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Abstract

Background: Early diagnosis of colorectal cancer (CRC) simplifies treatment and improves treatment outcomes. We
previously described a diagnostic metabolomic biomarker derived from semi-quantitative gas chromatography-
mass spectrometry. Our objective was to determine whether a quantitative assay of additional metabolomic
features, including parts of the lipidome could enhance diagnostic power; and whether there was an advantage to
deriving a combined diagnostic signature with a broader metabolomic representation.

Methods: The well-characterized Biocrates P150 kit was used to quantify 163 metabolites in patients with CRC
(N = 62), adenoma (N = 31), and age- and gender-matched disease-free controls (N = 81). Metabolites included in
the analysis included phosphatidylcholines, sphingomyelins, acylcarnitines, and amino acids. Using a training set of
32 CRC and 21 disease-free controls, a multivariate metabolomic orthogonal partial least squares (OPLS) classifier
was developed. An independent set of 28 CRC and 20 matched healthy controls was used for validation. Features
characterizing 31 colorectal adenomas from their healthy matched controls were also explored, and a multivariate
OPLS classifier for colorectal adenoma could be proposed.

Results: The metabolomic profile that distinguished CRC from controls consisted of 48 metabolites (R2Y = 0.83,
Q2Y = 0.75, CV-ANOVA p-value < 0.00001). In this quantitative assay, the coefficient of variance for each metabolite
was <10%, and this dramatically enhanced the separation of these groups. Independent validation resulted in
AUROC of 0.98 (95% CI, 0.93–1.00) and sensitivity and specificity of 93% and 95%. Similarly, we were able to
distinguish adenoma from controls (R2Y = 0.30, Q2Y = 0.20, CV-ANOVA p-value = 0.01; internal AUROC = 0.82 (95%
CI, 0.72–0.93)). When combined with the previously generated GC-MS signatures for CRC and adenoma, the
candidate biomarker performance improved slightly.

Conclusion: The diagnostic power for metabolomic tests for colorectal neoplasia can be improved by utilizing a
multimodal approach and combining metabolites from diverse chemical classes. In addition, quantification of
metabolites enhances separation of disease-specific metabolomic profiles. Our future efforts will be focused on
developing a quantitative assay for the metabolites comprising the optimal diagnostic biomarker.
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Background
Colorectal cancer (CRC) is the third most common cause
of cancer death worldwide. Early diagnosis is important,
as early disease is curable [1–3] and management of the
more advanced disease is more complex as well as more
morbid. Currently screening efforts hinge on colonoscopy
and fecal occult blood tests. Colonoscopy is extremely
sensitive, and it is capable of detecting (and treating) very
early premalignant disease. However, it is invasive and dif-
ficult to apply to large populations in an efficacious man-
ner. Fecal tests have been used to enrich the population
that should undergo colonoscopy. Unfortunately, their im-
plementation as a broadly applied screening tests is ham-
pered by low patient acceptance and low compliance. A
single blood test for CRC may be more acceptable to pa-
tients, and could potentially represent an attractive alter-
native, especially if it is more sensitive than fecal tests.
We have previously identified a number of changes in

sugar derivative structures, amino acids, and short-chain
fatty acids in the serum metabolome in association with
CRC [4, 5]. These validated changes were identified
using gas chromatography-time of flight-mass spectrom-
etry (GC-TOF-MS), and they could represent the basis
for a future blood test. In this work, we sought to deter-
mine whether a more comprehensive coverage of the
metabolome may enhance the performance of this diag-
nostic test. Specifically lipid-consisting molecules, in-
cluding lipoproteins have been shown by others to be
altered in the serum of patients with CRC [6, 7], and so
we postulated that these perturbations would further in-
form a diagnostic metabolomic biomarker for CRC.
Our objective was to determine whether a fully quantita-

tive metabolomic test enhances one’s capability to discrim-
inate between disease states. To this end, we profiled CRC
using the quantitative mass spectrometry-based metabolo-
mic Biocrates assay. The assay provided measurements of a
broad array of endogenous lipids (including glyceropho-
spholipids (phosphatidylcholines and lysophosphatidylcho-
lines), sphingolipids) and acylcarnitines, as well as 14 amino
acids. In addition to exploring the potential value of this
quantitative approach to the development of a diagnostic
test, the biological implications of our findings were evalu-
ated. Finally, we assessed whether the addition of these me-
tabolites to the diagnostic model that was previously
devised using GC-MS profiling [5] would add to the diag-
nostic power of the metabolomic profile.

Methods
Sample collection
This study was approved by the Conjoint Health Research
Ethics Board at the University of Calgary (Ethics ID number
E21805) and conforms to the Helsinki Declaration (Octo-
ber 2008). Colorectal cancer serum samples from patients
in stage I, stage II, and stage III (locoregional CRC), and

stage IVa (liver-limited metastasis) along with the relevant
clinical information were collected in a prospective cohort
of colorectal cancer patients, diagnosed at the Foothills
Medical Center or referred to this center for resection and
management of their primary adenocarcinoma or meta-
static CRC and provided written consent, between 2006
and 2012. Patients with extrahepatic metastases, any acute
inflammatory state, sepsis, and familial colorectal adenoma-
tosis or cancer cases were excluded from this study. Colo-
rectal adenoma samples and control samples were
collected prospectively by the Forzani & MacPhail Colon
Cancer Screening Centre (CCSC) at the University of Cal-
gary. Disease-free controls consisted of individuals who
underwent screening colonoscopy and were found not to
have CRC or adenoma. CRC, adenoma, and control cases
were all fasting for a minimum of 8 h before surgery or
endoscopic procedure. Surgical pathology for CRC patients
and endoscopic pathology for adenoma and control cases
were obtained and thoroughly reviewed, and all diagnoses
were confirmed. Control samples are matched for age and
gender with adenoma and cancer patients. Samples were
collected in plastic gold top vacutainer tubes (BD Biosci-
ences, Mississauga, Ontario, Canada), which contain a clot
activator and a proprietary gel for serum separation. Sam-
ples were processed in 6-h time from collection and were
stored in −20°c freezers until the day of analysis [8, 9].

