infiltration to up to 38 % using CD3-antigen assessment.
However, no relevant association between high immune
cell infiltration and a non-BRCA1-like profile was evi-
dent in the studied sample set (n = 53; Table 4). In
Effect Age Family history of cancer

fs39X <50 y Yes

p.C61G >50 y n.a.

p.C61G <50 y n.a.

Splice defect >50 y n.a

Splice defect >50 y No

p.L639X >50 y Yes

fs1163X <50 y n.a.

fs1163X <50 y Yes

fs1163X >50 y No

fs1242X <50 y Yes

fs1262X <50 y n.a.

fs1262X >50 y n.a.

p.E1630X <50 y n.a.

p.K1727X <50 y Yes

p.R1751X <50 y Proven somaticc

fs1829X <50 y n.a.

fs1829X >50 y n.a

Splice defect <50 y n.a.

with the exception of two cases are known pathogenic mutations listed in the

http://research.nhgri.nih.gov/bic/


Table 3 False negative BRCA1-aberrant samples

False negatives Phenotype BRCA1-like
parameter

BRCA1 mutation

K1727X Invasive ductal, borderline ER-negativity,
BRCA1 copy number 71 % of normal
control

0,18

L639X Ductulo-lobular, borderline ER-negativity,
BRCA1 copy number 82 % of normal
control

0,21

fs1829X Invasive ductal, BRCA1 copy number
85 % of normal control

0,48

BRCA1 methylation

20 % Medullary 0,30

30 % Invasive ductal, high CD3 counts (2+) 0,499

Cut-off for BRCA1-like parameter: ≥ 0.5; cut-off for positive methylation: ≥20 %
BRCA1 variants are pathogenic mutations with familial background. ER
immunoreactivity was classified by Remmele’ score [29]; Loss of heterozygocity
(LOH) was analysed by mean copy number loss of BRCA1 probes. T-
lymphocyte infiltration was determined by anti-CD3 immunohistochemistry
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addition, only seven of 144 (4.9 %) samples exhibited
PAM-R values close to the cut-off score (0.45–0.55)
demonstrating that a relative small number of cases
would be candidates for repeat analysis. Finally, a further
tumor with medullary characteristics might have been
misclassified as non-BRCA1-like due to its content of
methylated DNA near the applied threshold value (20 %)
and/or due to normal cell contamination as well.
While BRCA1-mutated/methylated TNBCs comprised

almost a third (29 %) of the patient cohort, we assigned
BRCA1-like signatures in 44 % of the cases. Thus, the
specificity of the test for prediction of BRCA1 aberra-
tions would be moderate (false positive rate 28 %;
Table 4). However, it is most likely that additional gene
aberrations related to homologous recombination repair
Table 4 Association of the BRCA1-like profile with biological parame

Variable Valid cases ML

(n) BR

Total 144 63

BRCA1 aberrations 140

Wildtype 100 28

Mutation/methylation 40 35

T-cell assessment (CD3) 53

0 17 7

1+ 16 7

2+ 20 12

PARP1 expression 52

0–2+ 38 17

3+ 14 10

BRCA1-like classification with cut-off value ≥ 0.5, non-BRCA1-like classification with c
*statistically significant with chi square test
are present in the sample set also contributing to the
BRCA1-like phenotype.

Association of the BRCA1-like profile with PARP1
upregulation
Since BRCA1-like tumors are supposed to be highly sus-
ceptible to PARP inhibitors because of their defects in
HR, we evaluated the degree of upregulation of the main
target for these inhibitors, PARP1. In a set of 62
matched tumor tissues, nuclear PARP1 protein levels
were observed in a range of low (0–1+; 37 %), moderate
(2+; 37 %) and strong (3+; 26 %) expression. Cytoplas-
mic PARP1 expression was generally lower than nuclear
expression with 64.5 % of tumors exhibiting low stain-
ing, 29 % of tumors with moderate staining and only
6.5 % exhibiting strong staining. The comparison of the
degree of nuclear PARP1 expression with BRCA1-like
profile revealed a tendency toward higher (3+) PARP1
staining in BRCA1-like vs. non-BRCA1-like tumors
(37 % vs. 16 %, p = 0.087, n = 52) although this was not
statistically significant (Table 4 and Fig. 2a–c). A weak,
but significant association of high (3+) nuclear PARP1
expression was observed with BRCA1-mutated/-methyl-
ated cancers compared with wildtype TNBC specimens
(50 % vs. 18 %, p = 0.016; n = 62).

