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Abstract

Background: Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if
plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and

vascular-disrupting activities.

Methods: The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells.
We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen
matrices. In vivo experiments were performed on different tumor cell lines.

Results: In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in
endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology
and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the
migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro
occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival.
The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in
vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects.

Conclusions: Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities

of plocabulin.
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Background

Angiogenesis is one of the critical steps required for
solid tumors to grow beyond their dormant state [1-3].
During this process, endothelial cells have to disrupt the
surrounding basement membrane, migrate, invade to-
wards a pro-angiogenic stimulus, proliferate to provide
additional cells that form new vessels and re-organize to
form the necessary three-dimensional vessel structure
[4—6]. Both, the actin and microtubule cytoskeletons
play a key role in these processes as they regulate the
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maintenance of endothelial cell shape changes as well as
endothelial cell proliferation [7, 8]. Tumor vasculature is
not a simple supply line of nutrients to tumors [1, 9, 10].
It governs pathophysiology of solid tumors and thus
tumor growth, invasion, metastasis and response to vari-
ous therapies [11]. Consequently, it is currently accepted
that inhibition of angiogenesis is an effective strategy to
treat human cancers [12].

Recent studies have shown that most of the microtubule-
targeting agents (MTA) present antiangiogenic and
vascular-disrupting effects [13—17]. By affecting the micro-
tubule network, MTAs inhibit endothelial cell proliferation,
migration, and tube formation, and cause prominent
changes in endothelial cell morphology, an action associ-
ated with rapid vascular collapse in vivo [14, 18—20]. Thus,
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current data suggest that MTAs would be a particularly
useful class of antiangiogenic drugs as they have multiple
direct actions on endothelial cells [21, 22]. Taxanes,
colchicine, combretastatins and vinca alkaloids were
among the first MTAs reported to have antiangiogenic or
vascular-disrupting properties [17, 18, 20, 23, 24]. These
observations have prompted the development of new
microtubule-binding drugs with antiangiogenic activity.

Plocabulin (PM060184) is a new marine-derived drug
that binds to a new site in B-tubulin, inhibiting tubulin
polymerization [25-27]. The compound is currently
being evaluated in Phase I/II studies in patients with
advanced malignancies. The present study describes the
antiangiogenic and vascular-disrupting properties of
plocabulin. We show that, at picomolar concentrations,
plocabulin inhibits microtubule dynamics in endothelial
cells leading to alterations of cytoskeletal organisation,
and thus morphology changes as well as suppression of
their migration and invasion abilities. This results in
tumor vascular endothelial architectural destabilization
and tumor vascular collapse. The in vitro findings were
confirmed in tumor xenografts where, even at doses
below its maximum-tolerated dose (MTD), plocabulin
treatment induced a large reduction in vascular volume
and induction of extensive necrosis, consistent with anti-
vascular effects. Altogether, these data suggest that an
antivascular mechanism might also contribute to the an-
titumor activities of plocabulin [26, 27].

Methods

Reagents

High concentration rat tail Collagen I was obtained from
BD Biosciences (San José, CA, USA). Phorbol 12-myristate
13-acetate (PMA), Hoechst 33,342, 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT), mouse
monoclonal anti-a-tubulin (T5168), sulforhodamine B
(SRB), and phalloidin-FITC (P5282) were obtained from
Sigma (St Louis, MO, USA). Human recombinant
Fibroblast Growth Factor-basic (FGF) was from Peprotech
(Rocky Hill, NJ, USA). Alexa 594-conjugated goat anti-
mouse IgG secondary antibodies (A11032) were obtained
from Molecular Probes (Rockford, IL, USA). For in vitro
experiments, plocabulin (PharmaMar, Madrid, Spain) was
prepared as a 1 mg/ml stock solution in DMSO and
stored at — 80 °C. For in vivo experiments, lyophilized vials
(1.6 mg/vial) of plocabulin (PharmaMar) were used. For
xenograft studies, potential antiangiogenic effect induced
by the treatment was studied by Angiosense TM 680EX
Fluorescent Imaging Agent (Perkin Elmer Inc., MA, USA).