Quantitative profiling by flow injection analysis-tandem
mass spectrometry (FIA-MS/MS)
In these studies, we used quantitative Biocrates Absolute-
IDQ p150 Kit (Biocrates Life Sciences AG, Austria) which
can measure the concentration of 163 endogenous metabo-
lites from 4 biochemical classes, using a panel of 27 vali-
dated internal controls. These metabolites are selected
from four classes of acylcarnitines, biogenic amines, sphin-
golipids, and glycerophospholipids (lyso-phosphatidylcho-
lines and phosphatidylcholines). Detailed preparation steps
have been previously described [10]. In brief, 10 μl of each
serum sample was prepared and submitted to mass spec-
trometric analysis on an API4000 Qtrap® tandem mass
spectrometry instrument (Applied Biosystems/MDS Ana-
lytical Technologies, Foster City, CA) equipped with a solv-
ent delivery system, in both positive and negative ion
modes. Selective multiple reaction monitoring (MRM) de-
tections of chemical homologs in conjunction with stable
isotope-labeled internal controls, provided in the kit plate
filter, was utilized for metabolite quantification. This
method is shown to be in compliance with the FDA guid-
ance for industry- Bioanalytical method validation [11], in-
dicating proof of reproducibility in the given range.
External quality control samples consisted of four commer-
cially available human serum samples (Sigma-Aldrich,
Germany) as well as four pooled serum samples from our
controls for each kit. The final metabolite concentrations
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were automatically calculated by MetIDQ, the proprietary
software of the kit. Metabolites were checked for the coeffi-
cient of variance >0.25 in quality controls, and all passed
the check. The concentrations of 146 metabolites were
above the limit of detection, and these metabolites were se-
lected for further analysis. Missing values were imputed
with the minimum value in the dataset. The pre-processed
data were then transferred for further statistical analyses.

Data analysis
Throughout this study, wherever a two group statistical
comparison were desired, a two-sided Student’s t-test was
used. We considered a priori p-value smaller than 0.05 as
statistically significant. Where required, the significance
thresholds adjusted by Holm-Bonferroni correction
method were used. For analysis of stage-dependent varia-
tions in more than two groups, Bonferroni-corrected
Kruskal-Wallis Test [8] (non-parametric approach) was
computed by Multi-Experiment Viewer (MeV), version
4.9 (The TM4 Software Development Team) [9]. To gen-
erate heatmaps, we used the Spearman’s Rank Correlation
distance metrics and complete linkage method.
The pre-processed data from MetIDQ were log-

transformed and autoscaled (unit variate scaled and
centered) before importing the SIMCA multivariate ana-
lytical software (Version 14.0.0, Umetrics AB, Sweden).
Owing to the quantitative nature of the assay, we require
median fold change normalization to account for inter-
sample analytical biases. To evaluate the risk of overfit-
ting bias on a dataset with small sample size, a pre-
analysis permutation test of 10,000 iterations was applied
on sample classes in the training set, as described before
by Westerhuis et al. [12]. As for the combinatorial
analysis, the relevant datasets were joined and then
block-transformed [13–16]. For each comparison, an ex-
ploratory Principal Component Analysis (PCA) with up
to three components was used for discovering intrinsic
clusters and revealing potential outliers. After exclusion
of outliers, subsets of potentially significant metabolites
for each comparison were selected by performing Welch’s
t-test (assuming unequal variances). This filtering
procedure was performed by setting a pre-test maximum
p-value threshold of 0.30 in the Welch test, which
removes clearly uniformative metabolites from further
analysis [4, 17, 18]. Selected subsets were used for or-
thogonal partial least squares discriminant analysis
(OPLS-DA) or O2-PLS-DA. Further refinement was ap-
plied through excluding metabolites with variable import-
ance on projection (VIP) of less than a threshold. This
VIP threshold was set separately for each analysis, so as
the maximum for R2Y and Q2Y are obtained and their
difference is at minimum. This approach has shown to be
sufficiently reliable for the purpose of multivariate statis-
tical analyses, including OPLS-DA [4, 17].

To assess the performance of supervised multivariate
models, including OPLS-DA and O2PLS-DA, R2Y and
Q2Y scores were used for measurement of the dataset
variance covered by the model, and the predictability of
the model in 7-fold cross-validation [4]. Models with the
difference of more than 0.2 between R2Y and Q2Y were
reevaluated. Potential confounders in each model were
evaluated for their unwanted effects, as described in the
Results section. Also, to examine the PLS-DA and OPLS-
DA models for validity and potential overfit, a permuta-
tion test of 999 iterations was applied to each model, and
the results were reported as Q2-intercept for that model
[19]. Q2-intercept is the intercept of a line fitted to Q2Y
scores versus the correlation of the permutated Y-vector
and original Y-vector for each iteration. The model is valid
and non-random if Q2 intercept is at or below zero [20].
Predictive performance of the generated models in ex-

ternal validation were evaluated by the area under the
receiver operating characteristic curves (AUROC), which
were calculated by GraphPad Prism (version 6.01 for
Windows, GraphPad Software, La Jolla California USA,
www.graphpad.com).

