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Abstract

Background: We investigated the effect of arsenic trioxide (ATO) for inhibition of signal transducer and activator of
transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) in gastric cancer cells, and the role of SH2
domain-containing phosphatase-1 (SHP-1) during this process.

Methods: We used AGS cells, which showed minimal SHP-1 expression and constitutive STAT3 expression. After
treatment of ATO, cellular migration and invasion were assessed by using wound closure assay, Matrigel invasion
assay and 3-D culture invasion assay. To validate the role of SHP-1, pervanadate, a pharmacologic phosphatase
inhibitor, and SHP-1 siRNA were used. Xenograft tumors were produced, and ATO or pervanadate were

administered via intraperitoneal (IP) route.

Results: Treatment of ATO 5 and 10 uM significantly decreased cellular migration and invasion in a dose-
dependent manner. Western blot showed that ATO upregulated SHP-1 expression and downregulated STAT3
expression, and immunofluorescence showed upregulation with E-cadherin (epithelial marker) and downregulation
of Snail1 (mesenchymal marker) expression by ATO treatment. Anti-migration and invasion effect and modulation
of SHP-1/STAT3 axis by ATO were attenuated by pervanadate or SHP-1 siRNA. IP injection of ATO significantly
decreased the xenograft tumor volume and upregulated SHP-1 expression, which were attenuated by co-IP

injection of pervanadate.

Conclusion: Our data suggest that ATO inhibits STAT3 activity and EMT process by upregulation of SHP-1 in gastric

cancer cells.

Keywords: Arsenic trioxide, Epithelial-mesenchymal transition, SH2-containing protein tyrosine phosphatase 1,

Signal transducer and activator of transcription 3

Background

Arsenic trioxide (ATO) is a chemotherapeutic agent with
clinical effects which have been widely accepted in
hematopoetic malignancy. In gastric cancer cells, ATO
was reported to inhibit cellular proliferation and induce
cell cycle arrest via modulation of phosphatidylinositol
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3-kinase/Akt (PI3K/Akt) and p53 signaling [1]. The pro-
apoptotic effect of ATO in gastric cancer cells is also
suggested by inhibition of Akt and mTOR signaling [2].
A recent study showed that ATO may inhibit the signal
transducer and activator of transcription 3 (STAT3) acti-
vation in alpha-fetoprotein-producing gastric cancer
cells, and thereby induce apoptosis [3]. Indeed, STAT3
plays a pivotal role in gastric carcinogenesis and progres-
sion, and induces epithelial-mesenchymal transition
(EMT) by upregulation of mesenchymal transcription
factors such as Snaill in gastric cancer cells [4]. Thus,
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inhibition of STAT3 activation is considered a key point
of attack to prevent the formation and invasion of gas-
tric cancer. However, direct inhibition of STAT3 may be
somewhat ineffective because its large surface area leads
to biologically unstable STAT3 inhibitors [5]. Thus, in-
direct and detour inhibition of STAT3 including dephos-
phorylation of STAT3 and Janus kinase 2 (JAK2), the
upstream internal tyrosine kinase of STAT3, might be a
reasonable option.

SH2-containing protein tyrosine phosphatase 1 (SHP-
1) is a non-receptor protein tyrosine phosphatase, which
is encoded by PTPN6 on human chromosome 12p13 [6].
As the name implies, SHP-1 inhibits various tyrosine
kinases by dephosphorylation, and the JAK2/STAT3 axis
is a good example. The anti-STAT3 activity of SHP-1
has been vigorously studied in hematopoietic malignancy
[7], however, its role in gastrointestinal solid tumors is
not well understood. We previously reported that the
protein and messenger RNA (mRNA) expression of
SHP-1 is negative or minimal in various gastric cancer
cell lines, which are mainly governed by CpG island pro-
moter hypermethylation. Reinforced SHP-1 expression
in gastric cancer cells effectively inhibits STAT3 activity
and its target genes such as cyclin D1, matrix
metalloproteinases-9 (MMP-9), vascular endothelial
growth factor-1 (VEGF-1), and survivin [8]. Here, we
report on the anti-EMT effect of ATO in gastric cancer
cells by demonstrating dephosphorylation of JAK2/
STAT3 and modulation of EMT markers including
Snaill and E-cadherin by ATO, and suggest that SHP-1
might be an important mediator for inactivation of the
JAK2/STAT3 signaling pathway.

