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Discoidin domain receptor 1 activity drives
an aggressive phenotype in gastric
carcinoma
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Abstract

Background: Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that utilizes collagen as a ligand, is a
key molecule in the progression of solid tumors as it regulates the interaction of cancer cells with the tumor
stroma. However, the clinical relevance of DDR1 expression in gastric carcinoma is yet to be investigated. Here, we
assessed the role of DDR1 in mediating the aggressive phenotype of gastric carcinoma and its potential as a
therapeutic target.

Methods: We conducted DDR1 immunohistochemistry using a tissue microarray of 202 gastric carcinoma
specimens. We examined the effect of collagen-induced activation of DDR1 on cell signaling, tumorigenesis, and
cell migration in gastric cancer cell lines, and tumor growth in a xenograft animal model of gastric cancer.

Results: Our results showed that 50.5% of gastric cancer tissues are positive for DDR1 expression, and positive
DDR1 expression was significantly correlated with a poor prognosis (P = 0.015). In a subgroup analysis, DDR1 expression
was prognostically meaningful only in patients receiving adjuvant treatment (P = 0.013). We also demonstrated that
collagen was able to activate DDR1 and increase the clonogenicity and migration of gastric cancer cells. We observed
that a DDR1 inhibitor, 7rh benzamide, suppressed tumor growth in gastric cancer xenografts.

Conclusions: Our findings suggest a key role for DDR1 signaling in mediating the aggressive phenotype of gastric
carcinoma. Importantly, inhibition of DDR1 is an attractive strategy for gastric carcinoma therapy.
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Background
Gastric cancer is among the most common malignancies
and the third leading cause of cancer-related death
worldwide [1]. The gastric cancer mortality rate has
slightly decreased due to an increase in curative surgical
resection. However, recurrence is common in most
patients with late-stage disease [2]. Recent large-scale
clinical trials have demonstrated the efficacy of 5-

fluorouracil-based adjuvant chemotherapy to reduce re-
currence following curative resection in the patients with
stage II or III cancer [3, 4]. However, recurrence is still
diagnosed in approximately 25% of these patients despite
the use of adjuvant treatments. Further, conventional
chemotherapy is not effective in these patients and in
those with initially unresectable disease [5–7]. Targeted
therapies directed against cancer-specific molecules have
been shown to increase survival in several solid-tumor
cancers [8, 9]. However, the success of these agents has
been modest in gastric cancer patients [10]. For ex-
ample, two clinical studies showed limited clinical bene-
fits from trastuzumab and ramucirumab for gastric
cancer treatment [11, 12]. Thus, there is a pressing need
for novel therapeutic agents to suppress the recurrence
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and progression of gastric cancers and a need for new
biomarkers to predict tumor recurrence.
Discoidin domain receptors (DDRs) are members of

the transmembrane receptor tyrosine kinases (RTKs)
and uniquely possess a discoidin homology domain in
their extracellular region [13–15]. Distinct from other
RTKs, which are typically activated by growth factor li-
gands, DDRs use various types of triple-helix collagens,
a main component of the extracellular matrix, independ-
ently of the integrin collagen receptors. To date, two
DDRs, DDR1 and DDR2, have been identified. These
DDRs display minor differences in their ligand specific-
ities. DDR1 is activated by most collagens such as the
type I, II, III, IV, V, VIII, and XI collagen. In contrast,
DDR2 uses only collagen type I and III as its ligands
[15–17]. Various studies have suggested that a collagen-
activated DDR1 signaling pathway can enhance the
self-renewal, spreading, migration, and tubulogenesis
of non-cancerous cells [18–21]. These findings have
encouraged further studies to elucidate the role of
DDR1 in cancers. DDR1 expression is higher in solid
malignant tumors than in normal tissues [22], and ele-
vated DDR1 expression has been associated with a poor
prognosis in pancreatic and lung cancers [23, 24].
However, the significance of DDR1 expression in gastric
cancers is yet to be evaluated.
Gastric cancers are known to progress through the