Results
Patients and demographics
The characteristics of the study cohort are summarized in
Table 1. Samples were randomly assigned to the training
set and validation set, in a stratified design for locoregio-
nal CRC (stages I, II, and III), and liver-limited metastatic
CRC (stage IVa). In patients with stage IVA disease, 17
(45%) received chemotherapy within 3 months before
sampling; 8 patients (33%) with non-metastatic disease re-
ceived chemotherapy before sampling.

Identification of metabolites associated with CRC
To quantitatively evaluate serum composition of amino
acids, acylcarnitines, and lipid compounds, including gly-
cerophospholipids and sphingolipids, we submitted samples
to semi-quantitative FIA-MS/MS. Out of 163 measured
metabolites, 146 metabolites could be reliably found in all
groups of patients and controls (Additional file 1: Table S1).
Three samples were identified as outliers on PCA, and they
were excluded from further analysis. We also evaluated for
a potential confounding effect of pre-sampling chemother-
apy on the metabolomic profile of CRC patients (Add-
itional file 2: Fig. S1A to E). We could not identify any
cluster linked to the chemotherapy status. The training set
consisted of 53 samples (controls (N = 21), stage I (N = 5),
stage II (N = 5), stage III (N = 5) and stage IVa (N = 17)
cases). Following filtering by p-value and VIP (>1), 48 me-
tabolites were employed in the metabolomic model, which
resulted in an encouraging model: R2Y was 0.83 and Q2Y
was 0.75; CV-ANOVA was <0.00001 (Fig. 1a and b, and
Table 2). The model was then tested on an independent
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validation set (controls (N = 20), stage I (N = 3), stage II
(N = 3), stage III (N = 3) and stage IVa (N = 19) cases). Sen-
sitivity in this external validation set was 93%, and specifi-
city was 95%; accuracy was 94%, and precision was 96%;
AUROC was 98%.
To evaluate whether the identified CRC profile is signifi-

cantly derived from the stage IVa subgroup of patients, we
generated a discriminant model for separation of 5 classes:
4 CRC stages and disease free controls,. This analysis in-
cluded all samples contained in the training and validation
sets (N = 100) (Additional file 3: Fig. S2a). The model
could strongly distinguish all CRC stages from the control
group on the first predictive component (R2Y = 0.46 and
Q2Y = 0.30, p-value <0.00001). On the second component,
stage IVa patients were distinguished from all locoregional
CRC patients. The overlap observed in locoregional CRC
stages could be either due to the similarity of their meta-
bolomic profile (relative to their difference with control or
stage IVa groups; Additional file 1: Table S2), or it may be
secondary to a smaller sample size in each of the three

locoregional classes. In all, the data demonstrate that there
are stage-associated signatures, but there is also a signa-
ture that distinguishes CRC patients as a whole from
disease-free controls.
Figure 1b describes the correlation coefficients of the

most important metabolites contributing to the CRC
metabolomic profile. Glutamine was the most important
metabolite in the projection derived from FIA-MS/MS
(decreased in CRC), followed by phosphatidylcholine
acyl –alkyls C38:1 and C40:3 (increased and decreased
in CRC, respectively). In univariate t-test, glutamine was
the most differentially abundant metabolite, as well (p-
value = 2.69e-10). Ornithine and serine had the highest
positive correlations with CRC, while decenoylcarnitine
(C10:1) had the highest negative correlation with CRC
(Fig. 1b). Of 14 amino acids explored, methionine, valine
and tryptophan were significantly reduced in CRC, while
ornithine and serine had increased levels. The remaining
amino acids did not demonstrate any considerable sig-
nificance in our model. There was no clear association

Table 1 Demographics and clinical factors of patients and controls. Numbers in parentheses represent percent, unless otherwise
noted. Disease-free controls (N = 31) were matched with the adenoma cases, and 50 controls were matched with patients with CRC

Subgroup Control Adenoma Stage I Stage II Stage III Stage IVa

N 31 + 9 + 41 31 8 8 8 38

Age, mean (SD) 60.5 (6.7) 59.5 (5.9) 76.9 (6.1) 67.3 (9.8) 62.8 (14.8) 60.5 (9.9)

Gender Male 58 (72) 21(68) 5 (63) 7(88) 4 (50) 30 (79)

Female 23 (28) 10 (32) 3 (37) 1 (11.2) 4 (50) 8 (11)

Primary Site Colon – – 2 3 5 –

Rectum – – 5 4 3 –

Unknown – – 1 1 0 –

Differentiation Poor – – 0 1 2 3

Moderate – – 4 5 4 26

Well – – 2 0 2 0

Unspecified – – 2 2 0 7 (+2
mucinous)

Staging T T1 – – 1 – 3 –

T2 – – 5 – 2 –

T3 – – – 7 1 –

T4 – – – 0 0 –

Unspecified – – 2 1 2

Staging N N1 – – – – 4 (N1a = 2)
(N1b = 2)

8

N2 – – – – 2 (N2a = 1)
(N2b = 1)

8

Unspecified – – – – 2 22

Tumor dimension (cm) Largest dimension, mean
(SD)