Association of the BRCA1-like profile with clinical
parameters
We next assessed association of the BRCA1-like profile
with distinct clinical characteristics of the TNBC
patients (Table 5). As expected, BRCA1-like signatures
were more prevalent in the group of high-grade (G3)
tumors (p = 0.0004) and were rarely found in cancers
showing histopathological features other than invasive-
ductal or medullar (p = 0.062). We did not observe
ters

PA data p-value

CA1-like Non-BRCA1-like

81

<0.000001*

72

5

0.458

10

9

8

0.087

21

4

ut-off value < 0.5



Fig. 2 Immunohistochemical PARP1 staining in TNBC tissue microarrays.
a b BRCA1-like TNBC with high (3+) nuclear PARP1 levels in tumor cells
(10× magnification) as assessed by a pathologist. 3+ stained nuclei are
exemplarily indicated by black arrows in a separate image section. c
Non-BRCA1-like TNBC with low cytosolic and nuclear PARP1 levels in
tumor cells (10× magnification). Black arrow shows an unstained nucleus.
Tissue microarrays were incubated with mouse anti-PARP antiserum
followed by staining with peroxidase-conjugated secondary antibody
molecules and diaminobenzidine (DAB+) as chromogenic substrate.
Nuclear counterstaining was performed with hematoxylin

Table 5 Association of the BRCA1-like profile with clinical
parameters

Variable Valid cases MLPA data p-value

(n) BRCA1-like Non-BRCA1-like

Total 144 63 81

Age 143 0.265

<50 54 27 27

≥50 89 36 53

Tumor size 143 0.979

pT 1 54 24 30

pT 2 69 31 38

pT 3 8 3 5

pT 4 12 5 7

Nodal status 141 0.145

Negative 71 35 36

Positive 70 26 44

Histological grade 139 0.0004*

1 6 0 6

2 28 5 23

3 105 57 48

Histology 144 0.062

Invasive-ductal 113 53 60

Invasive-medullary 11 6 5

Other 20 4 16

Adjuvant
chemotherapy

142 0.044*

None 34 10 24

Yes 108 53 55

Radiation therapy 142 0.017*

None 23 5 18

Yes 119 58 61

BRCA1-like classification with cut-off value ≥ 0.5, non-BRCA1-like classification
with cut-off value < 0.5
*statistically significant with chi square test
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association of the BRCA1-like profile with age, nodal in-
volvement or tumor stage. In addition, patients with
BRCA1-like cancers had more often received adjuvant
treatment (p = 0.044) or radiation therapy (p = 0.017)
compared to the non-BRCA1-like group.
Discussion
Numerous studies are engaged in the improvement of
TNBC outcome, a breast cancer subtype which is still
accompanied by unfavorable prognosis [38]. The shared
molecular profiles between sporadic TNBCs and
BRCA1-associated breast cancer [7, 39], also referred to
as BRCAness, may open the way for new therapeutic
strategies. In particular, the BRCA1-like profile appears as
an excellent molecular marker predicting sensitivity to
agents targeting DNA-double-strand-break repair-deficient
cancers [25, 40]. Indeed, we could recently demonstrate that
BRCA1-like TNBCs show markedly improved outcome
after intensified chemotherapy combining alkylating agents
such as cyclophosphamide with carboplatin [27, 41, 42].
Most importantly, non-BRCA1-like tumors did not benefit
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from high-dose alkylating chemotherapy. These observa-
tions highlight the clinical relevance of discriminating
between BRCA1-like and non-BRCA1-like phenotypes.
A clinically practicable test to identify BRCAness should

be robust and easy to implement in routine laboratories.
Therefore, we have recently established an MLPA-based
assay transcribing the methodology of our former
arrayCGH-derived BRCA1-like test into a PCR-based ap-
proach [27]. The test proved to be equal to the arrayCGH
assay in predicting response to platinum-based alkylating
chemotherapy [27]. Our next intention was to confirm
robustness and sensitivity of the MLPA-based test across
independent laboratories which would be prerequisites for
its general application in the clinical setting.
Here we describe a blinded validation of the MLPA test

with respect to its ability to predict BRCA1-mutated or
-methylated samples in an independent cohort of 144
TNBC patients. These were enrolled according to availabil-
ity of fresh frozen tumor material (nuclear fractions) and
amount of high-quality DNA. Clinical properties of the
studied patient panel were in concordance with an unse-
lected TNBC patient cohort (see Table 5) although a selec-
tion bias cannot be fully ruled out. Speaking against an
influence of the selection procedure on the study, the valid-
ation test showed very similar sensitivity values compared
to our initial results with 87.5 % versus 85 % [27] sensitivity
for correct class prediction. In total, five samples could not
be correctly classified. We characterized these tumor speci-
mens in more detail: As observed in two BRCA1-mutated
false negative samples, the presence of hormone receptors
and/or ductulo-lobular features might interfere with the ex-
pression of a BRCA1-like profile reflected by retention of a
wildtype BRCA1 allele in the analysed tumor section. In
this context, we indeed observed that BRCA1-like cancers
exhibited more often invasive ductal or medullary charac-
teristics relative to other histological features (see Table 5).
Thus, not all BRCA1-mutated tumors may generate a
BRCA1-like profile probably due to a different etiology or
heterogeneity of the tumor.
A second cause of misclassification may be due to