Methods

Reagents and cell line

ATO (purity >99.5%) was purchased from Sigma-Aldrich
(St. Louis, MO, U.S.A.), dissolved in NaOH to a concen-
tration of 100 mmol/L and stored at —20 °C. It was
diluted immediately before use to the desired concentra-
tions. The human gastric cancer cell line (AGS) was
obtained from Korean Cell Line Bank (Seoul National
University, Seoul, Korea), and cultured in RPMI (Gibco,
Carlsbad, CA, U.S.A.) supplemented with 10% heat-
inactivated FBS (Gibco) and penicillin/streptomycin (1.0%,
Gibco-BRL). Cells were incubated at 37 °C in a humidified
atmosphere of 5% CO,.

Water-soluble tetrazolium salt-1 (WST-1) cell proliferation
assay

To quantify the inhibitory effect of ATO on cellular
proliferation, we used a commercial WST-1 assay kit
(EZ-CYTOX, Dogen, Seoul, Korea) according to the
manufacturer’s instructions [9]. Briefly, 1 x 10* of AGS
cells per well were cultured in 96 wells at 37 °C for
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24 h, and treated with 5 or 10 pM ATO for 24, 48 and
72 h. Untreated cells, were cultured for the same time
period as controls. After ATO treatment, 10 puL of WST
was added to each well for an additional 4 h, and absorb-
ance at 450 nm was measured by an ELISA reader (Epoch,
BioTek Instruments, Seoul, Korea). All the experiments
were performed in triplicate.

Wound closure assay

After treatment with ATO for 48 h, with or without per-
vanadate, cells were equally seeded on a 6-well plate
chamber. After attachment, a monolayer wound was
made by scratching a 200-pL pipette tip along the bot-
tom of the chamber. The media was changed to remove
floating debris, and the vertical distance between both
sides of the wound, in at least three distinct randomly
selected areas, was measured at 24 and 48 h after wound
injury using software.

Matrigel invasion assay

Following the 48 h treatment with ATO, with or without
pervanadate, 4 x 10* cells/well were placed in 24-well
Matrigel Invasion Chambers (BD Biosciences, Franklin
Lakes, NJ, USA) with 2% FBS medium, and 10% FBS
was added to the lower wells. After 24 h of incubation,
filter membranes were stained with crystal violet, and
the number of positive membrane pores was counted
in at least five distinct randomly selected areas using
20x magnification.

3-D culture spheroid cell invasion assay

A 96 well 3-D spheroid BME cell invasion assay kit was
purchased from Trevigen (Gaithersburg, MD, USA), and
the assay was performed following the manufacturer’s
instructions. Briefly, AGS cells were treated with ATO,
with or without pervanadate, for the indicated time;
2 x 10 cells were resuspended in spheroid formation
extracellular matrix, and added to each well on the
96-well spheroid formation plate. After 3 days, invasion
matrix and medium containing invasion modulating com-
pounds were added, and the images of spheroid in each
well were taken by using 4x phase-contrast microscope.

Western blot analysis

A rabbit polyclonal IgG antibody against human SHP-1
(sc-287), human B-actin (sc-47,778), and a mouse mono-
clonal IgG antibody against Snaill (sc-10,433) was pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA, USA). Mouse monoclonal IgG antibodies against
human STAT3 (#9139) and p-STAT3 (Tyr705, #4113),
and rabbit polyclonal antibodies against human JAK2
(#3230), p-JAK2 (Tyr1007/1008, #3771) and E-cadherin
(#3195) were purchased from Cell Signaling Technology
(Beverly, MA, U.S.A.). A total of 80—100 pg of whole cell
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lysate protein was extracted using CelLytic M (C2978;
Sigma-Aldrich, St. Louis, MO, USA) with Complete
Mini protease inhibitor cocktail (Roche Diagnostics
GmbH, Mannheim, Germany). Primary antibodies were
diluted at a ratio of 1:1000 in blocking buffer (Tris-buffered
saline with Tween-20; Biosesang, Gyeonggi, Korea) contain-
ing 5% skim milk (Difco; Becton-Dickinson and Co.,
Sparks, MD, USA). Probed membranes were incubated for
12 h at 4 °C. The membranes were incubated with goat
anti-mouse or anti-rabbit IgG as a secondary antibody for
1 h at room temperature. The protein bands were visual-
ized by exposing the membrane to enhanced chemilumin-
escence (Perkin-Elmer, Waltham, MA, USA) for 1 min.

