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Abstract

Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in
oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and
Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhibit enhanced expression in many types of
cancers, and have been investigated as potential biomarkers for targeted strategies and prognostication. The aim of
the study was to investigate the expression patterns of uPAR, TF and EGFR and their potential prognostic value in
OSCC.

Methods: Immunohistochemical expression of uPAR, TF and EGFR in tumor resection specimens from 191 patients
with primary OSCC was analyzed. Overall (OS) and disease-free survival (DFS) was calculated. Associations between
biomarker expression, clinicopathological factors and patient survival was analyzed using the Cox proportional hazards
model for univariate and multivariate analysis, log rank and Kaplan-Meier statistics.

Results: uPAR and TF exhibited a highly tumor-specific expression pattern while EGFR also showed expression in normal
tissues outside the tumor compartment. The overall positive expression rate of uPAR, TF and EGFR was 95%, 58% and
98%, respectively. High uPAR expression across the entire cohort was negatively associated with OS (p = 0.031, HR = 1.
595 (95%CI 1.044–2.439)) in univariate analysis. The 5-year OS for high and low uPAR expression was 39% and 56%,
respectively. The expression of TF and EGFR was not associated with survival outcome.

Conclusions: This study may suggest that uPAR and TF could potentially be attractive targets for molecular imaging
and therapy in OSCC due to high positive expression rates and tumor-specific expression patterns. High uPAR expression
was significantly associated with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer.

Keywords: Oral squamous cell carcinoma, uPAR, Tissue factor, EGFR, prognosis, immunohistochemistry, margins, oral
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Background
Oral cavity cancer is the 11th most common cancer
worldwide and accounts for substantial mortality and
morbidity for individuals affected by this disease [1].
Despite important technological advances in diagnosis
and therapy especially in the last decades, the prognosis
for OSCC has only moderately improved, and reported
overall survival rate has remained at roughly 50% [2].
Surgery is a cornerstone in the treatment of primary
OSCC with curative intent, whether the objective is to
achieve complete removal of the tumor as well as any
regional metastatic disease in the neck. Failure to
achieve a clear tumor-resection margin, and to detect
residual disease in the surgical bed intraoperatively, has
direct major negative impact on the chances for cure not
fully compensated for by adjuvant radiotherapy [3, 4].
Intraoperative detection and delineation of cancer is still
based on visual inspection and palpation of the tissues
obviating reliable assessment of the microscopic extent of
the disease. Consequently, non-radical surgery remains a
major challenge, and novel imaging technology, that
enables accurate planning of surgery and intraoperative
tumor detection, is warranted.
The discovery of a large number of tumor-specific

biomarkers has stimulated new optimism in the develop-
ment of targeted imaging and treatment of cancer [5].
Ideally, a biomarker suitable for targeting purposes
should have strong expression within the tumor
compartment, and absent or insignificant expression in
adjacent normal tissue. The expression of a specific
biomarker may vary between different types of cancer,
and within each specific type of cancer due to tumor
heterogeneity, and therefore studies designed to examine
the exact histological expression and tumor-specificity of
different targets in large patient cohorts, are becoming
increasingly important. Furthermore, accumulating evi-
dence has validated biomarker expression and profiling
as an important tool for individual risk stratification and
planning of patient-tailored treatment [6]. The combined
use of a specific biomarker as a prognosticator and a
tumor-specific target for theranostic purposes is a novel
strategy, which may have potential applications in the
development of effective anti-cancer therapy. This study
examined specifically the expression of uPAR and TF
because our group has developed imaging and treatment
agents targeting these to cell membrane receptors [7–9].
uPAR and TF have consistently been associated with
cancer in most types of solid carcinomas [10, 11]. In
addition, EGFR expression was investigated because it is
an established target for therapy in HNSCC. However,
data on the utility of EGFR as target for imaging agents
are lacking.
In head and neck squamous cell carcinoma (HNSCC),

the role of Endothelial Growth Factor Receptor (EGFR)