– – 2.67
(1.50)

3.51
(1.99)

2.7 (2.09) 2.50 (1.49)

Min-Max 0.5–5 2.5–6 2.8–5.5 0.9–5.1

Pre-sampling
Chemotherapy

– – 1 (13) 3 (38) 4 (50) 17 (45)
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with stage (Fig. 1c and d). Figure 1e and f illustrate the
distribution of changes in the PCs in CRC, based on the
length of carbon chains and the number of unsaturated
bonds. Five lysophosphatidylcholines (Lyso-PC) were
particularly elevated in CRC; none was decreased. This
has not been previously reported. Phosphatidylcholines
are important constituents of cell membranes, as well as

mediators in lipid metabolism. Alterations of the phos-
phatidyl acyl-alkyl compounds with 38 to 44 carbons in
CRC were also observed. These perturbations are repre-
sented as fold changes per carbon content in Fig. 2a and
are discussed later.
To further enhance the capability of this signature bio-

marker, we evaluated a combinatorial biomarker composed

Increased in CRC Decreased in CRC

a

c

b

d

e f

0.004
5.8x10-5

0.01

0.006
5.8x10-5

2x10-10

10-4

3x10-4

3x10-3 2x10-4

6x10-5

Fig. 1 Metabolomic profile as determined by targeted MS/MS. a Supervised (OPLS-DA) analysis scores scatter plot illustrating that the metabolomic profile
of CRC is distinct from matched controls. b Coefficient column plot for OPLS-DA analysis of CRC vs. matched controls. c Amino acids differentially abundant
in CRC vs. control cases, d Amino acids concentrations as a function of stage of disease. e Lysophosphatidylcholines differentially abundant in CRC serum
samples. f Lysophosphatidylcholine C6:0 (magnified from Figure 1e). Details of concentrations, significance testing p-values, and other characteristics are
described in Additional file 1: Tables S1 and S2
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Table 2 List of 48 metabolites in targeted MS/MS analysis of colorectal cancer vs. healthy controls. Variable importance in projection
(VIP) and multivariate correlation coefficients are provided (PC: Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae: acyl-alkyl,
aa: diacyl, SM: sphingomyelin)