Cell lines and cell culture

Human Umbilical Vein Endothelial Cells (HUVECs) were
obtained from Lonza (Basel, Switzerland) and grown in
endothelial basal medium (EGM-2) supplemented with
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growth supplements: 2% Fetal Bovine Serum (FBS), human
Epidermal Growth Factor (hEGF), Vascular Endothelial
Growth Factor (VEGF), R3-Insulin-like Growth Factor-1
(R3-IGF-1), ascorbic acid, hydrocortisone human Fibroblast
Growth Factor-Beta (hFGF-f3), heparin, gentamicin/ampho-
tericin-B  (GA). Human microvascular endothelial cells
(HMEC-1) were obtained from ATCC (Manassas, Virginia,
USA) (CRL-3243) and grown in MCDBI131 (without
L-Glutamine) medium supplemented with hEGF
(10 ng/ml), hydrocortisone (1 pg/ml), glutamine (10 mM)
and 10% FBS. Only low passage cells (between passages 3
and 7) were used. For microtubule dynamics, EB3-GFP
plasmid was nucleofected using Amaxa technologies with
the HUVEC nucleofector kit (Lonza) according to the
manufacturers’ protocols. For xenograft experiments, we
used 2 human derived cell lines: NCI-H460 non-small cell
lung carcinoma (HTB-177") and MDA-MB-231 breast
adenocarcinoma (CRM-HTB-26"), both from ATCC
(Manassas). Before animal inoculation, cells were main-
tained in vitro at 37 °C with 5% CO2 in Dulbecco’s
Modified Eagle’s Medium (Sigma-Aldrich) and passaged
every 3 to 5 days upon reaching confluence.

Detection of microtubule and actin cytoskeletons by
immunofluorescence staining

Endothelial cells were treated with plocabulin at differ-
ent concentrations for 6 h, 24 h and 48 h, fixed with
methanol for 10 min at - 20 °C and incubated with a
blocking solution (5% bovine serum albumin in PBS) for
30 min. Cells were then incubated with primary mouse
anti-human a-tubulin antibody for 1 h at room
temperature. After three washes with a PBS/BSA1% so-
lution, cells were incubated with Alexa 594-conjugated
goat anti-mouse IgG secondary antibody at room
temperature for 1 h. Cells were then incubated with
phalloidin-FITC for 1 h at 37 °C in a humid chamber.
Cells were finally counterstained with addition of
Hoechst 33,342 (1 pg/ml) for 5 min and mounted with
Mowiol mounting medium. Pictures were taken with a
Leica DM IRM fluorescence microscope equipped with
a 100x oil immersion objective and a DFC 340 FX digital
camera (Leica, Wetzlar, Germany).

Profiling of angiogenesis-related proteins in cell culture
supernates

The relative expression profile of 55 human angiogenesis-
related proteins was performed using Proteome Profiler
Human Angiogenesis Array kit (R&D Systems, NE,
Minneapolis, U.S.A) after treatment of HUVEC endothe-
lial cells with plocabulin for 24 h.

Measurements of microtubule dynamics
Fluorescence imaging of EB3-GFP tagged microtubules
in live endothelial cells was performed by confocal
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fluorescence illumination on a Nikon Eclipse Ti micro-
scope equipped with a perfect focus system (Nikon,
Tokyo, Japan), a spinning disc-based confocal scanner
unit (CSU-X1-A1, Yokogawa, Tokyo, Japan), an Evolve
512 EMCCD camera (Photometrics, Tucson, AZ, USA)
attached to a 2.0X intermediate lens (Edmund Optics,
Barrington, NJ, USA) and a motorized stage MS-2000-
XYZ with Piezo Top Plate (ASI), using a stage top incu-
bator INUBG2E-ZILCS (Tokai Hit, Fujinomiya-shi,
Shizuoka-ken, Japan) for 37 °C/5% CO2 incubation and
37 °C lens heating. The microscope setup was controlled
by MetaMorph 7.7.11.0. Acquisitions were performed at
0.5 s interval with a 200 milliseconds exposure during
2 min using an Apo TIRF 100x NA 1.49 oil. Cells were
treated with plocabulin for one hour before imaging.
Kymographs of microtubule plus end dynamics were
made using the MTrack] plugin of Image] software
(NIH, Bethesda, MA, USA) and analyzed using the same
software. Only microtubule length changes > 0.3 um be-
tween two consecutive time points were considered as
growth or shortening events, while changes <0.3 um
were considered as pause event; only the events starting
and finishing within the recording were analyzed. Vel-
ocity and covered distance were calculated for each
growth event and were then averaged. Catastrophe fre-
quency was calculated by dividing the number of catas-
trophes (transition from growth or pause to shortening)
by the sum of growth and pause durations. For each
condition, at least 10 microtubules per cell, in 10 cells in
three independent experiments were analyzed. Com-
parisons between different samples were analyzed by
Student’s t test. Differences were considered significant
at ***P < 0.001.

Cell viability assay

The MTT colorimetric assay was used for quantitative
measurement of cell viability, as previously described
[26]. The highest plocabulin concentration in the assay
was 17 nM and then, serial dilutions 1/2.5 from this
initial concentration were added to the cells.