interaction between cancer cells and the tumor stroma
[25, 26]. Therefore, the elevated expression of DDR1,
which uses the stromal collagen as a ligand, might be a
novel target for gastric cancer treatment. Moreover,
novel agent, the 7rh compound of 3-(−2-(pyrazolo[1,5-a]
pyrimidin-6-yl)-ethynyl) benzamides, to inhibit DDR1
activation was introduced recently. The preclinical study
showed that it significantly suppressed the proliferation
of DDR1-expressing cells [27]. Here, we investigated the
clinical correlation of DDR1 expression in gastric can-
cers and determine if a novel DDR1-targeting agent, 7rh
benzamide, can suppress cancer progression.

Methods
Patients and tissue samples
Of the patients diagnosed with gastric carcinoma and
undergone curative gastric resections with proper
lymphadenectomy at the Department of Surgery of Ajou
University Hospital from May 2003 to December 2005,
we selected 202 patients with the paraffin-embedded tis-
sues which were possible to make a tissue microarray
(TMA). All patients in the study were treatment-naïve.
The median follow-up period for these patients was
67.4 ± 18.1 (median ± standard deviation) months. Re-
currence was assessed with computed tomography of
the abdominal and pelvic cavities, gastroscopy, or tumor
markers every 3 or 6 months. Pathology stages were re-

evaluated according to the seventh edition of the Inter-
national Union Against Cancer classification criteria. Of
histological subtypes determined according to the World
Health Organization classification, papillary and well- or
moderately differentiated tubular adenocarcinomas were
classified as differentiated tumors, while other types
were classified as undifferentiated tumors. Patients diag-
nosed with stage II or III disease were recommended for
adjuvant systemic chemotherapy with 5-fluorouracil for
6 months or 1 year post surgery.
Two experienced pathologists (Kim YB and Kwon JE)

reviewed all hematoxylin and eosin (H&E)-stained slides
to designate appropriate sites for TMA cores. Two
formalin-fixed and paraffin-embedded cores (2 mm in
diameter) were removed from the selected sites and ar-
ranged into the TMA block.

Immunohistochemistry
Immunohistochemistry (IHC) analyses were performed
with 4-μm-thick section slides from the TMA block.
Following antigen retrieval with citrate buffer and inhib-
ition of endogenous peroxidase activity, the slides were in-
cubated with DDR1 antibody (1:100 dilution, #sc-532,
Santa Cruz Biotechnology, Dallas, TX) overnight at 4 °C.
Reactivity was visualized after incubation with HRP-
conjugated anti-rabbit secondary antibody (1:500 dilution,
abC-5003, AbClon, Seoul, Korea) and the addition of the
3,3-diaminobenzidine substrate. The specificity of the
anti-DDR1 antibody was assessed by Western blot analysis
using the MKN45 gastric cancer cell line transfected with
control or DDR1 siRNA (Additional file 1: Figure S1).
Stained slides were independently evaluated by two pa-

thologists who were blinded to the clinicopathological
features of the patients. Proportion of cells with positive
DDR1 staining was determined from 0 to 100%, and the
results were semi-quantitatively scored as follows: nega-
tive staining (<5%), 1+ staining (5–30%), 2+ staining
(30–60%), and 3+ staining (>60%). The expression of
DDR1 was determined as positive when both sites re-
ceived a 2+ or 3+ score.

Cell lines and chemical compounds
Gastric cancer cell lines KATO-III (KCLB No. 30103)
and MKN28 (KCLB No. 80102) were purchased from
the Korean Cell Line Bank (Seoul, Korea). The cells were
maintained in RPMI-1640 (Invitrogen, Carlsbad, CA)
containing 10% fetal bovine serum (FBS; Equitech-Bio,
Ingram, TX) supplemented with 100 U/ml penicillin G
and 100 μg/ml streptomycin (Invitrogen). Cells were in-
cubated at 37 °C in a humidified atmosphere containing
20% O2 and 5% CO2. Type I collagen extracted from rat
tail (BD Biosciences, Franklin Lakes, NJ) was dissolved
in 0.02 N acetic acid and used for coating tissue culture
dishes and inserts for migration assays (5 μg/cm2).
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Collagen-coated dishes and inserts were washed with
PBS immediately before use.
DDR1 inhibitor 3-(2-(pyrazolo[1,5-a]pyrimidin-6-yl)ethy-

nyl)benzamide (7rh benzamide) was dissolved in DMSO to
a final stock concentration of 2.5 mg/ml as previously re-
ported [27].

