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Abstract

Background: Wogonin is an encouraging choice for clinical use owing to its potent anti-tumor and anti-inflammatory
effects with the high safety profile. However, wogonin for targeted therapy of lymphoma was not well addressed.
In this study, we focused on its anticancer effect alongside with the underlying mechanisms for targeted therapy
in EBV-positive lymphoma. This will facilitate its introduction to clinical use, which is planned in the near future.

Methods: Cell proliferation was studied by CCK8. Flow cytometry was used to analyze the apoptosis and the
cycle arrest of cells. Further, we also used immunofluorescent staining to detect the morphologic changes of
the apoptotic cells. The expression of LMP1/miR-155/p65/pp65/PU.1 was evaluated by quantitative real-time
PCR (qRT-PCR) and western blot, while that of NF-κB was analyzed by EMSA. At last, immunohistochemical staining
was applied to assess the expression of target proteins and relevant molecules.

Results: In vitro, wogonin induced the apoptosis of Raji cells by downregulating the expression of NF-κB through LMP1/
miR-155/NF-κB/PU.1 pathway, which was in a dose and time-dependent manner. In vivo, wogonin could suppress tumor
growth, associated with the downregulation of ki67, p65 and upregulation of PU.1.

Conclusions: Wogonin could suppress tumor growth and induce cell apoptosis by inhibiting the expression of NF-κB.
Taken these findings, we concluded that wogonin could be a potential targeted therapeutic agent for
EBV-positive lymphoma with the expression of LMP1 through the pathway of LMP1/NF-κB/miR-155/PU.1.
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Background
In 2015, 80900 cases were newly diagnosed with lymph-
oma, accounting about 5% among all cases diagnosed with
tumors. The mortality of lymphoma increased consistently
during the last years [1]. Epstein-Barr virus (EBV), known
as an oncogenic human herpes virus, is responsible for the
pathogenesis of Burkitt’s lymphoma (BL), Hodgkin lymph-
oma (HL), extranodal NK/T cell lymphoma and parts of
diffuse large B cell lymphoma (DLBCL) [2–4]. EBV-
related oncogenesis is primarily associated with latency
as well as some small noncoding RNAs, such as EBV-

encoded small RNAs (EBERs) and microRNAs (miRs)
[5, 6]. The expression of nuclear antigens and latent
membrane proteins principally induce the proliferation
of B cells [7, 8]. In addition, 25 viral pre-miRs are expressed
during the latent infection of EBV. They regulate the
expressions of the relevant cellular miRs such as miR-155,
which has been recognized as a potential oncogene in
activated B-cell (ABC) lymphomas, through the NF-κB
pathway [6, 9].
Researches have indicated that the infection of EBV is

an aggressive course for both elderly and young patients
with lymphoma [10, 11]. Conventional CHOP regimens
(Adriamycin, Vincristine, Cyclophosphamide, Prednisone)
lead to a poor outcome with overall survival around 14
months [12]. For CD20-positive B-cell neoplasms, the
addition of Rituximab can improve the outcomes of these
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patients [13], but in a small series of cases, patients
with type III latency die within only 1 year even treated
with Rituximab [14, 15]. Another promising novel ther-
apy for EBV-positive B cell lymphoma is Bortezomib, a
proteasome inhibitor, which has shown anti-tumor ef-
fect by inhibiting nuclear factor-κB (NF-κB) activity
both in vitro and in vivo [16, 17]. Unfortunately, severe
immunosuppression and myelosuppression are the main
limitations preventing the wide clinical use of Rituximab
and Bortezomib. Hence, new drugs with good tolerance
and efficacy are highly demanded.
During the past two decades, wogonin (5, 7-dihydroxy-8-

methoxyflavone) has been identified as a potent apoptositic
inducer for cancer cells with minor side effects [18, 19].
Wogonin is extracted from Scutellaria baicalensis Georgi
(Huangqin), a perennial labiatae, and its molecular formula
is C16H12O5 (Fig. 1a). Several studies have shown its
inhibitory activity on tumor cells growth through intrinsic
mitochondria-mediated and extrinsic receptor-mediated
pathways [20, 21]. Furthermore, the inhabitation of NF-κB
by wogonin also plays an important role in cell prolifera-
tion [22, 23]. Thereby, wogonin largely contributes to pre-
vent the cellular immortalization and tumorigenesis.
Here, we assess the effect of wogonin on inducing the

apoptosis of EBV (+) lymphoma cells and inhibiting tumor
growth of xengrafted models. This involves the explor-
ation of the possible molecular mechanisms and pathways
through which wogonin exerts it action in this cell line.