Adhesion, migration and invasion assays

For adhesion assays, HUVEC cells (75,000 cells/well)
were cultured in 96-well plates covered with fibronectin
(2.5 pg/ml) and collagen 0.05 pg/ml at 4 °C for 10 min.
Adhesion was then allowed at 37 °C during 30 min in
the absence or presence of plocabulin. After 3 washes
with PBS, remaining cells were fixed with glutaraldehyde
(0.1%) and stained with sulforhodamine B. As positive
and negative controls, we have used MnCl, (0.5 mM),
latrunculin A (3 pM) and cytocalasin D (2 uM), respect-
ively. For migration and invasion assays, 6.5 mm-diameter
transwell chambers (Sigma-Aldrich, St. Louis, MO, USA)
with polycarbonate membrane (pore size 8.0 um) were
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used. HUVEC cells (1.5 x 105) were seeded on the upper
compartment of the transwell membrane in 100 pl of
serum-free culture medium containing or not plocabulin.
The lower compartment (well) was filled with 600 pl of
serum-free culture medium containing or not a chemo-
attractant (FBS 2%). For the invasion assays, the upper
compartment of the transwell was previously coated with
12 pg of matrigel basement membrane matrix to create a
physical barrier between the two compartments of the
chamber. After 24 h of incubation, culture medium was
removed from the inside of the chamber, and the non-
migrated cells on the upper side of the membrane were
wiped off using a cotton swab. Migrated cells on the lower
side of the membrane were fixed with a glutaraldehyde 1%
solution, washed and stained with sulforhodamine B fol-
lowing standard techniques.

HUVEC capillary tube structures formation or
destabilization in three-dimensional collagen matrices
The tube formation or destabilization assays are based
on the ability of endothelial cells to form three-
dimensional capillary-like tubular structures when cul-
tured on a basement membrane matrix. HUVEC cells
(2.5 x 104 cells) were serum-starved overnight, resus-
pended in 100 pl of medium supplemented with FBS 2%
per well and plated on 96-well plates previously coated
with 50 pl of Matrigel (BD Biosciences). For tube forma-
tion assays, fresh culture medium containing FBS 2%
alone or FBS 2% plus plocabulin was added after 1 or
6 h of incubation at 37 °C. For tube destabilization as-
says, fresh culture medium containing FBS 2% alone or
FBS 2% plus plocabulin was added when capillary tube
structures were well established. In both cases, after 6 h
and 24 h post-treatment, cells were stained with calcein-
AM to measure cell viability and analyze tube formation.
Cultures were observed and photographed by phase-
contrast and fluorescence microscopy.

3D sprouting

Endothelial cell spheroids were generated overnight by
culturing endothelial cells in complete medium contain-
ing 20% methylcellulose in non-adherent 96-wells plates.
Harvested spheroids were then embedded into 2 mg/ml
collagen gels overlaid with complete medium supple-
mented with 40 ng/ml FGE, 50 ng/ml PMA and with the
indicated drug concentration. Angiogenic activity was
quantified by measuring the cumulative length of the
sprouts that had grown out of each spheroid, their mean
number and length, 24 h after embedding using Image]
software. For each condition, at least 20 spheroids were
analyzed. Comparisons between different samples were
analyzed by Student’s t test. Differences were considered
significant at *P < 0.05, **P < 0.01 and ***P < 0.001.
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Xenograft murine models