Western blotting
Sub-confluent monolayers of cells were lysed and super-
natants were recovered by centrifugation. Protein
concentrations were measured using the BCA protein
assay kit (Thermo Scientific, Waltham, MA) and
equal amounts of total protein were resolved using
SDS-PAGE gels. Resolved proteins were transferred to
polyvinylidene difluoride membranes (Bio-Rad, Hercules,
CA) and blocked with 5% milk in TBS/Tween-20 (TBST).
Membranes were incubated with the following pri-
mary antibodies: DDR1 (1:1,000 dilution, #5583, Cell
Signaling Technology, Danvers, MA), phosphorylated-
DDR1 (1:1,000 dilution, #11994, Cell Signaling Technol-
ogy), phosphorylated-PYK2 (1:1,000 dilution, #3291, Cell
Signaling Technology), E-cadherin (1:2,000, 610181, BD
Biosciences), and beta-actin (1:5,000 dilution, sc-47778,
Santa Cruz Biotechnology), followed by the corresponding
HRP-conjugated secondary antibodies (Jackson Immu-
noResearch Labs, West Grove, PA). Protein bands were
detected using the enhanced chemiluminescence reagent
kit (Thermo Scientific) on autoradiographic films.

Clonogenic assay
Cells were cultured in 6-well tissue culture dishes with
or without collagen coating at 3 × 103 or 5 × 103 cells/
well density in 2 ml RPMI-1640 supplemented with 5%
FBS. Colony formation was visualized with crystal violet
staining after fixation with 6% glutaraldehyde. Images
were captured using a dissection microscope and analyzed
with ImageJ software (US National Institutes of Health,
Bethesda, MD) to assess colony size and numbers.

Migration assay
Cell migration assays were performed using a two-
chambers transwell cell culture system with 8 μm pore
polycarbonate membrane inserts (3422, Corning,
Cambridge, MA). To evaluate the effect of collagen on
the migration ability of cancer cells, the upper side of
the transwell membrane was coated with rat tail colla-
gen. Cells were seeded at a density of 2 × 104 cells/200 μl
onto the upper chamber of the transwell in FBS-free
medium. Cells were then allowed to migrate toward the
lower chamber, which contained medium with 10% FBS
for 48 hours at 37 °C in a humidified incubator.
Migrated cells were fixed with 70% methanol and stained
with H&E. Stained cells were visualized and photographed

under an inverted bright-field microscope at 100× magni-
fication, and counted using ImageJ software.

Cell viability test
Cells were seeded at 1 × 105 cells per well in 96-well
plates, and cell viability was daily measured using the
novel tetrazolium compound 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-
zolium inner salt [MTS(s)] assay kit (Promega, Madison,
WI, USA). Next, 20 μl of the MTS solution was added per
well, cells were incubated for 2 h, and the absorbance was
measured by spectrophotometry at 490 nm. To evaluate
the effect of 7rh benzamide on the cell viability, the cells
were treated with different concentrations during 72 h.
Three independent experiments were performed.