Methods
Cell culture and Reagents
The human cell line Raji (ATCC® CCL-86™), a B lymphoma
cell linewith EBV (+), was obtained from Shanghai Cell
Bank of Chinese Academy of Sciences (Shanghai, China).
The cells were cultured in RPMI-1640 medium (Gibco,
Grand Island, NY, USA) supplemented with 10% heat-
inactivated fetal bovine serum (Sijiqing, Hangzhou, China),

100 U/mL penicillin and 100μg/mL streptomycin (Sigma-
Aldrich, St. Louis, MO, USA) in a 95% air and 5% CO2

atmosphere at 37 °C.
Wogonin (provided by the Key Laboratory of Carcino-

genesis and Intervention, China Pharmaceutical University,
China) was dissolved in dimethyl sulfoxide (DMSO, Sigma-
Aldrich), stored at -20 °C, and diluted with medium when
it was planned to be used in the experiment. MiR-155 in-
hibitor or miR-inhibitor normal control (NC) (Gene-
Pharma) was dissolved in DEPC-treated water prior to
the experiment. Their sequence was as follows: miR-
155 inhibitor (5’ to 3’) ACCCCUAUCACGAUUAGCA
UUAA; miR-inhibitor NC (5’ to 3’) CAGUACUUUUG
UGUAGUACAA. Lipofectamin2000 (GenePharma) was
used for gene transfection of miR-155 inhibitor and NC
according to its manufacturer’s protocols. PDTC (Beyotime,
Nantong, China), used as the inhibitor of NF-κB, was dis-
solved in DMSO according to suggested concentration.

Cytotoxicity assay
Cytotoxic effect of wogonin on the proliferating cells
was detected by Cell Counting Kit 8 (CCK8, Dojindo,
Kumamoto, Japan). Cells were seeded onto 96-well plates at
a density of 3 × 104 cells/well and treated with different con-
centrations of wogonin (0, 12.5, 25, 50, 100, 200 μmol/L) for
24, 48 and 72 h respectively. Then we added 10 μL of CCK8
solution into each well and incubated the cells for an-
other 3 h. The absorbance was measured by Multiskan
MK3 (Thermo Scientific, Shanghai, China) at 450 nm.
After that, we calculated the cell viability as a percent-
age of the viable cells in the wogonin-treated group
compared with the untreated control.

Immunofluorescent staining
Cells were dripped on glass slides, fixed with 4% parafor-
maldehyde, for 30 min at room temperature. Then the
cell nucleus was stained with DAPI (4, 6-diamidino-2-
phenylindole) (Beyotime, Haimen, China) for 5 min and
was photographed with a fluorescence confocal micro-
scope (FV-1000, Olympus, Tokyo, Japan). Between each
step, the cells were washed three times with PBS.

Flow cytometry
Cells apoptotic rate was detected by Flow cytometry
using Annexin V-FITC Apoptosis Detection Kit (Key-GEN,
Nanjing, China) according to the manufacturer’s in-
structions. Two mL suspension of 105 cells was stained
with (Annexin-V-FITC and PI) kit solution in dark for
15 min. The assay then performed using FACSCalibur
Flow Cytometry (BD, USA) at 488 nm.
The rate of cells cycle arrest was also detected by Flow

cytometry using Cell Cycle Detection Kit (Key-GEN,
Nanjing, China). Following its manufacturer’s instruc-
tions, 2 mL suspension of 106 cells was fixed with 70%

Fig. 1 The inhibitory effect of Wogonin on Raji cells at different
treatment times. a The chemical structure of Wogonin. Molecular
formula: C16H12O5. Molecular weight: 284.26; b The inhibitory effect
of Wogonin on Raji cells at different concentration after treated for
24h, 48h and 72h. Bars are the mean ± SD (n = 3)
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ethyl alcohol, and washed by PBS before staining. The
assay performed in FACSCalibur Flow Cytometry (BD,
USA) at 488 nm.