All animal protocols were reviewed and approved according
to regional Institutional Animal Care and Use Committees.
Design, randomization and monitoring of experiments
(including body weights and tumor measurements) were
performed using NewLab Software v2.25.06.00 (NewLab
Oncology, Vandoeuvre-Lés Nancy, France). Female athymic
Nude-Foxn-1 nu/nu mice (Envigo, RMS Spain S.L.) between
4 to 6 weeks of age were s.c. xenografted with NCI-H460 or
MDA-MB-231 cancer cells into their flank with ca. 5 x 106
cells or 7.5 x 10,6 respectively. In the NCI-H460 experiment,
when tumors reached ca. 150 mm?, mice were intravenously
administered in three consecutive weekly doses (0.08, 8 and
16 mg/kg/day) whereas the control animals received an
equal volume of vehicle with the same schedule. Caliper
measurements of the tumor diameters were made three
times a week and tumor volumes were calculated according
to the following formula: (axb2) /2, where a and b were the
longest and shortest diameters respectively. Animals were
humanely sacrificed when their tumors reached 2500 mm®
or if significant toxicity (e.g. severe body weight reduction)
was observed. Differences in tumor volumes between
treated and control group were evaluated using the Mann—
Whitney U-test. Statistical analyses were performed by
Graph Pad Prism® v5.03 (Graph Pad Software Inc. La Jolla,
CA, USA). In addition, three randomly-selected H460
tumor-bearing animals were dedicated to study blood vessel
density and to characterize vascular changes related with
plocabulin administration by an in vivo imaging system,
IVIS Spectrum (Perkin Elmer Inc, Waltham, MA, USA).
When tumors reached ca. 300 mm?®, animals (1 = 3/group)
were treated with a single dose of either placebo, or ploca-
bulin (at 2 or 16 mg/kg) and then, they were administered
via tail vein injection with AngioSense 680 EX, which is a
near-infrared labeled fluorescent macromolecule that re-
mains localized in the vasculature for extended periods of
time and enables imaging of blood vessels and angiogenesis.
Fluorescent signal acquisition was performed at 24 h after
the treatment and AngioSense dosing. In the MDA-MB-231
experiment, six tumor bearing mice, ca. 500 mm?® were ran-
domly selected 24 h after being administered with plocabu-
lin at 16 mg/kg or placebo. The animals were sacrified by
CO, asphyxiation whithin their home cages, being CO, flow
set to displace 20% of the cage volume per minute. Death
was confirmed by physical examination. Tumors were
then dissected free and processed for paraffin embedding
and sectioning, serial sections were cut and stained with
hematoxylin/ eosin for histology evaluation.

Results

Effects of plocabulin on endothelial cell morphology and
microtubule and actin cytoskeletons

Tubulin cytoskeleton in untreated HUVECs cells is char-
acterized by cytoplasmic microtubules radiating from a
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central point (microtubule organizing center) to the cell
periphery (Fig. 1, red). Treatment of HUVEC cells with
different concentrations of plocabulin resulted in depo-
lymerization of the microtubule network (representative
images are shown in Fig. la). At low concentrations
(0.01 nM), these effects were observed after 48 h of incuba-
tion with the drug while, at higher levels (0.1-1 nM), they
were observed as soon as after 6 h of treatment (Additional
file 1: Figure S1A). Similar results were obtained with
immortalized human HMEC-1 cells (Additional file 1:
Figure S1B). Of note, in these cells, the effects of plocabu-
lin 0.01 nM were observed even after only 6 h of drug
treatment. We have also evaluated the effects on the
morphology and the actin cytoskeleton of plocabulin on
HUVEC cultures (Fig. 1b). Differently from untreated cells,
plocabulin-treated cells showed a rounded morphology
with well-developed actin filament structure similar to the
“dense peripheral bands” observed in mature endothelial
cells [28, 29]. Moreover, plocabulin also induced endothe-
lial cell retraction and rounding and plasma membrane
blebbing (Fig. 1b). All these effects were dependent on con-
centration and time of incubation: the higher the concen-
tration, the faster they appeared. Again, these effects were
observed at similar levels after treatment of HMEC-1 cells
with the drug (Additional file 1: Figure S1). We have finally
analyzed the expression profiles of 55 angiogenesis-related
proteins in supernatants of HUVEC cultured cells in the
absence or presence of plocabulin 0.05 nM for 24 h using a
membrane-based sandwich immunoassay. The analyses
showed that none of these proteins were altered in
HUVEC cells after treatment (data not shown).

Effects of plocabulin on microtubule dynamics of
endothelial cells

To test the effect of plocabulin on microtubule dynamics
in living endothelial cells, we ectopically expressed EB3-
GFP using Amaxa nucleofector technology in HUVEC
cells. Twenty-four hours after transfection, endothelial
cells were treated with different concentrations of ploca-
bulin for one hour. Treatment with DMSO was used as
a non-treated condition. Microtubule plus-end dynamics
was then live-recorded using spinning-disk confocal
microscopy. As shown in Fig. 2a, with the maximum
intensity projection of EB3-GFP signal during 2 min
acquisition, microtubules were detected in the presence
of plocabulin concentrations ranging from 0.01 nM to
0.1 nM, whereas addition of 1 nM induced an almost
complete suppression of GFP-labeled microtubule plus-
end signals. Plocabulin-treated cells showing remaining
microtubules were then analyzed for microtubule dy-
namics. Kymographs were drawn for at least 100 MTs in
each condition and subsequently analyzed (Fig. 2b and ¢
and Additional file 2: Table S1). Plocabulin treatment
significantly reduced the velocity and the covered
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Fig. 1 Effects of plocabulin on HUVEC cell morphology and microtubule mass by fluorescence microscopy. a HUVEC endothelial cells were
cultured in the absence or presence of plocabulin 0.1 nM at different time intervals. Cells were then stained for a-tubulin (red) and nuclei (blue).
b HUVEC endothelial cells were cultured in the absence or presence of increasing concentrations of plocabulin for 24 h. Representative images of

distance of growth events in a concentration-dependent
manner. Addition of this drug also caused a strong in-
crease in catastrophe frequency.