Abbreviated name Metabolite VIP Centered and scaled coefficient

Gln Glutamine 1.177 −0.129

PC aa C42:4 Phosphatidylcholine diacyl C42:4 1.168 0.007

lysoPC a C26:1 lysoPhosphatidylcholine acyl C26:1 1.155 0.035

PC ae C40:3 Phosphatidylcholine acly-alkyl C40:3 1.152 0.009

lysoPC a C6:0 lysoPhosphatidylcholine acyl C6:0 1.145 0.044

PC ae C38:1 Phosphatidylcholine acly-alkyl C38:1 1.139 0.035

PC ae C44:3 Phosphatidylcholine acly-alkyl C44:3 1.131 0.024

PC ae C30:2 Phosphatidylcholine acyl-alkyl C 30:2 1.116 −0.015

PC ae C40:4 Phosphatidylcholine acly-alkyl C40:4 1.109 0.009

PC ae C42:1 Phosphatidylcholine acly-alkyl C42:1 1.100 0.029

Ser Serine 1.097 0.115

PC aa C40:2 Phosphatidylcholine diacyl C40:2 1.095 −0.002

PC aa C40:3 Phosphatidylcholine diacyl C40:3 1.095 0.007

PC ae C40:5 Phosphatidylcholine acly-alkyl C40:5 1.085 0.011

lysoPC a C24:0 lysoPhosphatidylcholine acyl C24:0 1.068 0.042

C18:1 Octadecenoylcarnitine 1.059 0.073

PC ae C38:3 Phosphatidylcholine acly-alkyl C38:3 1.058 −0.009

PC ae C38:2 Phosphatidylcholine acly-alkyl C38:2 1.052 0.004

PC aa C42:2 Phosphatidylcholine diacyl C42:2 1.034 −0.042

PC ae C40:2 Phosphatidylcholine acly-alkyl C40:2 1.033 0.022

C18:2 Octadecadienylcarnitine 1.029 0.114

PC aa C40:1 Phosphatidylcholine diacyl C40:1 0.999 −0.022

PC ae C42:4 Phosphatidylcholine acly-alkyl C42:4 0.998 0.003

PC aa C24:0 Phosphatidylcholine diacyl C24:0 0.987 0.008

Met Methionine 0.984 −0.028

PC ae C36:1 Phosphatidylcholine acly-alkyl C36:1 0.978 0.002

PC aa C42:5 Phosphatidylcholine diacyl C42:5 0.977 0.011

PC ae C42:2 Phosphatidylcholine acly-alkyl C42:2 0.974 0.004

PC ae C30:1 Phosphatidylcholine acly-alkyl C30:1 0.968 −0.017

C16:1 Hexadecenoyl-L-carnitine 0.962 0.005

PC ae C42:3 Phosphatidylcholine acly-alkyl C42:3 0.957 −0.030

lysoPC a C28:0 lysoPhosphatidylcholine acyl C28:0 0.944 0.033

C3:1 Propenoylcarnitine 0.938 0.031

C16 Hexadecanoylcarnitine 0.927 0.103

PC ae C40:1 Phosphatidylcholine acly-alkyl C40:1 0.922 −0.037

C3-OH Hydroxypropionylcarnitine 0.913 0.013

lysoPC a C26:0 lysoPhosphatidylcholine acyl C26:0 0.911 0.012

Val Valine 0.906 −0.063

Orn Ornithine 0.896 0.201

C16:1-OH Hydroxyhexadecenoyl-L-carnitine 0.885 0.062

PC aa C26:0 Phosphatidylcholine diacyl C26:0 0.880 0.033

PC ae C42:5 Phosphatidylcholine acly-alkyl C42:5 0.875 −0.001
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of the 41 compound GC-MS driven signature we previ-
ously defined [5] and this 48 metabolite FIA-MS/MS signa-
ture. The inclusive model had an R2Y score of 0.91 and a
Q2Y score of 0.84 (CV-ANOVA p-value <0.00001). When
we regenerated the model with the most informative me-
tabolites (46 compounds, Table 3), the model had an R2Y
score of 0.89 and a Q2Y score of 0.80 with CV-ANOVA p-
value <0.00001 (Fig. 2b). With permutations consisting of
random assignments of samples to diagnostic classes [12],
permutated models performed poorly. That is, with 10,000
permutations, the Q2Y = −0.11 (compared to 0.84 in our
model); and root mean square error of prediction
(RMSEP) = 0.56 (compared to 0.11 in our model). In all,
the permutated models and our model were significantly
different (P < 0.00001), and our model had a superior per-
formance than models based on random class assignment.
Moreover, in a permutation test consisting of random me-
tabolite combinations in actual diagnostic classes, the Q2-
intercept was −0.59, which is a reflection of a model with a
high degree of robustness and reliability.

Detection of very early stage disease
Sporadic colorectal adenocarcinoma is preceded by the
formation of adenomatous lesions (polyps) as its precur-
sor. Sera from 31 average-risk adenoma patients and 31
age- and gender- matched healthy controls in the age

range of 50 to 70 years old, to evaluate whether metabolo-
mic profiling can also detect this very early stage of the
disease. In all cases, one adenoma <1 cm in diameter was
detected by colonoscopy, except for one case, that had
two adenomas. Clinical factors for these groups are sum-
marized in Table 1.
Adenomas and disease-free controls were analyzed on

the FIA-MS/MS platform. An unsupervised multivariate
analysis, using 146 quantitative concentrations revealed no
latent pattern or clustering (8 components, R2X = 0.77)
(Fig. 3a). A supervised analysis (OPLS-DA) with a focused
analysis of 9 metabolites identified by data filtration
(p < 0.30, Table 4 and Additional file 1: Table S3) provided
the basis of a model discriminating adenoma and disease-
free controls (R2Y = 0.30, Q2Y = 0.20, CV-ANOVA p-
value = 0.01, one orthogonal and one predictive
component) (Fig. 3b). The AUROC on internal cross-
validation was 82% (95% CI, 0.72–0.93) (Fig. 3c). Therefore,
the quantitative analysis using this set of 9 metabolites is
comparable to the metabolomic biomarker derived previ-
ously by GC-MS, comprised of 17 metabolites [5].
Finally, we sought to determine whether the adenoma

profile identified by the quantitative approach could be
combined with the adenoma profile defined by GC-MS
[5] to enhance the performance of the biomarker. The
combined signature composed of 14 GC-MS metabolites

Table 2 List of 48 metabolites in targeted MS/MS analysis of colorectal cancer vs. healthy controls. Variable importance in projection
(VIP) and multivariate correlation coefficients are provided (PC: Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae: acyl-alkyl,
aa: diacyl, SM: sphingomyelin) (Continued)

Abbreviated name Metabolite VIP Centered and scaled coefficient

Trp Tryptophan 0.841 −0.067

PC ae C38:6 Phosphatidylcholine acly-alkyl C38:6 0.837 −0.112

C10:1 Decenoylcarnitine 0.828 −0.137

C3 Propionylcarnitine 0.827 −0.023

PC ae C36:5 Phosphatidylcholine acly-alkyl C36:5 0.780 −0.094

SM C22:3 Sphingomyeline C22:3 0.708 −0.059

a b

Fig. 2 Combined metabolomic profile of colorectal cancer as determined by GC-MS and MS/MS. a Fold changes of the compounds of phosphat-
idylcholine acyl-alkyl class, categorized by the cumulative carbon length of side fatty acids, b Supervised (OPLS-DA) scores scatter plot of colorec-
tal cancer and controls
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and 9 quantitative metabolites could generate a model
which was slightly better than the quantitative signature
alone (R2Y = 0.46, Q2Y = 0.26, CV-ANOVA p-
value = 0.003, Q2-intercept = −0.31). Selecting for the
most important metabolites, we generated a biomarker
pattern consisting of 18 compounds (R2Y = 0.33,
Q2Y = 0.21, CV-ANOVA p-value = 0.01, Q2-
intercept = −0.26) (Fig. 3d and Table 5). Overall, the
combinatorial signature had a better performance in the
training study.