RNA extraction and qRT-PCR assay
Total RNA was isolated from cells of each group using
RNAiso Plus (TaKaRa, Dalian, China). Reverse transcrip-
tion (RT) was performed with PrimeScript RT reagent kit
with gDNA Eraser Kit (TaKaRa, Dalian, China), while real
time PCR was carried out using FastStart Universal SYBR
Green Master (ROX) Kit (Roche, Shanghai, China) ac-
cording to manufacturer’s instructions on an ABI Prism
7500 HT device (Applied Biosystems). RT of total RNA of
miR-155 and its cDNA synthesis were analyzed separately
using different procedures. The RT contained: Total RNA
200ng, RT primer (10μmol/L) 0.2μL, 5 × Primescript buf-
fer 4μL, Primescript RTase 0.5μL, dNTPs 2μL, Inhibitor
(20U/μL) 0.5μL and DEPC-treated water to the total of
20μL. The program was 16 °C for 30min, 42 °C for
30min, 70 °C for 15min and 4 °C for 10min. The real
time PCR contained: Premix EX Tag 10μL, hsa-mir155-5p
F (10μmol/L) 0.5μL, Universal reverse primer (10μmol/L)
0.5μL, ROX II 0.4μL, Sybrgreen 1μL, cDNA 2μL and
DEPC-treated water to the total of 20μL. The program
was 95 °C for 30s, and then followed by 40 cycles of 95 °C
for 5s and 60 °C for 34s.
The relative expression level of mRNAs was normalized

to that of internal control U6 for miR-155, while GAPDH
for other genes. The primer sequences were shown in
Table 1.

Dual-luciferase reporter assay
Raji cells were seeded in 24-well plates at 5×105/ml over-
night. Then cells were transfected with 667ng of pNFκB-
TA-luc reporter plasmid (Beyotime, Nanjing, China) and
133ng renilla luciferase-expressing plasmid as an internal
control using Lipo2000 according to the manufacturer’s
instructions for 24 h. After that, we set up three groups of
cells, negative control group, positive control group (LPS

was used as NF-κB activator) and test groups which were
treated with wogonin at the concentration varying from
0μmol/L to 100μmol/L for 48 h before harvesting. Firefly
luciferase and renilla luciferase activities were analyzed by
Dual luciferase reporter assay kit (Beyotime, Nanjing,
China). Renilla luciferase activities were used as an
internal control.

Electrophoresis mobility shift assay (EMSA)
Nuclears extracts from cells were performed with EMSA
Detection Kit (Key-GEN, Nanjing, China) according to
the manufacturer’s instructions. The NF-κB oligonucleotide
comprised the sequence: 5’-AGCTATGTGGGTTTTCC
CATGAGC-3’. To confirm the specificity of NF-κB, a 50-
fold excess of NF-κB oligonucleotide, which was unlabeled,
was added to the reaction mixture as a competitor. For
EMSA, proteins were incubated with a NF-κB-specific 32P-
labeled oligonucleotide and mix for binding. For super-
shift assay, antibodies were preincubated to the sample
of interest prior to incubation with radiolabeled probe.
The complexes formed were analyzed using Phosphor
Imager Technology.

Western blot analysis
Protein was extracted from cells and blots were incu-
bated with diluted primary antibodies LMP1 (Abcam,
UK), PU.1, p65 and phospho-p65 (Santa Cruz, USA) for
overnight respectively at 4°C, and then incubated with
horseradish peroxidase-conjugated goat anti-rabbit or
mouse secondary antibody (Santa Cruz, USA) for 2h at
room temperature. GAPDH (Santa Cruz, USA) was used
as the internal control. For quantity, images were ana-
lyzed using Image J software (Bethesda, MD, USA).