Effects of plocabulin on adhesion, migration and
invasiveness of HUVEC cells

HUVEC cells were left to adhere to an extracellular
matrix composed of fibronectin and type I collagen for
10 min and were then exposed for a short period
(30 min) to plocabulin ranging from 1 pM to 10 nM. No
detachment of cells from the extracellular matrix was
observed (data not shown). We then evaluated the in
vitro effect of plocabulin on endothelial cell migration
and invasion using transwell chambers and HUVEC pri-
mary cells. As shown in Fig. 3a, HUVEC cells showed

very low basal levels of migration in serum-free medium,
but migration was greatly increased in the presence of
FBS 2% added to the lower chamber as chemo-
attractant. HUVEC cells were then cultured in the
presence of chemo-attractant and treated with different
concentrations (0.01, 0.1, 1 and 10 nM) of plocabulin.
As shown in Fig. 3a, the drug inhibited the migration of
endothelial cells in a concentration-dependent manner.
Concentrations higher than 0.1 nM resulted in a nearly
complete abrogation of cell migration. For invasion ex-
periments, the porous membrane of transwell chambers
was pre-coated with a layer of Matrigel mimicking the
physiological basement membrane. The results obtained
were similar to those described for the migration assays
(Fig. 3b). Plocabulin completely inhibited cell invasion at
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Fig. 2 Effects of plocabulin on microtubule dynamics in HUVEC cells. a EB3-GFP maximum intensity projection for two minutes acquisition with
two frames/s in each condition; EB3-GFP was transfected into HUVEC cells as describe in material and methods. b Representative kymographs of
EB3 dynamics for each condition. Horizontal and vertical bars represent 1 um and 10 s respectively. ¢ Histograms representing the mean velocity
(um/min) and distance of growth events (um), as well as the mean catastrophe frequency (min~ ") in each condition. Data are shown as mean + SD.

Comparisons between different samples were analyzed by Student’s t test. Differences were considered significant at ***P < 0.001

concentrations higher than 0.1 nM. To discard that the
inhibition of cell migration and invasion exerted by plo-
cabulin were due to a direct cytotoxic activity, cell
survival of HUVEC cells was analyzed in concentration-
response curves using a standard MTT method. As
shown in Fig. 3c, at the effective concentrations used in
the migration and invasion assays, plocabulin was not
cytotoxic against HUVEC cells in a 24-h assay. With
plocabulin, cells retained nearly 100% viability at 1 nM
(concentration that corresponded to a complete inhib-
ition of cell migration and invasion). Thus, the inhibitory
concentrations of plocabulin on HUVEC migration and
invasion were not coincident with those for inhibition of
cell proliferation, indicating that the aforementioned

effects were not likely mediated through unspecific cyto-
toxicity of the drug.

Effects of plocabulin in HUVEC capillary tube structures in
three-dimensional collagen matrices

To analyze how plocabulin affects the formation of new
capillaries, HUVEC cells were grown on Matrigel in the
presence or absence of the compound. Untreated, con-
trol HUVEC cells rapidly formed a network of angio-
tube like structures that were visualized by fluorescence
microscopy after staining the cells with calcein-AM
(Fig. 4). Plocabulin interfered with the correct formation
of the HUVEC capillary network at concentrations as
low as 0.1 nM (Fig. 4a). At higher concentrations, the
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Fig. 3 Plocabulin inhibits the migration and invasion capabilities of HUVEC cells. a For migration experiments, HUVEC cells were seeded in serum-free
medium into the upper compartment of transwell inserts and incubated at 37 °C for 24 h in the absence (WO/S) or presence of FBS 2% (NT) or the
indicated concentrations of plocabulin. After removing non-migrated cells from the upper compartment, migrated cells in the lower compartment
were stained with sulforhodamine B. b For invasion experiments, the porous membranes of transwell inserts were pre-coated with matrigel basement
membrane (12 pg); HUVEC cells were then seeded in serum-free medium (WO/S) into the upper compartment and incubated at 37 °C for 24 h in the
absence (NT) or presence of the indicated concentrations of plocabulin. After removing non-invasive cells from the upper compartment, migrated cells

viability was measured by MTT assay

in the lower compartment were stained with sulforhodamine B. ¢ Antiproliferative activity of plocabulin in HUVEC cells after 24 of incubation. Cell