In vivo assay
Six- to eight-week-old male BALB/c-nu nude mice
(Orient Bio, Gyonggi-Do, Korea) weighing 16 to 18 g were
subcutaneously implanted with 1 × 107 MKN28 cells in
50 μl volume. We performed two experiments. Experi-
ment 1: Mice (n = 10) were observed after MKN28 injec-
tion. Five mice were sacrificed on day 5 and 12 mice were
sacrificed post injection, and tumors were harvested for
histological evaluation. Experiment 2: Mice were injected
subcutaneously with MKN28 cells. On day 1 after the
tumor cell injection, mice were treated orally with 7rh
benzamide (25 mg/kg, n = 6) or vehicle (n = 8) every 2 days
for 15 days. Tumor volume and body weight were moni-
tored throughout the study period.
In all experiments, tumors were measured in three di-

mensions using calipers, and tumor volume was calcu-
lated with this formula: tumor volume (mm3) = (a x b2)/
2, where a = length in mm, and b = width in mm.
Upon sacrifice, tumors were harvested, fixed in 10%

neutral-buffered formalin, embedded in paraffin, and
sectioned for staining as described for the human TMA
study. Additional immunofluorescence stains were per-
formed with antibodies against: phosphorylated-DDR1
(Tyr792; 1:100 dilution, #11994, Cell Signaling Technol-
ogy), phosphorylated-PYK2 (Tyr402; 1:100 dilution, #3291,
Cell Signaling Technology), and E-cadherin (1:50 dilution,
610181, BD Biosciences). Fluorescent images were ob-
tained using an Olympus ix71 microscope equipped
with a DP70 camera and DP controller software
(Olympus, Tokyo, Japan). Fluorescent intensities were
assessed using ImageJ software.

Statistical analysis
All in vitro studies were performed three times independ-
ently. Statistical analysis was performed using the IBM
SPSS statistics (Version 21 for Mac OS X, IBM, Armonk,
NY) and GraphPad Prism (Version 6.0 for Mac OS X,
GraphPad Inc., La Jolla, CA) software. Correlations
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between the expression of each molecule and the clinico-
pathological factors were evaluated using the χ2 test. Over-
all survival rates were evaluated using log-rank tests, and
survival curves were generated using the Kaplan-Meier
method. Mean value differences between two groups with
continuous variables were evaluated using an independent
t-test or Mann-Whitney U test.

Results
DDR1 expression in gastric normal and cancer tissues
DDR1 was not expressed in normal gastric tissues
(Fig. 1a). DDR1 staining was generally observed at the
cell membrane or in the cytoplasm of tumor cells, and
50.5% of gastric cancer tissues showed positive DDR1
expression (Fig. 1b and c). Positive expression of DDR1
was associated with tumor invasion (P = 0.017). DDR1
positive staining was observed in 41.2% of T1 and T2
primary tumors and in 58.8% of T3 and T4 tumors.
Other clinicopathological features were not correlated
with DDR1 expression (Table 1).
Patients with positive DDR1 expression showed a

worse prognosis when compared to DDR1-negative pa-
tients (P = 0.015; Fig. 2a). Old age, as well as advanced T
and N stages were also associated with a poor prognosis.
In a multivariate analysis, DDR1 expression was not a
predictor of poor overall survival; however, old age, be-
ing male, having an undifferentiated tumor, and ad-
vanced T stage were all significant factors of poor
survival (Table 2). We subsequently classified patients
based on their adjuvant chemotherapy status. In the
non-adjuvant treatment subgroup, DDR1 expression
was not associated with a worse overall survival rate
(P = 0.933; Fig. 2b). However, in patients receiving adju-
vant treatment, DDR1 expression was significantly corre-
lated with poor survival (P = 0.013; Fig. 2c). DDR1
expression was an independent prognostic factor in the
multivariate analysis (P = 0.083, odds ratio = 1.7; Table 2).
These results indicated the potential of DDR1 expres-

sion as a new biomarker to predict poor survival of gas-
tric cancer patients. In particular, its clinical relevance
was more significant for patients receiving adjuvant
treatment after resection.