Mouse xenograft model
Four-week-old male BALB/c nude mice, 18–22 g, were
purchased from Shanghai National Center for Laboratory
Animals (Shanghai, China) and maintained in a pathogen-
free environment. All the studies were performed in adher-
ence with the Guidelines established by National Science
Council, People of Republic of China. After the mice were
injected with 1 × 107 cells subcutaneously, tumor volume
was measured every other day and calculated. The formula
was V = a2b/2, in which “a” represented the smallest super-
ficial diameter and “b” represented the largest superficial
diameter. When the tumor volume reached nearly 50 mm3,
the mice (n = 5/group) were randomly assigned into two
groups: control group and wogonin-treated group (8mg ⁄kg
per 2 days). Then the drug was administered via intraperi-
toneal injection every other day for 2 weeks. After 14 days,
the mice were sacrificed and the tumors were removed and
measured.

Table 1 Sequence of each primer

Primer Sequence

LMP1 (forward) 5’-TGAGCAGGAGGGTGATCATC-3’

LMP1 (reverse) 5’-CTATTCCTTTGCTCTCATGC-3’

PU.1 (forward) 5’-CTCAGTCACCAGGTTTCC-3’

PU.1 (reverse) 5’-TCCAAGCCATCAGCTTCTC-3’

Hsa-mir155-5p (forward) 5-GCGGTTAATGCTAATCGTGAT-3

Hsa-mir155-5p (reverse) 5-GTGCAGGGTCCGAGGT-3

GAPDH (forward) 5’-CCATCACCATCTTCCAGGAG-3’

GAPDH (reverse) 5’-ACAGTCTTCTGGGTGGCAGT-3’

U6 (forward) 5’-CTCGCTTCGGCAGCACA-3’

U6 (reverse) 5’-AACGCTTCACGAATTTGCG-3’
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Immunohistochemistry
UltraSensitive S-P IHC Kit (Maixin, Fuzhou, China) was
used for immunohistochemical staining according to the
manufacturer’s protocols. The sections were incubated
with anti-p65, anti-PU.1 and anti-ki67 (1:100, Santa
Cruz, USA) at 4 °C overnight. Then they were stained
by a streptavidin-peroxidase system and the signal was
visualized using diaminobenzidine substrate. Then the
counterstaining with hematoxylin was performed to
measure the microvessel density and the levels of PU.1
and ki67 by Image-Pro Plus 6.0 (Media Cybernetics,
Silver Spring, MD, USA).

Statistical analysis
All the values were shown as mean ± standard deviation
(SD) from triplicate experiments performed in a parallel
manner unless otherwise indicated. Data from the results
was analyzed using an unpaired, two-tailed Student’s test.
The level of significance was indicated as *P < 0.05
and **P < 0.01.

Results
Wogonin in vitro cytotoxicity study
In order to explore the potential anti-proliferative effects
of wogonin on lymphoma cells, Raji was treated with
wogonin at various concentrations (12.5–200 μmol/L)
for 24 h, 48 h and 72 h respectively. A CCK8 assay was
used to determine its proliferation, which showed that
wogonin had the anti-proliferative effects on Raji cells in
a dose- and time-dependent manner (Fig. 1b, Additional
file 1: Table S1).

Wogonin induces the apoptosis of Raji cells arrested at
G1 phase
The morphological changes in the nucleolus caused by
apoptosis of the cells were observed under a florescence
microscope. Raji cells that were untreated with wogonin ex-
hibited a pale blue florescence, whereas those treated with
wogonin exhibited a nuclear fragmentation in the apoptotic
cells at the concentration between 0 and 200 μmol/L of
wogonin (Fig. 2a). The following Annexin V/PI double-

Fig. 2 Wogonin induces the apoptosis of Raji cells arrested at G1 phase. a Fluorescence image of Raji cells treated with DAPI after 48 h
incubation with wogonin at the concentration of 0 -200 μmol/L. Nuclear fragmentation and chromatin condensation are indicated with red
arrows. b The apoptosis of Raji cells was determined by flow cytometry after incubation with wogonin at 0 -200 μmol/L for 48 h. The ratio of
apoptosis was 6.44 ± 1.26%, 8.86 ± 0.74%, 12.94 ± 2.68% and 17.58 ± 3.73% for each group. c The cell cycle of Raji cells was arrested by wogonin
(50 μmol/L) at G1 phase. d The ratio of S, G1, G2 phase was 22.77 ± 1.6%, 44.30 ± 1.91%, 32.93 ± 1.78% for the control group and 10.98 ± 1.17%,
70.04 ± 1.23%, 18.99 ± 0.65% for the wogonin treated group respectively, it was significantly up regulated at sub-G1 peak in wogonin treated
group. The different levels of significance were indicated as *P < 0.05 and **P < 0.01