in cancer progression has been extensively investigated.
Several studies found EGFR overexpression to be a
negative prognostic factor for local control and survival
outcome measures for tumors arising in different sub-
sites in the upper aerodigastive tract. However, existing
data with regard to the prognostic role of EGFR in
OSSC is ambiguous [12]. The recent clinical introduc-
tion of anti-EGFR agents (i.e. Cetuximab) for treatment
of advanced HNSCC has emphasized the potential of
EGFR as a target for anti-cancer therapy [13]. Import-
antly, a clinical trial on EGFR-targeted intraoperative
optical tumor imaging was recently published, and
EGFR-directed PET-imaging has been demonstrated in
preclinical studies [14, 15].
uPAR signaling stimulates pericellular proteolysis

facilitating plasmin-mediated extracellular matrix (ECM)
degradation and subsequent tumor cell migration and
invasion. Because of abundant implications in the
carcinogenesis of numerous types of cancer, uPAR has
been regarded as a promising biomarker for targeted
molecular imaging and therapy [16–18]. Also in OSCC
the pathophysiological role of the plasminogen activator
system has been investigated, and uPAR has been
appointed a key role in process of local invasion in the
interplay with other cancer-associated proteolytic
systems and signaling pathways [19]. However, there is a
need to further uncover the prognostic value of uPAR in
OSCC and to explore the rational of uPAR-targeted
strategies in this cancer entity.
A strong relation between cancer and hemostasis is

generally accepted, and aberrant venous thromboembol-
ism is a common manifestation in malignant disease,
including HNSCC [20, 21]. TF is a transmembrane pro-
tein receptor and the principle initiator of the extrinsic
coagulation cascade leading to fibrin formation after
activation by its natural ligand factor VII. In addition TF
activation has been associated with angiogenesis, tumor
growth and invasion through regulation of the proteo-
lytic cascade necessary for ECM degradation and tissue
remodeling [22]. To our knowledge, TF expression in
HNSCC has not been explored previously.
Accordingly, the aim of this study was to investigate

the prognostic value and tumor expression patterns of
EGFR, uPAR and TF in OSCC [23].

Methods
Patients
A cohort of 191 patients with primary OSCC, who
underwent surgical tumor resection at the department
of ORL – Head & Neck Surgery & Audiology at
Rigshospitalet from 2000 to 2012, was retrospectively
assembled. Inclusion criteria were primary OSCC in the
mobile tongue or floor of mouth (FOM) with resection
specimens available for immunohistochemical (IHC)
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analysis. Exclusion criteria were a previous history of
HNSCC or radiotherapy to the head and neck region.
Clinicopathological data were collected from medical re-
cords and pathology reports. All patients underwent
clinical examination and radiological work-up and were
staged at time of diagnosis according to the TNM classi-
fication by UICC, 7th edition [24]. Presence of regional
nodal disease was determined based on pathology post-
operatively (pN). A clear margin (>5 mm) was defined,
according to the Royal College of Pathologists, as the
absence of involved (<1 mm) or close margins (1–5 mm)
on routine histology [25]. If intraoperative frozen section
technique was applied, absence of tumors cells in these
specimens also defined a clear margin. For survival
analysis the last day for follow-up was 16th August
2016, and time of surgery, time of death of all causes
and time of recurrence was recorded. The study was
approved by the Ethical Committee of the Capital
Region of Denmark (protocol H-2-2012-050).