DDR1 signal transduction and its inhibition in gastric
cancer cell lines
To extend these findings, we investigated the expression
of DDR1 in various human gastric cancer cell lines
(Fig. 3a). In KATO-III and MKN28 cell lines, which
highly express DDR1 compared to SNU-668 and AGS,
collagen stimulation induced the phosphorylation of
DDR1 and PYK2 (Fig. 3b). In both cell lines, the inhib-
ition of DDR1 activity with 7rh benzamide decreased the
phosphorylation of DDR1 and PYK2 in a dose-
dependent manner. E-cadherin expression was higher in
both cell lines (Fig. 3c). Furthermore, collagen stimula-
tion altered the morphology of cells into a more linear
and mesenchymal-like shape, and this altered morph-
ology was partially inhibited by 7rh benzamide treatment
(Fig. 3d). These results showed that collagen could acti-
vate DDR1 and its downstream signaling, and induce an
epithelial-mesenchymal transition (EMT) via the loss of
E-cadherin in gastric cancer cell lines. In addition, the
ability of 7rh benzamide to inhibit the DDR1 signaling
pathway was demonstrated.

Collagen-DDR1 signaling promoted tumor aggressiveness
Cell viability tests for KATO-III and MKN28 cell lines
did not show the difference between collagen coating
dish and non-coating dish during 4 or 6 days (Additional
file 2: Figure S2A and S2B). Moreover, low dose of 7rh
benzamide (1 μM or less) did not give an effect on the
cell viability in collagen coating and non-coating dishes
(Additional file 2: Figure S2C and S2D).
The overall capacity of gastric cancer cells to form col-

onies was significantly enhanced in the presence of col-
lagen, specifically the number of colonies formed and
the area covered by colonies. Moreover, 7rh benzamide
(0.18 μM) was effective in reducing colony formation
as well as colony size in KATO-III and MKN28 cell
lines (Fig. 4a).
We subsequently assessed the contribution of collagen

in the enhancement of cell motility using a transwell mi-
gration assay. We observed that collagen increased cell
migration, while 7rh benzamide treatment decreased cell
motility (Fig. 4b). These results demonstrated that the

Fig. 1 DDR1 expression in normal gastric and cancer tissues of patients with gastric cancer. Representative images of a) negative DDR1
immunohistochemical staining of normal gastric tissue, b) negative DDR1 staining in gastric cancer tissue with a +1 score, and c) positive DDR1
staining in gastric cancer tissue with a +3 score. The Inset shows the magnified positive DDR1 staining cancer cells. Scale bar = 200 μm
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inhibition of DDR1 by 7rh benzamide decreased the
tumorigenesis and migration of gastric cancer cell lines.

The inhibition of DDR1 reduced gastric tumor growth
following stromal collagen accumulation
To investigate the effect of collagen-DDR1 signaling on
tumor growth, the extent of collagen deposition in

subcutaneous MKN28 gastric cancer xenografts was de-
termined by histology using the Masson’s trichrome
stain. Tumors harvested 5 or 12 days after tumor cell
implantation displayed robust collagen accumulation,
with the greatest collagen accumulation observed in tu-
mors harvested on day 12. The level of DDR1 expression
was also assessed by immunohistochemistry (Fig. 5a).
To determine if pharmacologic inhibition of DDR1

can affect tumor growth in vivo, a study using 7rh ben-
zamide was conducted. Mice bearing subcutaneous
MKN28 tumors were treated with 7rh benzamide or ve-
hicle (Fig. 5b). DDR1 inhibition by 7rh benzamide sig-
nificantly slowed tumor growth during the 2-week
observation period but had no effect on body weight and
animal activity (Fig. 5c).
Immunohistochemical analyses showed that tumors

harvested from mice receiving short-term 7rh benza-
mide therapy had significantly reduced phosphorylated
DDR1 and PYK2 levels when compared to tumors from
control-treated mice. In tumors harvested from the con-
trol group, we observed that the expression of E-
cadherin, a conventional epithelial cell marker, was de-
creased in regions with higher PYK2 phosphorylation. In
tumors of experimental group, expression of E-cadherin
was detected and PYK2 phosphorylation was signifi-
cantly decreased in most part of tumor lesion (Fig. 5d).