intercellular connections were mostly absent with drastic
effects on the formation of the capillary network. Having
established that plocabulin interferes with the formation
of capillary networks from HUVEC cells when cultured
on Matrigel, we wondered if the compound was also af-
fecting an already established capillary network. At the
concentration of 0.1 nM some effects on the capillary
network could be observed (Fig. 4b). Treatment with

plocabulin 1 nM or higher concentrations resulted in a
significant disruption of the formed capillary-like net-
work, with the majority of cells forming small clumps
with a few number of intercellular connections. A
complete dissapearance of the network was observed at
concentrations higher than of 1 nM; in this case, cells
appeared retracted and distinct cords were no longer ob-
served. Altogether, these results indicate that plocabulin
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Fig. 4 Antiangiogenic and vascular-disrupting effects of plocabulin.
a Inhibition of de novo angio-tube formation; HUVEC cells were
seeded on top of a Matrigel layer and incubated in the presence or
absence of plocabulin for 24 h; cells were stained with calcein-AM
and photographed by fluorescence microscopy. b Disruption of
angio-tubes; HUVECs were seeded on top of a matrigel layer, as
described, and treated with different concentrations of plocabulin;
cultures were stained with Calcein-AM (green) and photographed
after 24 h of incubation

interfere with the formation and stability of the capillary
networks formed by endothelial cells when cultured on a
matrigel basement membrane matrix.

We finally performed a 3D sprouting assay in the pres-
ence of increasing concentrations of plocabulin. Twenty-
four hours after embedding in collagen gel, non-treated
spheroids of endothelial cells had the ability to produce
and to extend capillary-like sprouts (Fig. 5). Addition of
plocabulin affected the global angiogenic activity of
endothelial cells in a concentration-dependent manner,
as quantified by the mean cumulative sprout length per
spheroid (Fig. 5a). This effect was the consequence of a
reduced number as well as the reduced length of
sprouts, indicating that plocabulin impeded both the
formation of primary sprouts and their extension or
stabilization (Fig. 5a). Treatment of pre-established an-
giogenic sprouts with the same drug concentrations lead
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to their collapse (data not shown). To determine if these
effects were mediated by the antimitotic properties of
the compound, we added thymidine in the medium to
block cell division. Control spheroids treated with thy-
mindine still actively produced long sprouts (Fig. 5b).
Interestingly, treatment with plocabulin severely affected
sprouting activities compared to the non-treated spher-
oids, precluding a mitosis effect of the compounds at
the concentrations used.

Plocabulin collapses tumor vessels in xenograft models
We then performed xenograft studies to test whether
the in vitro antiangiogenic activity of PM060184 was
also involved in its in vivo antitumor activity. NCI-H460
lung tumor cells were xenografted into the right flank of
athymic nu/nu mice. Once the tumors reached ca.
150 mm? the mice were randonmly assigned into
groups of 10 mice each and either vehicle or plocabulin
(0.08, 8 and 16 mg/kg/day) was intravenously adminis-
tered for 3 consecutive weeks. At the drug doses used in
the experiment, no significant toxicity or body weight
loss was observed in the treated animals (data not
shown). As shown in Fig. 6a, the highest doses of ploca-
bulin presented antitumor activity with a statistically
significant inhibition (p <0.0001 vs placebo) of tumor
growth as well as, a rapid, extensive and irreversible
hemorrhagic necrosis 4 days after the first dose (Fig. 6b).
Complete tumor regressions were also observed after
the administration of plocabulin at 16 mg/kg:Out of 10
mice, 1, 2, 3, 7 and 7 animals experienced complete
tumor remissions on days 5, 7, 10, 14 and 21, respect-
ively (Fig. 6¢). We then studied if the observed effects on
tumors were in part due to a reduction in functional
vascular volume induced by the drug. For this purpose,
randomly selected mice bearing H-460 xenografts were
treated with a single dose of placebo, 2 or 16 mg/kg of
plocabulin (7 = 3/group). As shown in Fig. 6d, a strong
and dose-dependent decreases in their vasculature as
assessed by the percentage of reductionin the intratu-
moral fluorescence of plocabulin-treated animals (ca. 65
and 45% compared to placebo for 2 and 16 mg/kg, re-
spectively) after the administration of Angiosense™ 680.
Finally, the antiangiogenic activity of plocabulin was fur-
ther evaluated in nude mice bearing MDA-MB-231
breast cancer xenografts (n=6). Again, in this tumor
xenograft, the administration of a single dose of
plocabulin (16 mg/kg) induced a very strong reduction in
the number of vessels after 24 h of treatment (Additional
file 3: Figure S2). Altogether, these results confirmed the
antiangiogenic activity of plocabulin.