IHC staining
From formalin-fixed, paraffin-embedded tumor resection
specimens, adjacent 4 μm sections were prepared. IHC
staining was performed on a semi-automated auto-
stainer (Benchmark Ultra, Ventana- Roche, CA, USA).
All antibodies were applied in optimized dilutions previ-
ously determined using positive and negative control
staining. Briefly, slides were deparaffinized and rehy-
drated using EZ prep solution (Ventana-Roche, CA,
USA). Following monoclonal antibodies were used:
Cytokeratin (CK) clone AE1/AE3 (1:200, DAKO,
Glostrup, Denmark), EGFR (RTU, Ventana-Roche, CA,
USA), mouse anti-human uPAR R2 (1:20.000, Finsen
Laboratory, Copenhagen, Denmark) [26], TF #4509
(1:150, American Diagnostica Inc., Stamford, CT, USA).
Antibody incubation time was 32 min. For EGFR, uPAR
and TF and 24 min. For TF. Antigen retrieval for uPAR
was done with protease K (Ventana-Roche, CA, USA)
for 8 min followed by heating at 100 °C with cell condi-
tioning 1 (CC1, Ventana-Roche, CA, USA) buffer for
16 min. For CK, TF and EGFR standard heat induced
epitope retrieval (32 min, 100 °C) in CC1 buffer was
used. IHC stainings were counterstained with
hematoxylin. In addition, a section stained for
hematoxylin-eosin (HE) of each case was prepared.

Histology scoring
All cases were reviewed and scored by two specialized
head and neck pathologists (GL and KK) blinded to
the clinicopathological data. For each case, the pres-
ence of tumor and extent of the tumor-compartment
in relation to surrounding normal tissue was evalu-
ated on HE and CK sections. The expression of
uPAR, TF and EFGR was scored for intensity (I-score)

and proportion of IHC reactivity within the tumor
compartment (P-score). Both the I-score and the P-
score were based on a 4-point system: 0–3+ (none,
weak, moderate strong and 0–10%, 11–50%, 51–75%,
76–100%, respectively). For the I- and P-score IHC
reactivity was not subdivided into expression on
tumor cells and stromal cells, but was evaluated
together, to represent reaction in the whole tumor-
compartment. To combine information of intensity
and proportion, a combined score (PI-score) was
formed by addition of the I- and P-score as proposed
by Allred and colleges [27]. The PI-score formed a 7-
point system with a semi-quantitative scale from 0 to
6. In addition, sections were evaluated for homogeneous
IHC expression within the tumor-compartment (yes/no),
and IHC positivity in dysplastic epithelium if present (yes/
no). Because this paper investigated two separate research
questions, expression patterns in relation to biomarker
utility for targeted strategies and biomarker prognostica-
tion, respectively, the PI-score was dichotomized in two
ways. For the evaluation of expression rate of uPAR, TF
and EGFR, a tumor was considered positive if the PI-score
was >1. A dichotomization in positive vs. negative was
chosen because the positive expression rate across a co-
hort of patients is a key figure to determine the utility of a
biomarker for targeted imaging. In the analysis of the
prognostic value of uPAR, TF and EGFR, the cut-off
values to separate low and high expression was defined as
IPS < 6 for uPAR and EGFR and IPS < 3 for TF based on
the distribution of the score for each biomarker. Histology
sections were scanned using Axio Scan.Z1 (Carl Zeiss,
Jena, Germany) to create digital images.

Statistical analysis
Associations between biomarker expression and clinico-
pathological variables were analyzed by Pearson’s chi-
square test or Fisher’s exact test for small numbers. Age
differences were investigated using the two-sample t-
test. Overall survival (OS) was defined as time from
primary surgery to death due to any cause, and disease-
free survival (DFS) was defined as time from primary
surgery to cancer relapse or death by any cause. Associa-
tions between biomarker expressions and survival out-
comes were visualized in Kaplan-Meier plots using the
log-rank test to assess significance of differences. Also,
the Kaplan-Meier method was used to estimate 5-year
survival estimates. Hazard ratios were estimated in uni-
variate and multivariate Cox proportional hazards model
adjusting for gender, age, tobacco history, T-site, margin
status, T-stage, N-stage, extracapsular spread (ECS),
TNM stage and tumor differentiation. A p-value <0.05
was considered statistically significant. All data analysis
was performed in the SAS software package (SAS
Institute Inc., version 6.1, USA).
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Results
The retrospective cohort of 191 patients with primary
OSCC had a male predominance (66%), the median age
at time of surgery was 59 years (range: 23–89 years).
The median follow-up was 5.1 years (range: 0.1–
15.9 years). Demographics and the clinicopathological
variables are listed in Table 1. Overall, the anatomical lo-
cation of the tumors was distributed almost equally as
98 FOM tumors and 93 tongue tumors. The majority of
the patients (86%) presented with early stage disease
(S1-S2) and most tumors (90%) were well differentiated
(G1-G2). 31% were diagnosed with primary regional
nodal disease and 51 patients (27%) had post-treatment
relapse. For the entire cohort the 5-year OS and DFS
was 51% and 41%, respectively.