Discussion
CRC is often diagnosed at later stages when prognosis is
worse and treatment algorithms become more complex
and expensive. Early detection of CRC is, therefore, desir-
able. Given the high incidence of CRC, substantial efforts
have been made to devise cost-effective screening strat-
egies that can be applied to the general population. Pres-
ently, such strategies employ direct examination of the
colon by colonoscopy in an enriched population; the
enriched population is typically identified by symptoms or
by positive fecal occult blood tests. However, fecal tests
are hampered by low compliance as well as low sensitivity.
A blood test may provide a more convenient and accept-
able alternative, which may enhance compliance. This
may make it more practicable to perform on a regular
(e.g. yearly) basis, potentially reducing missed diagnoses.
With this in mind, our group has sought to develop a
metabolomics-based blood test that can be used for early
diagnosis of colorectal neoplasia. Previously, we demon-
strated the power of this approach using a semi-
quantitative analytical platform, GC-TOF-MS. Here, we
sought to determine whether a more comprehensive
metabolomic signature could enhance the performance of
the diagnostic biomarker. Indeed, an extension of the me-
tabolite coverage to include additional classes of metabo-
lites does strengthen the performance of the biomarker
pattern. We also sought to explore how a fully quantitative
metabolomic assay might perform if used to identify a

Table 3 List of 46 metabolites in combined analysis of targeted
MS/MS and GC-MS spectra of colorectal cancer vs. healthy controls.
VIP and multivariate correlation coefficients are provided (PC:
Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae: acyl-alkyl,
aa: diacyl, SM: sphingomyelin)

Metabolite VIP Centered and
scaled coefficient

Serine 0.65 1.81

Methionine 0.63 1.54

Phosphatidylcholine acly-alkyl C40:3 0.90 1.43

Phosphatidylcholine acly-alkyl C38:1 0.88 1.27

Phosphatidylcholine acly-alkyl C44:3 0.80 1.08

Propenoylcarnitine 0.68 1.04

Phosphatidylcholine acly-alkyl C40:5 0.74 0.84

Phosphatidylcholine diacyl C24:0 0.76 0.83

lysoPhosphatidylcholine acyl C28:0 0.71 0.71

Hydroxyhexadecenoyl-L-carnitine 0.59 0.66

Hexadecanoylcarnitine 0.63 0.63

Octadecadienylcarnitine 0.67 0.60

Phosphatidylcholine acly-alkyl C40:4 0.83 0.57

Phosphatidylcholine diacyl C40:3 0.80 0.50

Phosphatidylcholine diacyl C40:2 0.83 0.47

Phosphatidylcholine acly-alkyl C38:3 0.82 0.47

lysoPhosphatidylcholine acyl C26:1 0.75 0.36

Phosphatidylcholine diacyl C42:5 0.63 0.33

Phosphatidylcholine acly-alkyl C42:1 0.78 0.30

Phosphatidylcholine diacyl C26:0 0.59 0.26

Phosphatidylcholine diacyl C42:4 0.84 0.21

Phosphatidylcholine acly-alkyl C38:6 0.64 0.15

Phosphatidylcholine acly-alkyl C38:2 0.79 0.15

Ethylene glycol, di-TMS 4.85 0.08

lysoPhosphatidylcholine acyl C6:0 0.64 0.06

Propionylcarnitine 0.61 −0.01

lysoPhosphatidylcholine acyl C26:0 0.68 −0.03

Phosphatidylcholine acly-alkyl C40:2 0.71 −0.05

Octadecenoylcarnitine 0.74 −0.06

Phosphatidylcholine acly-alkyl C42:2 0.66 −0.12

Phosphatidylcholine diacyl C40:1 0.69 −0.30

lysoPhosphatidylcholine acyl C24:0 0.73 −0.34

Phosphatidylcholine acly-alkyl C40:1 0.61 −0.46

Phosphatidylcholine acly-alkyl C42:5 0.60 −0.49

Phosphatidylcholine acly-alkyl C36:5 0.64 −0.56

Hydroxypropionylcarnitine 0.66 −0.62

Phosphatidylcholine acly-alkyl C42:4 0.67 −0.63

Valine 0.61 −0.64

Sphingomyeline C22:3 0.60 −0.80

Phosphatidylcholine diacyl C42:2 0.72 −0.89

Table 3 List of 46 metabolites in combined analysis of targeted
MS/MS and GC-MS spectra of colorectal cancer vs. healthy controls.
VIP and multivariate correlation coefficients are provided (PC:
Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae: acyl-alkyl,
aa: diacyl, SM: sphingomyelin) (Continued)

Metabolite VIP Centered and
scaled coefficient

Phosphatidylcholine acly-alkyl C36:1 0.67 −0.92

Glutamine 0.75 −0.96

Phosphatidylcholine acly-alkyl C42:3 0.63 −0.97

Tryptophan 0.63 −1.00

Phosphatidylcholine acyl-alkyl C 30:2 0.71 −1.12

Hexadecenoyl-L-carnitine 0.68 −1.71
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specific disease state. There was a marked distinction in
the metabolomic profiles of CRC and controls, using this
quantitative approach.
Ultimately, any diagnostic assay must be repeatable

and accurate. Most metabolomics efforts involve the
use of semi-quantitative approaches where individual
metabolites are compared between disease states with-
out specifically quantifying those metabolites. The
measurement variability of mass spectrometry-based
approaches can also be substantial. This can be prob-
lematic given that disease-specific perturbations in
individual metabolites may be small. Therefore,

measurement errors may contribute to overlap of dis-
tributions, which will affect the accuracy of disease
classification. As we applied a comprehensive quantita-
tive approach, we observed that the measurement vari-
ance did not change much. However, the certainty of
the quantitative measurement of individual metabolites
was enhanced because the inclusion of isotope-labelled
standards in the Biocrates kit minimizes the variability
arising from non-biological (analytical) sources. This
directly affected the degree of distinction between dis-
ease states, reducing diagnostic overlap. Therefore, it is
clear that, as metabolomic biomarkers are identified

a

c

b

d

Fig. 3 Metabolomic profile of colorectal adenoma as determined by targeted MS/MS. a PCA comparison of colorectal adenoma and disease-free
controls. b Supervised (OPLS-DA) analysis scores scatter plot of adenomas and controls. c ROC curve from internal cross-validation, d Supervised
(OPLS-DA) analysis scores scatter plot of combined metabolomic profile of adenomas and controls as determined by GC-MS and MS/MS