Wu et al. BMC Cancer  (2017) 17:147 Page 4 of 11



staining assay also provided evidence that the percentage
of apoptotic Raji cells increased after treated with wogonin
from 12.5 μmol/L to 200 μmol/L in a dose-dependent
manner (Fig. 2b). Furthermore, the Raji cells, which were
incubated with 50μmol/L wogonin for 48 h were investi-
gated by flow cytometry for cell cycle arrest (Fig. 2c). The
difference between the percentage of S, G1 and G2 phase
respectively in the control and wogonin-treated group was
statically significant (Fig. 2d).

MiR-155 plays a role in the apoptosis of Raji cells
To assess whether endogenous miR-155 played a role in
regulating the proliferation of EBV (+) B lymphoma cells,
Raji cells were transfected with either miR-155 inhibitor at
suggested concentrations (0, 50, 100, 200nmol/L) or NC
for miR-155 inhibitor from the illustration of the inhibitor
using Lipo2000 for 48 h. qRT-PCR was used to evaluate
the mRNA expression of miR-155 of each group. The
results indicated that miR-155 inhibitor could down-
regulate the expression of miR-155 in Raji cells, especially
at the concentration of 100 nmol/L (Fig. 3a, Additional

file 2: Table S2a). Meanwhile, when the expression of
miR-155 was decreased, apoptosis started in Raji cells
(Fig. 3b), which accounted for 12.94 ± 4.59% of the total
and was significant compared with the control group.
Moreover, the expression of LMP1 and PU.1 in Raji

cells were detected by qRT-PCR (Fig. 3c, Additional file 2:
Table S2b and c) and Western blot (Fig. 3d and e). The
results indicated that both of the transcription and transla-
tion of PU.1 were increased in the inhibitor treated group
compared with the control group, while the expression of
LMP1 had no difference between the two groups.

Wogonin regulates the expression of miR-155 by NF-κB
Firstly, we used NF-κB inhibitor (PDTC), to confirm
whether or not the suppression of NF-κB could also induce
the apoptosis of Raji cells. The results utilized by FCM were
shown in Fig. 4a. Then the expressions of LMP1, miR-155
and PU.1 were evaluated using Real Time-qPCR in the
control, PDTC, wogonin and PDTC+wogonin treated
groups. Three important points could be concluded from
the results: 1) although the expression of LMP1 did not

Fig. 3 The expression of LMP1/miR-155/PU.1 in Raji cells with the process of miR-155 inhibitor treated apoptosis. a Effect of miR-155 inhibitor at
the concentration of 50, 100 and 200 nmol/L for 48 h on the expression of miR-155 mRNA in Raji cells using PCR detection and analyzed by the ΔCt
method, bars were shown as mean ± SD (n = 3) and represent miR-155/U6 ratios relative to the control group. The difference level of significance was
(**P < 0.01). NC = Negative Control. Mock (cells + Lipo2000) = Blank Control. b Flow cytometry was used to detect the apoptosis of Raji cells after
treated with miR-155 inhibitor at 100 nmol/L for 48 h. The ratio of apoptosis was 8.5 ± 0.74% and 12.94 ± 4.59% for the control and inhibitor-treated
groups respectively. c Effect of miR-155 inhibitor at the concentration of 100 nmol/L for 48 h on LMP1 and PU.1 mRNA level of Raji cells detected by
PCR and analyzed by the ΔCt method, bars were shown as mean ± SD (n = 3) and represent LMP1/GAPDH or PU.1/GAPDH ratios relative to the control
group. The difference level of significance was (*P < 0.05). d Effect of miR-155 inhibitor 100nmol/L for 48 h on LMP1 and PU.1 protein expressions, the
protein expression was analyzed by western blots; GAPDH was used as a loading control. e For quantity of (d), images were analyzed using Image J,
bars were the mean ± SD (n = 3). The comparisons were made relative to control group, and the difference level of significance was (**P < 0.01)
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show any difference among these groups, the expres-
sion of miR-155 was down-regulated significantly and
on contrast the expression of PU.1 was increased after
treated with PDTC or wogonin or their combination; 2)
Wogonin could decrease the expression of miR-155
and increase the expression of PU.1 just like PDTC did;
3) the combination of the two drugs did not have an in-
creased effect on these molecules compared with PDTC
only (Fig. 4b, Additional file 3: Table S3). The protein
level of LMP1 and PU.1 was evaluated by Western blot
(Fig. 4c and d). However, these three points just indi-
cated that wogonin could act as PDTC, because correl-
ation did not mean causation, we did Dual-luciferase
reporter assay to see whether wogonin could suppress
the expression of NF-κB directly. As shown in Fig. 4e,
wogonin inhibited NF-κB activity in Raji cells.
The effects of miR-155 inhibitor as well as the effect