Histopathological biomarker expression patterns
Based on the examination of the immunohistochemical
staining in resection specimens, uPAR and TF were
found to be highly tumor-specific, with enhanced ex-
pression within the tumor compartment, and absent or
very limited expression in the normal tissues surround-
ing the tumors (Figs. 1 and 2). EGFR was less tumor-
specific due to regular expression in normal tissues. The
overall positive expression rate of uPAR, TF and EGFR
was 95%, 58% and 98%, respectively. High expression of
uPAR, TF and EGFR was observed in 28%, 39% and 40%
of the tumors, respectively (Table 2).
uPAR was expressed on neoplastic cells as well as on

fibroblasts and inflammatory cells in the tumor compart-
ment. In addition, stromal expression of uPAR was also
the predominant pattern. The same pattern was ob-
served in isolated clusters of neoplastic cells invading
into the stroma (Fig. 2). Also, in the majority of the
tumors, strong uPAR expression was found in a narrow
and well demarcated peritumoral reactive zone at the
invasive front. uPAR expression in dysplastic epithelium
adjacent to the carcinoma was very limited (4.1%, Table 2).
In most specimens, solitary uPAR-positive neutrophils
were observed in the tumor compartment as well as in
normal tissues. In two cases, strong uPAR staining was
noted on macrophages and neutrophils in an abscess
located outside the tumor compartment.
Within the tumor compartment, TF was predomin-

antly expressed in a heterogeneous pattern on tumor
cells, and intense staining was generally noted at the
invasive edge of the tumors (Fig. 2). TF expression in
dysplastic epithelium was noted in some cases (16.3%)
and the basal cells of normal epithelium showed weak
TF-positivity in all cases. Generally, a weak staining of
TF was observed in the collecting ducts in salivary gland
tissue outside the tumor compartment.
EGFR was found to have highly homogeneous expres-

sion on neoplastic cells in the majority of the tumors

(Table 2). Moreover, EGFR expression outside the tumor
compartment was observed in the normal epithelium in
all cases. In specimens containing dysplasia, EGFR was
expressed in the dysplastic epithelium in 93.9% of the
cases. In adjacent normal salivary gland tissue, regular
EGFR expression was seen on the epithelial cells (Fig. 1).

Correlation analysis of biomarker expression and
clinicopathological parameters
Associations between biomarker expression and clinico-
pathological variables are summarized in Table 1. High
uPAR expression was significantly correlated with an ad-
vanced TNM stage (p = 0.022). High TF expression was
significantly associated with tumor location in the
tongue (p = 0.018) and relapse of disease (p = 0.001). No
other significant associations between the three bio-
markers and clinicopathological variables were observed.