Immunocytochemistry

AGS cells were treated with 10 pM ATO for 24 h and
plated on a glass slide, air-dried for 15 min at room
temperature and fixed with 3.7% formaldehyde. After
washing, slides were incubated with a mouse monoclo-
nal antihuman Snaill IgG antibody or a rabbit polyclonal
antihuman E-cadherin IgG antibody with 1/100 dilution
during overnight. And then, slides were washed and
incubated with goat antimouse IgG (red, #A-11004) or
goat antirabbit IgG (green, #A-11008) for 1 h with 1/100
dilution. Secondary antibodies were purchased from
Invitrogen (Waltham, MA, USA). Couterstaining was
performed by using 4',6-diamidino-2-phenylindole
(DAPI, blue) (Vectashield, Vector Laboratories,
Burlingame, CA, USA) for 5 min. Cells were observed
by using a confocal microscope (LSM 700, Carl Zeiss,
Oberkochen, Germany) and pictures were captured with
digital camera (Carl Zeiss).

Transfection

For transient small interfering RNA (siRNA) transfection,
SHP-1 (sc-29,478) and control siRNA (sc-37,007) were
purchased from Santa Cruz. For transfection, cells were
cultured for 24 h until they reached 70%—80% confluence
and then transfected with 2 pg of plasmid using Lipofecta-
mine 2000 (Invitrogen Life Technologies) according to the
manufacturer’s instructions. Cells were collected at 24 h
after transfection for further functional analyses.

Xenograft tumor in nude mice

Six-week-old male Balb/C athymic nude mice (nu/nu)
were purchased from Orient Bio (Seongnam, Gyeonggi,
Korea). Mice were housed and maintained under patho-
gen free conditions. Xenograft tumors were produced
using a previously described protocol [10]. Briefly, 2 x 10°
AGS cells were mixed with Matrigel and injected subcuta-
neously in both shoulders of each mouse. Two weeks after
the AGS cell injection, mice were given intraperitoneal
injections of 2 mg/kg of ATO, with or without a once a
week addition of 10 mg/kg of pervanadate, 3 times a week
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for 6 weeks. Intraperitoneal injections of normal saline
were used with the same injection schedule in the control
group. Tumor size was measured every 3—4 days using a
slide caliper. Tumor volume was calculated by the formula
044 x AxB*> (A=longer diameter, B = perpendicular
diameter of A). This in vivo experiment was approved by
the Ethic Committee of Korea University Laboratory
Animal Research Center.

Immunohistochemistry

After extraction of xenograft tumors from nude mice,
immunohistochemistry (IHC) was performed as previ-
ously described [11]. In brief, samples were fixed in 10%
formalin, and paraffin embedded. 4-um sections were
adhered to slides, dried overnight, and then deparaffi-
nized overnight and rehydrated. The staining against
SHP-1 was performed with anti-SHP-1 antibody, which
is the same one used in Western blotting. Slides were
incubated with anti-SHP-1 antibody for 30 min at room
temperature, followed by an avidin-biotin peroxidase
complex. Images were captured by using a fully motor-
ized microscope with a high resolution digital camera.

Statistical analysis

The SPSS software ver. 19.0 (SPSS, Inc., Chicago, IL,
USA) was used for all analyses. Data are presented as
median + standard deviation. A student t test was per-
formed for continuous data, and a p-value less than 0.05
was considered as statistical significant.

Results

ATO induces SHP-1 expression and attenuates p-JAK2/
p-STAT3 to inhibit EMT in gastric cancer cells