Discussion
It is well established that tumor growth and metastasis
are angiogenesis-dependent and, hence, blocking this
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process has been considered as a strategy for arresting
tumor growth [30]. This possibility has stimulated inten-
sive research and the development of antiangiogenic
molecules. Recent studies have demonstrated that MTAs
present anti-angiogenic and/or vascular-disrupting prop-
erties [14, 16—20]. These observations have prompted the
search for new MTAs with high selectivity for the tumor
vasculature, and which would provide additional targets
for cancer therapy. In this study, we show that plocabulin,

a new microtubule depolymerazing agent, presents antian-
giogenic and vascular-disrupting activities. By altering
microtubule dynamics in endothelial cells, plocabulin not
only inhibits the in vitro migration and invasion capabil-
ities of endothelial HUVEC cells but also interferes with
their abilities to induce the formation of 3D capillary-like
networks as well as it disrupts pre-existed vessels. This
rapid collapse of endothelial tubular networks in vitro
occurs in a concentration-dependent manner and is
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observed at concentrations lower than that affecting cell
survival. More important, the in vitro findings were con-
firmed in tumor xenografts.

Plocabulin belongs to a new family of tubulin-binding
agents originally isolated from the marine sponge
Lithoplocamia lithistoides [31]. This compound is cur-
rently produced by total synthesis and is under evalu-
ation in clinical studies in patients with advanced

cancer. We have previously reported that plocabulin is
an inhibitor of tubulin polymerization with potent anti-
tumor activity, including P-glycoprotein over-expressing
tumors [26]. This outstanding activity is related to the
ability of plocabulin to bind with high affinity to a new
site in the p-tubulin plus end, thus inhibiting the
addition of further tubulin subunits at sub-stochiometric
concentrations [25, 27]. At higher concentrations,
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microtubules are also destabilized by the formation of
assembly-incompetent tubulin-drug complexes with un-
assembled tubulin subunits. At any rate, plocabulin re-
duces microtubule dynamicity in tumor cells, affecting
both interphase and mitosis [26]. In the first case, the
compound induces a disorganisation and fragmentation of
the microtubule network and the inhibition of tumor cell
migration. In the second case, it induces the appearance of
multipolar mitosis and lagging chromosomes at the meta-
phase plate. These effects correlate with prometaphase
arrest and induction of caspase-dependent apoptosis or ap-
pearance of tumor cells in a multinucleated interphase-like
state unrelated to classical apoptosis pathways.

We now show that plocabulin also presents antiangio-
genic and vascular-disrupting activities. Interestingly,
these effects were observed at concentrations that se-
verely suppress microtubule dynamics but do not affect
endothelial cell survival. The inhibition of microtubule
dynamics induced by plocabulin is associated with
subsequent alterations of total microtubule mass and
changes in endothelial cell morphology. More interest-
ing, it also affects the migration and invasion abilities of
endothelial cells, both processes needed for a correct
angiogenesis. Indeed, we observed that, in 3D in vitro
models, plocabulin inhibited the sprouting of endothelial
cells as well as tube formation. Alterations of the micro-
tubule network in endothelial cells also affect and dis-
rupt pre-existing angiogenic vessels. All these effects
were confirmed in xenografted mice, and were evident
within 24 h after treatment, and at doses below the
MTD. The in vivo antivascular effects of plocabulin were
characterised by a large reduction in vascular volume,
producing vascular shutdown and induction of extensive
necrosis in tumors. Image studies with a fluorescent
probe that remains intravascular after administration
also show extensive and irreversible vascular shutdown
following a single dose of plocabulin and occurring in
tumor tissue. These results are not surprising since, as
detailed above, many crucial endothelial cell activities
relevant to angiogenesis require a functional microtubule
cytoskeleton [7, 8]. In addition, the morphological changes
observed in plocabulin-treated endothelial cells could in-
duce an increase of the vascular permeability, leading to
high interstitial pressure and additional loss of blood flow.
Moreover, the disruption of vascular network could result
in the exposure of abnormal components of the basement
membrane, which in turn can result in the induction of a
coagulation cascade with subsequent thrombus formation
and collapse of tumor vasculature. Altogether, these data
suggested that an antivascular mechanism might, at least
in part, contribute to the anti-tumor activities of plocabu-
lin. These antiangiogenic effects could be achieved even at
local concentrations lower than those necessary to cause a
direct cytotoxic effect on tumor cells.
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Other MTAs have been described as acting selectively
on tumor blood vessels. Drugs such as taxanes, colchi-
cines, combretastatins and vinca alkaloids were among the
first chemotherapeutics reported to have anti-angiogenic
or vascular-disrupting properties [13, 14, 17, 32-38].
These activities were related to their ability to affect mi-
crotubules on endothelial cells, altering cell adhesion, cell
motility, and cell-cell interactions [34, 35, 39, 40]. For
most of these agents, the effects on endothelial cells occur
in vitro at low drug concentrations, which do not induce
cell death, but affect microtubule dynamics implying that
non-specific cytotoxicity does not play a role in the drug
effect on vessel formation [13, 14, 16, 17, 33]. However,
their therapeutic indexes appear to largely differ between
them. In a first group of compounds, including colchicine
or vinca alkaloids, the occurrence of vascular effects is
observed at their MTD [29, 32, 41, 42]. A second group in-
clude MTAs in which the antiangiogenic effect is observed
at doses lower than the MTD (e.g. vinflunine, combrestatin-
A4, etc) [19, 21, 43]. Our results indicate that plocabulin
should be included in this second group of MTAs. However,
the chemical structure and biological properties of plocabu-
lin differ significantly from combretastatin analogues or
vinca alkaloids. The effects of plocabulin on tubulin dynam-
ics in endothelial cells are also different from other MTAs
[38, 44—47]. It was reported that vinflunine and paclitaxel
increased microtubule dynamics in endothelial cells but not
in tumor cells where they reduce it [36, 48]. In contrast, plo-
cabulin reduced microtubule dynamics both in endothelial
and tumor cells. Of note, we did not detect any changes on
angiogenic-related proteins in supernates of endothelial or
tumor cells after plocabulin treatment. This is an interesting
effect as other anticancer agents (e.g. gemcitabine) increase
the secretion of various growth factors, cytokines or
prosurvival factors by endothelial or tumor cells, as a cell
survival reaction that could induce the reversion of the
antiangiogenic activity and vascular resistance [49, 50]