Survival analysis
Univariate and multivariate survival analysis using the
Cox proportional hazard model for OS and DFS with re-
spect to variables are summarized in Table 3. In OS and
DFS 126 and 177 events were recorded, respectively.
Kaplan Meier curves combined with log rank analysis
for differences showed a significant association between
high uPAR expression in tumors and OS but not DFS,
and no significant correlations was found for TF and
EGFR (Fig. 3). The 5-year OS was 55.5% for low uPAR
expression and 39.1% for high uPAR expression
(p = 0.030). High uPAR expression showed a significant
negative association with OS in the univariate analysis
(p = 0.031, HR = 1.595 (95%CI 1.044–2.439)) but signifi-
cance of this association was not retained in the multi-
variate analysis (p = 0.128, HR =1.435 (95%CI 0.901–
2.287)). uPAR expression did not reach statistical signifi-
cance in DFS. For TF and EGFR no significant associ-
ation with survival outcome was detected. To investigate
a possible prognostic value of uPAR, TF and EGFR in
early low-risk disease, univariate and multivariate ana-
lysis was also performed for the subgroups S1-S2
(n = 136), T1-T2 (n = 164) and G1-G2 (N = 171). High
uPAR expression reached a significant association with
OS only in the univariate analysis in all three subgroups
but not in the multivariate analysis. However, in the sub-
group of well differentiated tumors (G1-G2) a borderline
significant association was detected in multivariate
analysis (p = 0.051, HR = 1.618 (95%CI 0.997–2.625)).
As expected, high T-stage, high disease stage, involved

or close resection margins, primary nodal metastasis and
presence of ECS was associated with poor outcome in
OS and DFS in univariate analysis. Only margin status
and N-stage retained significance in multivariate ana-
lysis. Also increasing age was associated with reduced
OS and DFS in univariate and multivariate analysis.
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Discussion
This study provides novel data compared to existing lit-
erature because it was based on IHC biomarker expres-
sion in whole tumor resection specimens of OSCC and
not only biopsy specimens. Resection specimens con-
taining both the tumor compartment and the adjacent
resection margin of healthy tissue is a prerequisite to
accurately examine the utility of a biomarker for tumor-
specific molecular targeting. Also, resection specimens
allows to assess the heterogeneity of the biomarker
expression across the tumor compartment as opposed to
studies based on biopsies that only sample a very small
fraction of the tumor. To our knowledge, this type of
study of uPAR and TF expression in OSCC has not
previously been reported.
uPAR and TF both showed an enhanced expression

specifically confined to the tumor compartment with

very limited expression in the normal tissues surround-
ing the neoplasm. In contrast, EGFR lacked a tumor-
specific expression pattern and therefore the ability to
distinguish between malignant and normal tissues.
Further, the positive expression rate of uPAR and TF
was high, which implies, that a substantial part of OSCC
patients should be regarded as candidates for imaging
and/or therapy directed against either uPAR or TF.
Especially uPAR was found to have a highly tumor-
specific pattern, and also with very limited expression in
both normal and dysplastic epithelium around the
epithelial tumor lesion. In comparison, EGFR exhibited
staining of both normal and dysplastic epithelium in
most cases, and importantly also a general EGFR expres-
sion in salivary gland tissue outside the tumor compart-
ment was seen. A prerequisite to develop highly
accurate targeted imaging is that the molecular target

Fig. 1 Patterns of expression of uPAR, TF and EGFR. Adjacent tissue sections from a T1 FOM tumor (T). Black arrow indicates the epithelial lining
in the oral cavity. White square shows the location of the enlarged region of interest presented to the right. Dotted white line shows the invasive
front of the tumor. A large collecting salivary duct (white arrow) and salivary gland tissue (SGT) located adjacent to the tumor border. EGFR expression
is noted on neoplastic cells as well as in the epithelium of salivary gland tissue
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exhibits very low expression in normal tissues border-
ing the tumor to create a high tumor-to-normal tissue
ratio. Targeted optical-guided surgery is currently
being clinically translated, and this imaging modality
will allow intraoperative real-time assessment of
resection margins in order to ensure complete
removal of tumors. Further, our group and others
have recently presented preclinical data derived from
animal models of oral cancer, showing that detection
of subclinical disease by use of targeted fluorescent
probes is possible [28, 29]. However, because an optical

imaging signal has a low energy with a limited range
in intensity, target binding of an imaging agent out-
side the tumor compartment in normal tissues would
potentially have substantial influence on the ability to
detect a reliable tumor-specific signal to guide a
tumor resection. Accordingly, in the data from the
recently published first phase 1 trial of targeted
optical imaging in HNSCC, using the optical agent
cetuximab-IRDye800 directed against EGFR, extratu-
moral signal uptake in normal epithelium and salivary
gland tissue in tissue sections was reported [30].