The effect of 48 h treatment with 5 or 10 pM ATO on
the morphology of AGS cells was examined by phase
contrast microscopy. AGS cells showed a fibroblast-like
mesenchymal cell phenotype at baseline, while an
epitheloid-like epithelial cell phenotype appeared after
treatment with ATO. The epithelial cell phenotype was
less commonly seen in the control group (Fig. 1a). The
WST-1 assay demonstrated that treatment of AGS cells
with 5 and 10 pM of ATO significantly inhibited cellular
proliferation at 24, 48 and 72 h (Fig. 1b). The wound
closure assay showed that 48 h treatment of AGS cells
with 5 and 10 uM ATO significantly increased the verti-
cal wound distance, indicating an anti-migration effect
(Fig. 1c). The Matrigel invasion assay showed that the
relative number of invading cells was significantly de-
creased by treatment of AGS cells with 5 and 10 uM of
ATO (Fig. 1d). To visually confirm the difference in
AGS cell invasion, we performed a 3-D spheroid cell
invasion assay after treatment with 5 and 10 uM of ATO
for 48 h. Untreated AGS cells protruded out of the
spheroid into the surrounding matrix. However,
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Fig. 1 Anti-EMT effects of ATO on AGS cells by induction of SHP-1 and dephosphorylation of STAT3. a. Phase contrast microscopy. All images
were obtained at a magnification of x 100. b. WST-1 cell proliferation assay. All experiments were performed in triplicate. P < 0.05, compared with
control; P < 0.05, compared with ATO 5 uM (n = 3). ¢. Wound closure assay. Left panel; representative images of wound closure. Right panel; analysis
of vertical wound distance. Data are presented as mean + standard deviation. All experiments were performed in triplicate. P < 0.05, compared with
control; *P < 0.05, compared with ATO 5 uM (n = 3). d. Matrigel invasion assay. Left panel; representative images of Matrigel invasion assay. Right panel;
analysis of invading cells. The number of positive invading cells was counted under x 20 magnification. Data are presented as mean +
standard deviation. Cell counting was performed in at least 5 randomly selected separate areas. P < 0.05, compared with control (n=5).
e. 3-D culture spheroid cell invasion assay. Images were taken 7 days after resuspension of AGS cells in spheroid formation extracellular
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treatment with 5 and 10 pM of ATO dramatically
abolished this protrusion into the matrix (Fig. le).
Western blot showed that 48 h treatment with 5 and
10 pM ATO induced SHP-1 expression and downreg-
ulated p-JAK2/p-STAT3 levels in a dose-dependent
manner. This in turn downregulated expression of
Snaill, a target gene of STAT3 and a marker of mes-
enchymal transition in gastric cancer cells, and upreg-
ulated expression of E-cadherin, a target gene of
Snaill which directly represses E-cadherin expression
in epithelial cells [12] (Fig. 1f). Taken together, our
data suggest that treatment of AGS cells with ATO
significantly inhibited EMT, and that downregulation
of p-JAK2/p-STAT3 may play pivotal roles in the
anti-EMT effects of ATO.

To visualize the mesenchymal or epithelial phenotype
of AGS cells by staining with EMT markers, we per-
formed immunocytochemistry after treatment of 10 uM
ATO for 24 h, which showed round morphology with
upregulation of E-cadherin and downregulation of Snaill
expression. On the contrary, vehicle-treated AGS cells
showed mesenchymal phenotype with elongated or angu-
lated morphology and downregulation of E-cadherin and
upregulation of Snaill expression (Fig. 2).

Anti-EMT effect and inhibition of JAK2/STAT3 activity of
ATO is attenuated by phosphatase inhibitor

Pervanadate, a pharmacologic phosphatase inhibitor, was
used previously to validate the inhibitory effect of SHP-1
in STAT3-activated cancer [13, 14] In this study,
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pervanadate was used to investigate the role of SHP-1 in
the dephosphorylation of JAK2/STAT3 and the anti-
EMT effect of ATO. The 24 h treatment of AGS cells
with 10 pM ATO changed AGS cell morphology from
fibroblast-like mesenchymal phenotype to round, epithe-
lioid phenotype. However, pretreatment with 50 pM
pervanadate for 1 h led to the reappearance of
mesenchymal-like cells (Fig. 3a). Wound closure assay
showed that 24 h treatment of AGS cells with 10 pM
ATO significantly increased the vertical wound distance,
and that this was reversed by pretreatment with 50 uM
pervanadate (Fig. 3b).The Materigel invasion assay also
showed a pervanadate reversal of ATO effects in that
the ATO-induced decrease in numbers of invading cells
was significantly re-increased by pretreatment with
50 uM of pervanadate (Fig. 3c). The 3-D spheroid cell
invasion assay showed a reversal of ATO effect, e.g., the
protrusion of AGS cells from the spheroid, which was
abolished by 10 uM ATO treatment for 24 h, protruded
out of the spheroid by 50 uM pervanadate pretreatment
(Fig. 3d). Western blot showed that 10 pM ATO
treatment induced SHP-1 expression and downregulated
p-JAK2/p-STAT3 expression, which in turn, downregu-
lated Snaill and upregulated E-cadherin expression.
These effects were reversed by pretreatment with 50 uM
of pervanadate (Fig. 3e). Taken together, these data sug-
gest that SHP-1 may be a key mediator for dephosphory-
lation of JAK2/STAT3 and inhibition of EMT by ATO
treatment in AGS cells.