Discussion
In the current study, we demonstrated for the first time
the correlation between DDR1 expression and worse
overall prognosis in gastric cancer patients. Moreover,
we identified that collagen-induced DDR1 activation en-
hanced aggressive tumor phenotypes, and that a
pharmacologic inhibition of DDR1 can suppress cancer
progression in vitro and in vivo. These observations

Table 1 DDR1 expression in gastric cancer tissues according to
various clinicopathological features

DDR1 P value

Variables Negative Positive

(n=100) (n = 102)

Age (years old) <70 147 70 (47.6%) 77 (52.4%) 0.381

≥70 55 30 (54.5%) 25 (45.5%)

Gender Male 140 72 (51.4%) 68 (48.6%) 0.411

Female 62 28 (45.2%) 34 (54.8%)

Location Upper 26 12 (46.2%) 14 (53.8%) 0.597

Middle 62 34 (54.8%) 28 (45.2%)

Low 114 54 (47.4%) 60 (52.6%)

Lauren Intestinal 99 44 (44.4%) 55 (55.6%) 0.085

Mixed 33 22 (66.7%) 11 (33.3%)

Diffuse 70 34 (48.6%) 36 (51.4%)

Differentiation Differentiated 70 35 (50.0%) 35 (50.0%) 0.918

Undifferentiated 132 65 (49.2%) 67 (50.8%)

T stage T1/T2 100 58 (58.0%) 42 (42.0%) 0.017

T3/T4 102 42 (41.2%) 60 (58.8%)

N stage N0/N1 125 66 (52.8%) 59 (47.2%) 0.233

N2/N3 77 34 (44.2%) 43 (55.8%)

Adjuvant
chemotherapy

None 59 32 (54.2%) 27 (45.8%) 0.388

Yes 143 68 (47.6%) 75 (52.4%)

Fig. 2 Overall survival of gastric cancer patients with positive or negative DDR1 expression. a Kaplan-Meier survival curves showed that positive
DDR1 expression was associated with a lower overall survival rate in all patients enrolled in the study (P = 0.015 by log-rank test). b In the non-adjuvant
chemotherapy subgroup, the overall survival rate of patients with positive and negative DDR1 expression was comparable (P = 0.933 by
log-rank test). c In patients receiving adjuvant chemotherapy, positive DDR1 expression was significantly correlated with a poor overall
survival rate (P = 0.013 by log-rank test)
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provided strong evidence that DDR1 served as a critical
mediator of gastric cancer aggressiveness and that the in-
hibition of DDR1 can be potentially used as a novel strat-
egy to improve the prognosis of gastric cancer patients.
Prior to this study, the expression of DDR1 was unex-

plored in gastric cancers. However previous studies have
demonstrated a positive association between DDR1 pro-
tein expression and poor prognosis in solid tumors, thus
supporting the hypothesis that DDR1 expression en-
hances the aggressiveness of malignant tumors. Two
studies reported that increased DDR1 expression was as-
sociated with poor survival of patients with non-small
cell lung cancer [23, 28]. Elevated DDR1 expression in
serous ovarian cancer was also indicated as a prognostic
determinant [29]. A recent study reported that increased
DDR1 expression was linked to a poor prognosis in pan-
creatic ductal adenocarcinoma [24]. Like other solid tu-
mors, gastric cancers require the non-cancerous stromal
portion of the primary tumors to enhance tumor growth
and progression. In particular, several studies have de-
scribed that tumor-associated stromal collagen can
modulate immune responses within gastric cancers, and
is associated with a poor prognosis in patients with ad-
vanced gastric cancers [30, 31]. Another report demon-
strated that collagen could drive the migration of gastric
cancer cells through the regulation of β-catenin [32].
Taken together, these findings supported the notion that
the expression of DDR1, which uses extracellular colla-
gen as a ligand, is a good candidate biomarker to predict
gastric cancer prognosis.