normal-cell contamination giving rise to PAM-R values
near the cut-off value of 0.5 or below. While low tumor
content can be bypassed by microdissecting FFPE sam-
ples which are performing equally well in the MLPA test
[27], high lymphocyte infiltration would persist. Indeed,
Massink et al. [43] reported that the presence of high
numbers of tumor infiltrating lymphocytes severely
affects tumor profiling, particularly for basal-like, and
thus BRCA1-like tumors. We show here that 30–40 % of
the TNBC samples (within a subset of 53 samples)
exhibited high (2+) T-cell infiltration. Nevertheless,
CD3-positive cells were not more abundant in the non-
BRCA1-like subset of TNBCs speaking against a major
impact of immune cell infiltration on the test results.
The sensitivity of the MLPA test might be enhanced in
combination with BRCA1 methylation testing. The
methylation assay can also be performed with low tumor
cell percentages (minimum 20 %), so nearly all samples
will be suitable. In the samples with a tumor cell
percentage of 50 % or above, both the MLPA and
methylation assay can be performed. In this way, the re-
sult should be more robust, and samples with low tumor
cell percentage can also be analysed.
In concordance with recent publications [44, 45] we

observed that a large proportion (28 out of 63) of the
BRCA1-like tumors was not associated with a BRCA1
mutation or hypermethylation. So far, it is not exactly
clear which aberrations beyond BRCA1 abnormalities
will cause a BRCAness signature. Lord and Ashworth,
2016, summarized in their recent review [46] the current
knowledge encompassing the concept “BRCAness”. Here
they define BRCAness as “a situation in which an HR
defect exists in a tumor in the absence of a germline
BRCA1 or BRCA2 mutation”. Considerable evidence is
now available suggesting that loss of one or several key
genes involved in HR, among these ATM, CHEK1/2,
NBN, RAD51 and genes of the Fanconi Anemia comple-
mentation group, is associated with sensitivity of cancers
to platinum drugs and PARP inhibitors. However, an
even larger list of HR-modulating genes may also pro-
voke a BRCAness phenotype [46]. Various surrogate
measurements for HR defects in cancer such as
telomeric allelic imbalance analysis, large scale transition
analysis or HRD profiling revealed distinct genomic
scars which could be discriminated from confounding
alterations not derived from HR deficiency [47]. By
performing genome wide expression studies and next
generation sequencing, Severson et al. [45] could assign
specific gene signatures to the MLPA-derived BRCA1-
like profile. They found that genes/pathways involved in
DNA recombination, DNA repair and cell cycle were
significantly up-regulated. In particular, overexpression
of a key regulator of cell cycle progression, FOXM1, and
its interactive network may facilitate re-entry of BRCA1-
like TNBCs into the cell cycle after DNA damage.
FOXM1 was recently found to cooperate with BRG1, a
component of the SWI/SNF chromatin remodeling com-
plex, in cellular stress situations [48]. BRG1 is thought
to facilitate repair of DNA lesions, e.g. by chromatin re-
laxation, and was also shown to associate with BRCA1
[49]. Interestingly, the SWI/SNF chromatin remodeling
enzymes BRG1 and BRM are mostly overexpressed in
breast cancer and their knockout resulted in loss of
viability of TNBC cells [50, 51]. Thus, these findings
suggest that SWI/SNF components might emerge as
potential targets for therapeutic intervention [51–53].
Given that BRCA1-like cells are deficient in HR, PARP1, a

key player in base excision repair, may present another
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selective target for the treatment of TNBC patients. So far,
PARP inhibitors have proven to be most effective in BRCA-
associated familial breast cancers [23–25]. Ossovskaya et al.
[54] reported elevated levels of PARP1 mRNA and protein
also in TNBC tumor tissues suggesting that TNBC patients
might as well be suited for treatment with PARP inhibitors.
In the present study, we were interested in the question,
whether the BRCA1-like profile might be specifically related
to upregulation of PARP1. Indeed we could demonstrate
that strong (3+) PARP1 staining was more frequent in
BRCA1-like than in non-BRCA1-like tumors. Therefore, at
least a subset of BRCA1-like tumors might respond well to
the promising treatment option with PARP inhibitors (e.g.
in combination with carboplatin).
Interestingly, a recent study observed sensitization of

BRCA-proficient TNBCs to PARP inhibitors by inhibition
of the PI3K signalling pathway. PI3K blockage resulted in
BRCA1/2 downregulation and impairment of HR [55, 56].
In line with these observations, Severson et al. [45]
showed a high frequency of PIK3CA mutations in non-
BRCA1-like tumors suggesting susceptibility to PI3K/
AKT/mTOR inhibition. Accordingly, these findings would
provide a rationale for specific treatment of non-BRCA1-
like TNBCs by blocking both PARP1 and PI3K.
Conclusions
Approximately half of all TNBCs exhibit BRCA1-like char-
acteristics. The BRCA1-like MLPA assay is a fast, simple
and cost-effective method suitable for clinical applications to
discriminate between BRCA1-like and non-BRCA1-like
TNBCs. Moreover, reproducible results were obtained be-
tween this study and the initial introduction of the MLPA
test. These observations make it particularly attractive
compared with other more complex techniques based on
genomic scarring. A limitation of this test might be the re-
quirement of high DNA quality and high tumor content.
Following the validation of the MLPA-based assay it will
now be possible to perform prospective studies which are
highly warranted to evaluate the test in a larger setting for
predicting treatment benefit from platinum drugs or PARP
inhibitors.
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