To validate the role of SHP-1 on inhibition of STAT-3
activity more specifically, we transfected AGS cells with
control or SHP-1 siRNA, then treated with 10 uM ATO
for 24 h. siControl-transfected, ATO-treated AGS cells
significantly inhibited wound healing process (Fig. 4a)

and decreased number of invasive cells (Fig. 4b) com-
pared with naive AGS cells, however, these effects were
reversed by transfection with siSHP-1. Western blotting
showed that transfection with siControl followed by
ATO treatment upregulated SHP-1 expression and
downregulated p-STAT3 and p-JAK2 compared with
naive AGS cells, however, these phenomena were also
halved by siSHP-1 (Fig. 4c). The data were consistent
with the results from pervanadate-pretreated AGS cells
in Fig. 3.

Anti-tumor effect of ATO is mediated by SHP-1

The xenograft tumor model showed that intraperitoneal
administration of ATO significantly reduced the tumor
size and volume compared with those of the control
group. However, co-administration of pervanadate with
ATO led to a significant increase in tumor volume com-
pared to the control group. There was no significant
difference of body weight between the three groups
(Fig. 5a-c). By immunohistochemistry stain, tumors from
ATO treated mice showed an enhanced staining for
SHP-1 in the cytoplasm compared to the controls which
were negative for SHP-1. However, co-administration of
pervanadate with ATO dramatically reduced the staining
for SHP-1 (Fig. 5d). These results suggest that anti-
tumorigenic effect of ATO in xenograft in vivo tumor
model may be mediated by the induction of SHP-1.

Discussion

In this study, we showed that ATO inhibits the JAK2/
STAT3 signaling axis and EMT process in AGS cells,
and that SHP-1 is a key modulator of dephosphorylation
of JAK2/STATS3. Inhibition of SHP-1 activity reversed
the aforementioned effects of ATO. Furthermore, we
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showed, in a xenograft tumor model, that the anti-
tumor effect of ATO may be mediated by induction of
SHP-1 which is also reversed by pharmacologic inhib-
ition of SHP-1. To our knowledge, this is the first study
to demonstrate the anti-EMT effect of ATO and its
underlying mechanism in gastric cancer cells.

Indeed, STAT3 is a key transcription factor for car-
cinogenesis, invasion and modulation of microenviron-
ments in gastric cancer. Constitutive activation of
STATS3 in gastric epithelial cells promotes cellular prolif-
eration, invasion, and angiogenesis, and inhibits apop-
tosis by activating various associated target genes
including cyclin D1, VEGF-1, Bcl-xL, survivin and
MMP-9 [15, 16]., A recent meta-analysis showed that
increased p-STAT3 expression in gastric cancer tissue is
significantly associated with undifferentiated type, lymph
node metastasis and poor prognosis [17]. Furthermore,
STAT3 is a crucial mediator in the generation of a cancer-
favorable microenvironment in response to cytotoxin-
associated antigen (CagA)-positive Helicobacter pylori (H.

pylori) infection in the stomach. For example, once CagA
is introduced into gastric epithelial cells, p-STAT3 is acti-
vated by stimulation with interleukin-11 (IL-11), and in
turn, upregulates various target genes including MMP-7
and CD44v6 to promote cellular invasion [18]. In the sur-
rounding stromal cells, CagA-positive H. pylori infection
stimulates dendritic cells to produce IL-23, which in turn,
activates p-STAT3 in naive CD4" T-cells and transdiffer-
entiates into T-helper (Th)-17 specific cells [19]. Th-17
predominant cells contribute to the formation of prema-
lignant lesions as well as depth of tumor, lymphovascular
invasion and lymph node involvement of gastric cancer
[20, 21]. Thus, inhibition of the JAK2/STAT3 signaling
pathway is a crucial step for repression of invasion and
EMT in gastric cancer.