Conclusions

We have demonstrated highly potent in vitro and in vivo
antiangiogenic activities of plocabulin, and gained insight
into its molecular mechanism of action. Our work here
indicates that, additionally to direct effects on tumor
cells, plocabulin induce a rapid collapse of newly formed
capillary tubes and angiogenic vessels through altering
microtubule dynamics that is required to maintain the
shape of tubular networks and to execute major endo-
thelial functions (e.g. migration and invasion). The effect
does not appear to be a mere consequence of its anti-
proliferative activity, since all these effects are observed
at concentrations that do not affect cell survival. We
propose that the antiangiogenic property of plocabulin
contributes to its antineoplastic activity.
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Additional files

Additional file 1: Figure S1. (A) Effects of plocabulin on HUVEC cell
morphology and microtubule mass by fluorescence microscopy. Cells
were cultured in the absence or presence of increasing concentrations of
plocabulin at different time intervals. Cells were then stained for a-tubulin
(red) and nuclei (blue). (B) Effects of plocabulin on HMEC-1 cell morphology
and microtubule mass by fluorescence microscopy. Cells were cultured in
the absence or presence of increasing concentrations of plocabulin at
different time intervals. Cells were then stained for a-tubulin (red) and nuclei
(blue). (PDF 340 kb)

Additional file 2: Table S1. Microtubule dynamics parameters for HUVEC
cells treated with PM060184. EB3-GFP expressing HUVEC cells were exposed
to 0.01, 0.03 or 0.1 nM plocabulin for one hour. Microtubule dynamics was
then analyzed by confocal fluorescence microscopy. Kymographs of
microtubule plus end dynamics were made and analyzed with the MTrackJ
plugin running on the ImageJ software. Microtubule length changes 2 0.3 um
between two consecutive time points were considered as growth or
shortening events, while changes < 0.3 um were considered as pause
events; only events starting and finishing within the recording were
analyzed. Speed and distance were calculated for each growth event and
were then averaged. Catastrophe frequency was calculated by dividing the
number of catastrophes (transition from growth or pause to shortening) by
the sum of growth and pause durations. For each condition, at least 10
microtubules per cell, in 10 cells in three independent experiments were
analyzed. (DOCX 15 kb)

Additional file 3: Figure S2. Representative images and quantification
of microvessel density in MDA-MB-231 breast tumor xenografts after a
signle dose of plocabulin (16 mg/kg). Treatment started at a tumor
volume size of ca. 500 mm?. Tumors were removed after 24 h and
stained with hematoxylin/eosin. Data are shown as mean +/— standard
deviation. Comparisons between different samples were analyzed by
Student’s t test. Difference was considered significant at ***P < 0.001.
(PDF 153 kb)
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