of wogonin, PDTC and their combination on p65 and
pp65 protein expression were analyzed by western blot
(Fig. 5a and b). For further confirmation about the sup-
pression of wogonin on NF-κB, we separated Raji cells
into eight groups and detected NF-κB by EMSA. As
shown in Fig. 5c, wogonin, significantly suppressed the
expression of NF-κB.

Wogonin inhibits the growth of transplantable tumors
and down-regulates protein level of p65 and PU.1
Tumor xenografts transplanted by Raji cells were used
to evaluate the anti-tumor effect of wogonin in BALB ⁄c
nude mice in vivo. After intraperitoneal injection of
wogonin every other day for 2 weeks, the tumors were
moved and photographed (Fig. 6a). The average tumor
size of control group was 663.4 ± 259.6 mm3, while that
of wogonin treated groups was 199 ± 105.2 mm3 (Fig. 6b,
Additional file 4: Table S4a). The average tumor weight
of the control group was 0.426 ± 0.164 g, while that of
wogonin treated groups was 0.162 ± 0.068 g (Fig. 6c,
Additional file 4: Table S4b). The difference was obvi-
ously significant between the two groups.
The results indicated that wogonin had a dramatic

effect on the inhibition of tumor growth. Moreover,
wogonin treatment had very minor effects on the
body weight of mice (Fig. 6d, Additional file 4: Table S4b),
demonstrating that the maximal dose of wogonin (8 mg/kg
per 2 days) had minimal toxic effects for mice.
To investigate the macroscopic observations and

address the potential effect of wogonin in vivo, immu-
nohistochemistry was performed. The results showed
that ki67, the marker of tumor proliferation, was

Fig. 4 The influence of NF-κB inhibitor wogonin on LMP1/miR-155/PU.1 in Raji cells. a Flow cytometry was used to detect the apoptosis of Raji
cells after treated with PDTC at 25μmol/L for 48 h. The ratio of apoptosis was 8.5 ± 0.74% and 10.19 ± 1.71% for the control and PDTC-treated
groups respectively. b Effect of PDTC and PDTC with wogonin on the mRNA expression of LMP1, miR-155 and PU.1 of Raji cells detected by PCR
and analyzed by the ΔCt method after treated at the concentration of 25 μmol/L PDTC, 50μmol/L wogonin and their combination for 48 h. Bars
were shown as mean ± SD (n = 3) and represent LMP1/GAPDH or PU.1/GAPDH or miR-155/U6 ratios relative to the control group (*P < 0.05). c
The protein expression of LMP1 and PU.1 were analyzed by western blots to evaluate the effect of PDTC (25 μmol/L), wogonin (50μmol/L) and
their combination for 48 h in Raji cells. GAPDH was used as a loading control. d For quantity of (c), images were analyzed using Image J. Bars
were the mean ± SD (n = 3). e Effect of wogonin on the NF-κB transcriptional activation was evaluated by Dual-luciferase reporter assay in
wogonin-treated Raji cells. The comparisons were made relative to control group, and the difference levels of significance was indicated as
(*P < 0.05 and **P < 0.01)

Wu et al. BMC Cancer  (2017) 17:147 Page 6 of 11



reduced by wogonin, as well as the component of NF-
κB, p65. In addition, PU.1, a protein which had been
recognized as the target of miR-155 which played an
important role in cell apoptosis, was increased after
wogonin treatment suggesting that wogonin could
attenuate tumor growth (Fig. 7).