a

b

c

d

Fig. 2 Selected features of biomarker expression. a T2 tongue SCC (T). Expression of uPAR, TF and EGFR confined to the tumor compartment. b
An example of strong TF expression on the neoplastic cells at the invasive front of a tongue SCC (T). c An example of a tongue SCC T) invading
deeply into the underlying stroma. Black arrows indicate expression of CK and uPAR on small tumor cell groups and the white square shows the
location of the enlarged region of interest depicted in panel (d)

Christensen et al. BMC Cancer  (2017) 17:572 Page 7 of 12



Direct comparison of the positive expression rates of
uPAR, TF and EGFR in this study and previous studies
is not possible because of difference in scoring systems
used and because of different cut-off values to determine
positive and negative expression. Three studies investi-
gated expression of uPAR in OSCC and reported a posi-
tive expression rate in the range of 39–100% [31–33].
Positive EGFR expression in OSCC was in the range of
60–100% in previous studies [34–37]. We found a
positive expression rate of 58% for TF, but the expres-
sion of TF in OSCC has not previously been investi-
gated. Chen et al. found a TF immunopositivity of 91%
in esophageal cancer [38].
To select potential biomarkers for targeted imaging,

van Oosten et al. suggested a selection criteria tool iden-
tifying seven factors on order of importance: (1) Extra-
cellular receptor location, (2) diffuse enhanced target
expression in tumor compartment, (3) high tumor-to-
normal tissue target expression, (4) high expression-rate
in patients, (5) previous successful targeted imaging
in vivo, (6) enzymatic activity of the receptor and (7)
target receptor internalization [39]. In relation to the
results of the present study, both uPAR, TF and EGFR
fulfills the factors 1–5, which underlines the relevance of
these receptors for targeted tumor imaging in OSCC. In
addition, uPAR is also reported to exhibit enzymatic
activity in the tumor microenvironment and internaliza-
tion to the intracellular space upon ligand-binding,
which makes this receptor especially suited for targeting
by imaging agents [11].
In the correlation analysis, high TF expression was as-

sociated with relapse of disease. However, TF expression
did not show significant impact on OS or DFS in the
survival analysis, which has been reported in colorectal,
breast and esophageal cancer [38, 40, 41]. We found
high uPAR expression to be associated with late TNM
stage disease (S3-S4). However, no significant association
was reached between uPAR and N- or T-stage analyzed
separately. In a study of 115 patients with OSCC,
Magnusson et al. reported that low expression of uPAR
was correlated with reduced disease specific death only
in patients with stage 1 (S1) disease [42]. Bacchiochi
et al. analyzed the prognostic value of uPAR in 189

patients with OSCC and found enhanced uPAR expres-
sion to be associated with increasing tumor cell differen-
tiation, and that low uPAR expression only was
associated with increased OS in well differentiated tu-
mors [31]. Our study confirms the findings in the latter
study, as high uPAR expression only for the sub-group
of well differentiated tumors was associated negatively
with OS in the univariate analysis and reached border-
line significance in the multivariate analysis. In two stud-
ies from the same Japanese group, containing 34 and 54
OSCC patients, respectively, high uPAR expression was
associated with an aggressive mode of invasion [43, 44].
Unfortunately, our study did not include the pattern of
invasion (cohesive vs. non-cohesive invasive tumor
front) as a histopathological variable, but further
research in the relation between local tumor aggressive-
ness and uPAR activity in OSCC is warranted.
In the survival analysis in the present study, enhanced