In particular, through a multivariate analysis, we dem-
onstrated that elevated DDR1 expression can be used as
a biomarker for predicting poor survival in patients re-
ceiving adjuvant treatments after resection. In gastric
cancers, adjuvant chemotherapy is generally prescribed
for patients with advanced stage disease regardless of
curative resection. In theory, circulating cancer cells
from primary gastric cancers can metastasize into and
colonize metastatic sites such as the peritoneum and
liver after resection [33, 34]. Based on the results of the
present study, a novel inhibitor of DDR1, 7rh benza-
mide, is potentially efficacious in preventing tumor re-
currence after curative resection in DDR1-expressing
gastric cancer through the suppression of cancer cell mi-
gration and tumorigenic abilities.
Several RTK inhibitors such as imatinib [14], nilotinib

[13], and dasatinib [35] were shown to inhibit the DDR
kinase activity. However, these agents displayed broad
specificity. Recently Gao et al. described a novel and or-
ally bioavailable specific inhibitor of DDR1, the 7rh com-
pound of 3-(−2-(pyrazolo[1,5-a] pyrimidin-6-yl)-ethynyl)
benzamides, which was shown to potently inhibit DDR1
activation in preclinical models [27]. The 7rh benzamide
was synthesized using a palladium-catalyzed Sonogahira
coupling, and showed a significant suppressive effect on
the proliferation of DDR1-expressing cancer cells, but
not DDR2-, Bcr-Abl-, or c-Kit-expressing cells. In our
study, low concentrations of 7rh benzamide (0.18 or
0.54 μM) suppressed the activation of DDR1 and tumor
cell activity by collagen in vitro. Moreover, in a xenograft

Fig. 3 Collagen-induced activation and pharmacologic inhibition of DDR1 in vitro. a DDR1 and phosphorylated DDR1 levels in various gastric
cancer cell lines were determined by Western blotting. b KATO-III and MKN28 cells were stimulated with rat tail type I collagen. Lysates were
probed for indicated proteins by Western blotting. c KATO-III and MKN28 cells plated on collagen-coated dishes were treated with 7rh benzamide
(0.18, 0.54, and 1.62 μM). The level of phosphorylated DDR1 and PYK2, E-cadherin, and β-actin were determined by Western blotting. d MKN28
cell morphology was changed into a more linear and mesenchymal-like shape by collagen stimulation, and this altered morphology was partially
inhibited by 7rh benzamide treatment. The representative images are shown
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model, the effect of 7rh benzamide to suppress tumor
growth following subcutaneous injection of tumor cells
was demonstrated. These findings indicated the potential
use of 7rh benzamide as a novel agent to suppress gas-
tric cancer progression.
DDR1 has been linked to invasion, migration, and sur-

vival of cells [22]. We observed that DDR1-induced PYK2
phosphorylation and loss of E-cadherin were induced by
collagen stimulation, which were reduced upon DDR1 in-
hibition. In the xenograft model, we observed collagen ac-
cumulation as tumors increased in size. We also found
that DDR1 inhibition reduced DDR1 activation, EMT, and
tumor growth. Shintani et al. reported that type I collagen

can trigger DDR1-induced PYK2 phosphorylation, and
consequentially induced EMT through the downregula-
tion of N-cadherin expression in pancreatic cancer cells
[36]. EMT of cancer cells is associated with an aggressive
phenotype and metastatic potential [37, 38]. We assessed
the loss of the epithelial marker E-cadherin as a marker of
EMT progression, because E-cadherin loss and/or muta-
tion were shown to associate with progression and poor
prognosis of gastric cancers [39, 40]. However, the correl-
ation between DDR1 and E-cadherin expressions has
remained elusive. Yeh et al. reported that DDR1 enhanced
epithelial differentiation and promoted cell-to-cell junc-
tions through E-cadherin stabilization in non-cancer cells