Discussion
Since EBV (+) lymphoma is associated with poor prog-
nosis [11], new therapeutic strategies are needed to im-
prove the efficacy and reduce the toxicity of standard
approaches. Potential new therapies include cellular
immunotherapy, anti-viral treatments against EBV,
monoclonal antibodies and inhibition of specific sig-
naling targets [4, 24]. The cellular immunotherapy and

anti-virus treatments belong to the approaches that
target EBV-infected cells directly. The use of ex vivo-
activated EBV-specific cytotoxic T cell lymphocytes
(EBV-CTLs) and chimeric antigen receptor T-cells
already had a certain curative effect on parts of EBV-
related lymphomas [25–27]. However, the complex
technologies and high costs limit the use of these ther-
apies, despite of their very promising efficacy. On the
other hand, EBV (+) lymphoma is not sensitive to anti-
viral therapies because of lacking of EBV thymidine
kinase, which is required for anti-viral activity. There-
fore, histone deacetylase inhibitor, which is able to in-
duce the lytic phase in EBV-infected lymphocytes, is
usually used with Ganciclovir to improve the treatment
of such disorders [28, 29]. Besides the use of anti-CD20

Fig. 5 Wogonin down-regulates the protein expression of NF-κB. a Effect of miR-155 inhibitor on p65 and pp65 protein expression. Raji cells were
treated with 100nmol/L inhibitor for 48 h. The protein expression was analyzed by western blots. GAPDH was used as a loading control. b Effect
of wogonin, PDTC and wogonin + PDTC on p65 and pp65 protein expression. Raji cells were treated with 50μmol/L wogonin, 50μmol/L PDTC or
their combination respectively for 48 h. The protein expression was analyzed by western blots. GAPDH was used as a loading control. c The
effects of miR-155 inhibitor, wogonin and PDTC on NF-κB expression showed the clear suppressive effect of wogonin and PDTC, while miR-155 inhibitor
had little effect on activation of NF-κB. Raji cells were incubated with 100nmol/L miR-155 inhibitor, 50μmol/L PDTC or 50μmol/L wogonin respectively for
48 h, and then analyzed for NF-κB expression by EMSA. The comparisons were made relative to control group using intensity of protein. All the images
were detected by Image J. Bars were the mean ± SD(n= 3). The different levels of significance was indicated as (*P< 0.05 and **P< 0.01)
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Fig. 6 Wogonin inhibited tumor growth in a xenografts mouse model. a The BALB/c nude mice were injected with Raji cells for a few days
followed by treatment with solvent or various doses of wogonin every other day for 14 days. Then, the mice were killed, tumor removed and
photographed. b, c, d The tumor size, tumor weight and body weight measurements. Bars are shown as mean ± SD (n = 5). The comparisons
were made relative to untreated controls, and the difference level of significance was indicated as (*P < 0.05)

Fig. 7 Wogonin inhibited tumor proliferation by regulating the expression of p65 and PU.1 in Raji xenografts mouse model. a Immunohistochemistry was
performed in tumor sections with antibodies of ki-67, p65 and PU.1. The result showed a remarkable decrease in expression of ki-67 and p65, while an
increase in expression of PU.1 in the wogonin treated groups with 8mg/kg compared with untreated control groups. b, c The images were quantified
using Image Pro Plus. Mean optical densities and positive area of total area of ki-67, p65 and PU.1 were shown. Bars are the mean ±
SD (n = 10). The comparisons were made relative to untreated controls (100% of control), and the difference level of significance was
indicated as (**P < 0.01). # The expression of PU.1 had not been detected
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antibodies such as Rituximab, Brentuximab Vedotin is
now used in relapsed or refractory lymphomas as an
anti-CD30 antibody [30–33]. Notably, these monoclo-
nal antibodies have a high safety profile in patients with
immunodeficiency. Furthermore, suppression of the
specific signaling pathways seems to be a conventional
but always effective method to prevent pathological
cells from proliferating malignantly. Scientists are con-
stantly devoting themselves to discover new inhibitors.
Currently, programmed cell death ligands attract lots of
attention as an immune checkpoint blockage [34].
Meanwhile, traditional Chinese medicines (represented
by wogonin) are trying to establish their own position
as an anti-tumor reagent in a new era.
The current studies are relevant to explore a drug with