uPAR expression was associated with a significant reduc-
tion in OS only, while no significant associations
between expression of TF or EGFR and survival out-
come could be demonstrated. Accordingly, our data sup-
ports findings in previous studies, that uPAR expression
seems to be a prognostic factor for survival outcome in
OSCC [31, 42, 44]. However, we did not find uPAR to be
an independent prognostic factor in multivariate ana-
lysis. Also, uPAR was associated with advanced TNM
stage. Therefore, uPAR expression could also be a surro-
gate for advanced stage of disease as well as comorbidity.
A larger sample size would be able to clarify the mean-
ing of these findings.
Interestingly, our study is the first to show that uPAR

had impact on survival outcome across an entire cohort
of patients, and not only in a subgroup analysis of
patients defined by a specific clinicopathological variable
[31, 42] or a combination of biomarker expressions [44].
We did not find any significant association between
EGFR expression and survival outcome, which is consist-
ent with several previous studies, although some studies
have associated enhanced EGFR expression with poor
clinical outcome [12]. Of note, a limitation of this study
was a relatively small sample size with a limited number
of outcome events, which may have affected the ability
to detect significant correlations between biomarker
expression and survival. In addition, assessment of
biomarker expression based on immunohistochemistry
has an inherent limited accuracy due to intra-observer
variability and the design of the scoring systems used.
Consistent with a study of Lindberg et al., we also

found that uPAR predominantly was expressed on
stromal cells of the tumor compartment [33]. Similar
findings have been reported in colorectal and esopha-
geal cancer [45, 46]. Stroma-rich tumors, like OSCC,
may be less sensitive to targeted therapy, if the target

Table 2 Expression patterns of uPAR, TF and EGFR in OSCC

Variable uPARN (%) TFN (%) EGFRN (%)

Positive biomarker expression Yes 182 (95) 110 (58) 188 (98)

No 9 (5) 81 (42) 3 (2)

Homogeneous expression
in the tumor compartment

Yes 107 (56) 50 (26) 163 (85)

No 84 (44) 141 (74) 28 (15)

Expression in dysplastic
epitheliuma

Yes 4 (4) 16 (16) 92 (94)

No 94 (96) 82 (84) 6 (6)
aDysplastic epithelium was present in 98 out of 191 tumor samples
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only is expressed by tumor cells, because of reduced
target density in the tumor compartment. Therefore,
uPAR expression on both tumor cells and tumor-
associated stromal cells may provide uniform target
availability in the entire tumor volume. This expres-
sion pattern may be a particular advantage in order

to achieve high efficacy of uPAR-targeted intervention
and therapy.
Existing data indicate, that elevated uPAR expression

in OSCC and several other types of cancer within the
tumor seem to predict a more aggressive phenotype that
carries reduced survival outcome [18]. Therefore uPAR

Fig. 3 Kaplan Meier curves showing 5-year OS and DFS for expression of uPAR, TF and EGFR. Red line: High expression, blue line: low expression.
Difference in survival of high compared to low expression was calculated by the log rank test
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may have a role to play as a reliable prognostic biomarker
in future personalized management of OSCC. Based on
the favorable properties of uPAR as an imaging target, a
clinical phase 2 trial of preoperative uPAR-PET/CT
imaging in patients with oral or oropharyngeal SCC is cur-
rently being conducted in our institution (NCT02960724).
uPAR-PET imaging may provide a non-invasive quantita-
tive assessment of the uPAR expression in the entire
volume of individual tumors, thereby surpassing the
inherent problems related to surgical biopsies and risk of
sampling error due to tumor heterogeneity.

Conclusions
Our results showed that both uPAR and TF had high
positive expression rates and tumor-specific expression
patterns while EGFR also had regular expression in
normal tissues. These findings may suggest that uPAR
and TF could potentially be attractive targets for
molecular imaging and targeted therapy in OSCC.
High uPAR expression was significantly associated

with reduced survival outcome. Accordingly, uPAR
seems to be a potential prognostic biomarker in OSCC,
which may have applications for risk-stratification and
treatment planning.
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