Fig. 4 Colony formation and migration of gastric cancer cells were stimulated by collagen and reduced by DDR1 inhibition. a KATO-III and
MKN28 cells (3 × 103) were plated on plastic or collagen-coated dishes for 7 days and the effect of 7rh benzamide (0.18, 0.54, and 1.62 μM) on
colony formation was determined. The number and total area of colonies were assessed using ImageJ software. b The effect of DDR1 inhibition
on MKN28 cell migration was determined in a transwell migration assay. Transwell inserts (8 μm pore) were left uncoated or coated with collagen,
and cells (3 × 104) were seeded in serum-free medium. Complete medium containing 10% FBS was placed in the lower chambers, and cells were
allowed to migrate for 2 days. The underside of each membrane was stained with H&E, and cells were counted using ImageJ software. The error
bars represent standard error of the mean (SEM) and an asterisk (*) represents P < 0.005, calculated by one-way ANOVA with Tukey’s multiple
comparison test
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[41]. Meanwhile, others reported that DDR1 upregulation
promoted tumor progression by reducing E-cadherin
expression in lung and colorectal cancers [42, 43].
The pro-survival effect of DDR1 in cancer cells also
suggested its potential as a therapeutic target. The ac-
tivation of Notch1 or the nuclear factor-kappaB path-
way was suggested as the downstream signal that
induces resistance to cytotoxic chemotherapy [44, 45].
However, the precise intracellular mechanism of DDR1-

induced cancer cell aggressiveness is not clearly under-
stood and requires further investigation.

Conclusions
Our study demonstrated the potential of DDR1 as a new
prognostic marker of gastric cancers. In particular,
DDR1 expression was associated with poor survival in
patients receiving adjuvant chemotherapy after resection
for gastric cancers. We therefore suggest the use of specific

Fig. 5 Pharmacologic inhibition of DDR1 reduces gastric cancer tumor growth. a MKN28 cells (1 × 107 in 50 μl) were injected into the
subcutaneous layer of athymic nude mice (n = 10). Five mice were sacrificed on day 5 post injection, and the remaining 5 mice were sacrificed after
12 days. Collagen in the tumor was assessed by Masson’s trichrome stain, and the expression of DDR1 was evaluated by immunohistochemistry. b
MKN28 cells (1 × 107 in 50 μl) were injected subcutaneously into nude mice. Animals were treated with vehicle (control; n = 8) or 25 μg/g of 7rh
benzamide (7rh; n = 6) three times a week via oral gavage. The representative pictures of the mice right before sacrifice show the different tumor size
between two groups. c Tumor volume and body weight were measured during drug administration, and tumors were harvested on day 17 post
tumor cell injection. The error bars represent standard error of the mean (SEM) and an asterisk (*) represents P < 0.005, calculated by Mann-Whitney U
test. d Harvested tumors were subjected to immunohistochemistry for phosphorylated DDR1 (pDDR1), phosphorylated PYK2 (pPYK2), and E-cadherin.
Quantification of pDDR1 signal intensity is shown. Scale bar = 20 μm. The error bars represent standard error of the mean (SEM) and an asterisk (*)
represents P < 0.005, calculated by Mann-Whitney U test
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DDR1 inhibitors as therapeutic agents to suppress gastric
cancer progression.

Additional files

Additional file 1: Figure S1. Validation of DDR1 antibody. An
oligonucleotide targeting human DDR1 (5′-ACACUAAUAUAUGGACC
UAGCUUGA-3′; siDDR1) was purchased from Integrated DNA
Technologies (Coralville, IA). MKN45 cells in 100 μL of medium were
seeded into 24 well plates and transfected with 750 ng of siDDR1 or
control siRNA. DDR1 expression in siDDR1- and control siRNA-transfected
cells was assessed by Western blot. (TIF 1917 kb)

Additional file 2: Figure S2. Relative ratio of cell viability. A) KATO-III
and B) MKN28 cells were plated on collagen coated or non-collagen
coated dishes and cell number determined on the days indicated by
MTS assay. C) The effect of 7rh benzamide on KATO-III and D) MKN28 cell
viability was determined by MTS assay. Cells were plated on non-coating
or collagen coating dishes. The concentration of 7rh benzamide was 0,
0.06, 0.18, 0.54, 1.62 and 4.86 μM. (TIF 13503 kb)
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