high efficacy and low toxicity for the treatment of EBV (+)
lymphoma, such as BL and EBV (+) DLBCL who usually
have latency III type of EBV infection and high expressions
of LMP1. LMP1 is consisted of six transmembrane proteins
that are able to activate the two cytoplasmic signaling
molecules namely C-terminal activator regions1 and 2
(CTAR1 and 2) constitutively to transform the proper-
ties from the extracellular region to the intracellular

region [35, 36]. Then, the signaling domains go through
tumor necrosis factor receptor (TNFR)-associated fac-
tors (TRAFs), especially TNFR6, to activate NF-κB,
making p65 free from NF-κB complex [37, 38]. After
p65 binding on the miR-155 promoter in the nucleus,
miR-155 begin to be vastly produced [6, 39], leading to
the down-expression of its target, which is named as
transcription factor PU.1, and reducing the suppressive
effect of PU.1 to the apoptotic relevant protein Bcl-2
(Fig. 8) [40, 41]. As this pathway has the capacity to
keep B cells immortal, the inhibition of any molecule
involved in this pathway will contribute to induce apoptosis
of these pathological cells. Interestingly, in our studies, the
results appeared to show a close relationship between
LMP1 (+) cells and wogonin. Further exploration provided
the evidence that miR-155 expressed highly in Raji cells,
which could be down-regulated by wogonin. Thus, it was
concluded that the LMP1 and miR-155 might have poten-
tial functions in LMP1 (+) lymphoma. In fact, some studies
have focused on the role of wogonin on NF-κB in the
process of inflammation [42, 43]. To access whether NF-κB
could be inhibited by wogonin correlated with the suppres-
sion of miR-155, we compared the expression of NF-κB,

Fig. 8 The molecular mechanism of wogonin on LMP1/NF-κB/miRNA-155/PU.1 pathway. LMP1 protein is consisted of TM1-6, CTAR1-2 and -H2N
and activates IkBα by TRAF6. P65, which is binding to IkBα, is then free from IkBα and goes into the nucleus to bind on miRNA-155 promoter,
inducing over-expression of miR-155. MiR-155 prevents the transcription of PU.1, and then suppresses the apoptosis of B lymphoma cells.
Wogonin inhibited the pathway by suppressing p65
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p65, pp65 and miR-155 of wogonin-treated group with
control group and access the effect of wogonin on NF-κB
activity to confirm that wogonin down-regulated miR-155
by modulating NF-κB. Although it is not the first time to
report the effect of wogonin on NF-κB, it has not been
reported elsewhere that wogonin can induce the apoptosis
of EBV (+) lymphoma cells by LMP1/NF-κB/miR-155/PU.1
signal pathway, suggesting wogonin as a promising drug to
be used in the clinic for LMP1 (+) lymphoma in the future.

Conclusions
In summary, we conclude that wogonin down-regulates
the expression of NF-κB in Raji cells. The inhibition of
NF-κB is associated with LMP1/NF-κB/miR-155/PU.1
pathway, suggesting the ability of wogonin to suppress
the growth and induce the apoptosis of human LMP1
(+) lymphomas. Taken together, it was not only evidenced
that wogonin could be a novel potential drug for LMP1 (+)
lymphoma, but also implied that the detection of LMP1
should be considered for diagnosis. Therefore, our further
studies will focus on the anti-tumor effect of wogonin on
more EBV (+) lymphoma cell lines with LMP1 or LMP2 to
identify the role of wogonin on EBV (+) lymphoma. In
addition, the prognosis of patients with LMP1 (+) or (-)
should be analyzed for the preparation of its use as a
marker of therapy in clinics.
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