However, most of the STAT3 inhibitors for gastric
cancer have been confined to experimental studies. Sev-
eral previous in vitro/in vivo studies showed inhibition
of STAT3 activity and anti-inflammatory cytokines such
as IL-11, IL-6 and IL-1B via repression of JAK1/2
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phosphorylation [22, 23]. Several drugs such as AZD
1480, a potent JAK1/2 phosphorylation inhibitor, or
OPB-31121, a STAT3 inhibitor targeting Src homology 2
(SH2) domain of STATS3, have been evaluated in phase I
and 1II clinical studies. However, these have been aban-
doned due to severe side effects [24] or showed relatively
low clinical efficacy [25]. Furthermore, technical prob-
lems in developing more stable and effective STAT3
inhibitors also exist. Recently, Chen and his colleagues
demonstrated that EMT and progression of hepatocellu-
lar carcinoma (HCC) is effectively modulated by SHP-1
via suppression of TGF-Bl-induced constitutive p-
STATS3 activity [26]. In gastric cancer, the role of SHP-1
for inhibition of STAT3 has been rarely reported. Sun et
al. showed that transmembrane protein with epidermal
growth factor and two follistatin motifs 2 (TMEFF2) is a
key binding partner of SHP-1 and effectively suppresses
STAT3 signaling in gastric cancer cells. Higher co-
expression of TMEFF2 and SHP-1 is closely associated
with favorable outcomes in gastric cancer patients [27].
Thus, SHP-1 may be a promising phosphatase for inacti-
vation of STAT3 signaling in gastric cancer cells, and the

biologic function of SHP-1 in gastric cancer needs to be
further evaluated in future studies.

We previously reported that expression of SHP-1 is
mostly attenuated or abolished in gastric cancer cell
lines which are governed by epigenetic mechanism [8].
Sun et al. showed that mRNA expression of SHP-1 is
highest in normal gastric tissues, followed by intestinal
metaplasia, dysplasia, and lowest in gastric cancer. In-
versely, CpG island promoter hypermethylation of SHP-
1 was most frequent in gastric cancer, followed by dys-
plasia, intestinal metaplasia and normal gastric tissues
[27]. Thus, upregulation of SHP-1 might be an import-
ant issue for effective dephosphorylation and inhibition
of STATS3 in gastric cancer cells. Chen et al. showed that
several multikinase inhibitors including sorafenib, doviti-
nib and regorafenib, and their analogues, have potent
anti-STAT3 effects via induction of SHP-1 in HCC cells
[28-31]. In gastric cancer, Liu et al. experimentally
showed that honokiol, a small-molecular weight natural
product, increases SHP-1 expression and dephosphory-
lates STAT-3 through upregulation of calpain II, a
calcium-activated non-lysosomal cysteine protease, in
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Fig. 5 Effects of ATO on xenograft tumor model a. Gross tumor extracted from nude mouse after 6 weeks of intraperitoneal administration of
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of xenograft tumor. The SHP-1 protein expressions were stained dark brown
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gastric cancer cells [32]. In this study, we showed that
ATO enhances SHP-1 expression to dephosphorylate
JAK2/STAT3 and modulate Snaill/E-cadherin expres-
sion, thus inhibiting EMT and cellular invasion in AGS
cells. Therefore, we consider that SHP-1 is a key regula-
tor of dephosphorylation of STAT3 and has an anti-
EMT effect in gastric cancer cells. Meanwhile, a recent
study showed that ATO shows a reductive effect on
multidrug resistance to doxorubicin in gastric cancer cell
lines [33]. Constitutive activation of STAT3 is closely
associated with chemoresistance in gastric cancer [34].
Restoration of chemoresistance by ATO in gastric cancer
cells might be related to inactivation of STAT3 via in-
duction of SHP-1. This needs to be investigated further.

Conclusion

ATO effectively inhibits cellular invasion, EMT, and
tumorigenesis in gastric cancer cells which are mediated
by dephosphorylation of JAK2/STAT3 through increase
of SHP-1 expression. Since direct inhibition of STATS3 is
technically difficult and is limited in clinical efficacy,
modulation of the SHP-1/STAT3 axis might be a prom-
ising therapeutic strategy in the treatment of gastric can-
cer, especially in overcoming chemoresistance. Further
research for the development of potent and stable SHP-
1 inducers is expected in the near future.
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