Table 4 List of 9 metabolites in targeted MS/MS analysis of colorectal adenoma vs. healthy controls. VIP and multivariate correlation
coefficients are provided (PC: Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae: acyl-alkyl, aa: diacyl, SM: sphingomyelin)

Abbreviated Name Metabolite VIP Centered and scaled coefficient

Trp Tryptophan 1.12 0.15

C14:2 Tetradecadienylcarnitine 1.12 −0.09

C12:1 Dodecenoylcarnitine 1.07 −0.07

C16:2 Hexadecadienylcarnitine 1.05 −0.05

C10:1 Decenoylcarnitine 1.01 −0.07

Pro Proline 0.91 0.20

C14:1-OH Hydroxytetradecenoylcarnitine 0.91 −0.08

PC ae C40:2 Phosphatidylcholine acly-alkyl C40:2 0.90 0.18

lysoPC a C17:0 lysoPhosphatidylcholine acyl C17:0 0.86 0.16
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and validated, it will be essential to develop assays with
well-selected internal controls as the tests are devel-
oped further for clinical practice.
Using FIA-MS/MS, we have significantly broadened

coverage of the metabolome in comparison to our previ-
ous studies using GC-TOF-MS and 1H–NMR spectros-
copy, which enabled identification of carbohydrates, some
amino acids, and simple fatty acid (FA) structures [4, 5].
The quantitative MS/MS assay used in the present study
included phosphatidylcholines, sphingomyelins, acylcarni-
tines, and amino acids. When a biomarker pattern was
formulated based on both GC-TOF-MS and FIA-MS/MS,
the diagnostic accuracy improved. We believe that that is
mostly because the specificity was enhanced by the more
comprehensive metabolomic biomarker. It is possible that
the enhanced performance of the combined model was a
function of overfitting. However, as these metabolites were
shortlisted from a larger list of already informative metab-
olites, and since metabolites from each platform contrib-
uted to the combined biomarker, we believe that this is
not a major factor in the encouraging performance of the
combined platform biomarker pattern. As we embark on
further validation studies, there may be continued refine-
ment of the optimal diagnostic biomarkers. In particular,
as we test external validation cohorts, it will be important

to optimize the metabolomic biomarkers diagnostic for
colorectal adenoma and carcinoma.
The identification of diagnostic metabolites on FIA-MS/

MS in addition to the metabolites previously described
from GC-MS studies is quite instructive as we continue de-
velopment of an assay ready for the clinic. Going forward,
we will create a quantitative assay based on GC-MS/MS,
which will allow us to measure all of the metabolites de-
tected in GC-TOF-MS and FIA-MS/MS. Following this,
the biomarker can be optimized regarding test performance
characteristics, limiting measurement to the most consist-
ently informative compounds. The additional advantage of
using GC-MS/MS is that the extra dimension of fraction-
ation will provide more specific identification of individual
compounds.
There are few studies describing changes in circulating

lipids in CRC [21]. The data generated in this study provide
unique observations that require additional investigation. A
number of PCs are increased in CRC. HDL transfers circu-
lating PCs, and the fact that HDL-C levels are increased in
CRC is consistent with this observation [7]. PCs with 40
carbons are especially increased. The relative accumulation
of PCs with 40 carbons might point to dysregulated mecha-
nisms of fatty acid elongation. Interestingly, it has been
shown that some germline single nucleotide polymor-
phisms of fatty acid desaturases FADS1 and FADS2 are as-
sociated with a higher risk of CRC [22]; and FADS1 and
FADS2 are upregulated in CRC [22]. FADS1 and FADS2
mediate the conversion of linoleic acid (18:2n-6) to arachi-
donic acid (20:4n-6) [23], a precursor to polyunsaturated
fatty acids with longer than 20 carbons. It is possible that
this increased abundance of fatty acids varying in length
from 22 to 24 carbons, which comprise the components of
PCs containing 40 carbons, is responsible for the particu-
larly high levels of PCs with 40 carbons. There is also a re-
port on a large number of CRC patients found to have low
levels of hydroxylated polyunsaturated ultra-long chain
fatty acid metabolites (PUFAs) [24]. The biological mechan-
ism for this is unknown. However, it is now known that the
levels of PUFAs do not correlate with disease burden, and
it appears that reduction in PUFAs is actually more reflect-
ive of risk of CRC [25]. This is important because it will be
essential to evaluate whether any metabolomics-based bio-
marker of CRC is proportional to disease burden, and
whether it disappears with resection.
LysoPCs, products of PC breakdown, do not change

much in comparison (Table 2). One intriguing observa-
tion is that LysoPC C28:0 increases and LysoPC 28:1 de-
creases; LysoPC 26:1 increases and Lyso 26:0 decreases.
This imbalance suggests that there is some alteration in
the mechanisms involved in fatty acid saturation or
elongation that accompanies CRC. Li et al. have also re-
ported alterations in FTICR-MS measurements of 4
LysoPCs with shorter chains, including poly-unsaturated

Table 5 List of 18 metabolites in combined analysis of targeted
MS/MS and GC-MS spectra of colorectal cancer vs. healthy
controls. VIP and multivariate correlation coefficients are provided
(PC: Phosphatidylcholine, Lyso-PC: lysophosphatidylcholine, ae:
acyl-alkyl, aa: diacyl, SM: sphingomyelin)

Metabolite VIP Centered and
scaled coefficient

C14:2 (Tetradecadienyl carnitine) 1.14 0.09

C12:1 (Dodecenoylcarnitine) 1.13 −0.18

Unidentified_compound (RI = 1448.35) 1.11 0.40

Unidentified_compound (RI = 2495.71) 1.11 0.20

Proline 1.11 −0.22

C10:1 (Decenoylcarnitine) 1.10 −0.06

Unidentified_compound (RI = 2378.86) 1.10 0.39

Cystine (4TMS) 1.10 −0.30

C16:2 (Hexadecadienylcarnitine) 1.09 0.07

C14:1-OH (Hydroxytetradecenoylcarnitine) 1.08 −0.24

Glyceric acid (3TMS) 1.05 0.35

Unidentified_compound (RI = 1416.54) 0.98 0.39

Glutamic acid (3TMS) 0.96 −0.19

Unidentified_compound (RI = 2933.74) 0.81 0.26

Unidentified_compound (RI = 1977.64) 0.79 −0.33

lysoPC a C17:0 0.74 0.31

Heptadecanoic acid (1TMS) 0.70 0.20

Unidentified_compound (RI = 1101.40) 0.67 −0.40
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LysoPCs with 16, 18, 20, and 22 carbons along with 11
other compounds, mainly free fatty acids including pal-
mitic amide, oleamide, hexadecanedioic acid, octadeca-
noic acid, eicosatrienoic acid [26]. Although we did not
observe these LysoPCs to be changed in our cohort, the
acylcarnitines of the fatty acids were significantly altered
(Additional file 1: Table S1).
Given that CRC is associated with a higher cell turnover,

it might be expected that CRC would be associated with
higher levels of PC-diacyls, a normal component of cell
membranes. However, it is unclear why there was an even
more pronounced increase in levels of PC-acyl-alkyls in
CRC, which are not major cell membrane constituents. It
is also not clear which changes in circulating lipid prod-
ucts are secondary to host-derived changes in fat metabol-
ism and nutrition, and which perturbations are secondary
to tumor metabolism. This will require further study.
A number of groups have similarly characterized the

metabolomic features of the colorectal cancer (CRC) using
various analytical platforms ([21, 27–30]). These studies are
very difficult to compare, because of the diversity of the
analytical platforms, differences in compared groups, and
differences in genetic and environmental factors. The
present work is unique in that it involves quantifying circu-
lating lipids in very early disease (adenoma) in addition to
invasive CRC. Admittedly, this was a relatively small sample
size and only the invasive CRC signature was externally val-
idated. Therefore, additional validation will be required. In
addition, it will be imperative to test any signature in di-
verse clinical cohorts to ensure that any environmental and
genetic factors do not significantly contribute to the diag-
nostic metabolomic profile.
In summary, we have utilized a quantitative metabolo-

mic assay to determine levels of various circulating me-
tabolites, including lipid metabolites. The biomarker
pattern comprised of metabolites that are most signifi-
cantly altered clearly distinguishes CRC and adenoma
from normal controls. The fact that adenomas are de-
tectable in blood suggests that a metabolomic test could
be adapted for use as a screening tool. The performance
characteristics of the biomarker profile are quite encour-
aging, especially when combined with the GC-MS bio-
marker signature previously described. It will be
important going forward to devise a single assay that al-
lows quantitation of all significant classifier metabolites,
to optimize the diagnostic performance of any future
blood test. It will also be essential to confirm that the
metabolomic signal is distinguished with treatment. In
addition to providing direction on the development of a
diagnostic assay, we have reported unique observations
that will lead to future investigations related to how
tumor and host metabolism are altered in CRC, and
how those separate processes interact. Following up with
this development, we will be testing a population-based

cohort to assess the clinical performance and effective-
ness of these metabolomic profiles.

Conclusions
This study denotes promising quantitative metabolomic sig-
natures for the identification of CRC and colorectal aden-
oma, as well as an extensive description of a number of
perturbations in the metabolism of phosphatidylcholines in
CRC. Future work will involve creation of an assay based on
these signatures, as well as further validation experiments.
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Additional file 1: Fig. S1. A. Principal Component Analysis (PCA) of
CRC and control samples in the training set. B. PCA of CRC and control
samples in the training set, colored by pre-sampling chemotherapy sta-
tus. C. PCA of CRC samples from 4 stages, colored by their TNM stages.
D. PCA of CRC samples from 4 stages, colored by pre-sampling chemo-
therapy status. E. PCA of CRC stage IVa patients, to study the potential
confounding effect of chemotherapy on the described CRC metabolomic
profile. (DOCX 103 kb)

Additional file 2: Fig. S2. Metabolomic profile of CRC, Stages I to IVa
by OPLS-DA supervised analysis. A. Scores scatter plot of discriminant
analysis. Model characteristics are indicated. The first component clearly
distinguishes between CRC and control groups, while the second compo-
nent identifies locoregional CRC from liver-metastatic CRC (stage IVa).
(PPTX 8816 kb)
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incorporated into each metabolomic signature for colorectal cancer and
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