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Abstract

Background: microRNAs (miRNAs) are crucially important in the development of cancer. Their dysregulation,
commonly observed in various types of cancer, is largely cancer-dependent. Thus, to understand the tumor biology
and to develop accurate and sensitive biomarkers, we need to understand pan-cancer miRNA expression.

Constructions: At the University of Minnesota, we developed the OncomiR Cancer Database (OMCD), hosted on a
web server, which allows easy and systematic comparative genomic analyses of miRNA sequencing data derived
from more than 9500 cancer patients tissue samples available in the Cancer Genome Atlas (TCGA). OMCD includes
associated clinical information and is searchable by organ-specific terms common to the TCGA.

Conclusions: Freely available to all users (www.oncomir.umn.edu/omcd/), OMCD enables (1) simple visualization of
TCGA miRNA sequencing data, (2) statistical analysis of differentially expressed miRNAs for each cancer type, and (3)

exploration of miRNA clusters across cancer types.
Database URL: www.oncomir.umn.edu/omcd
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Background

microRNAs (miRNAs) are small noncoding RNAs that
regulate posttranscriptional gene expression predomin-
antly by binding to the 3" untranslated region (UTR) of
the target messenger RNAs [1]. Dysregulation of miRNAs
has been associated with various types of cancer, such as
colorectal cancer, lung cancer, lymphoma, glioblastoma,
and osteosarcoma [2]. miRNA’s largely cancer-dependent
dysregulation makes them candidate biomarkers for diag-
nosis, classification, and prognosis, as well as potential
therapeutic targets [2]. Their use as biomarkers for
diagnosis and classification has already been approved by
the United States Food and Drug Administration (FDA)
for lung, thyroid, and kidney cancer. miRNAs are also
been approved by the FDA for identifying the primary site
of other cancer types. To have a comprehensive under-
standing of the tumor biology and to develop accurate
and sensitive biomarkers, we need comprehensive under-
standing of pan-cancer miRNA expression profiles.
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The Cancer Genome Atlas (TCGA), a collaboration
between the National Cancer Institute and the National
Human Genome Research Institute, contains miRNA ex-
pression data for nearly 10,000 patients with 33 different
cancer types [3]. Currently, the 2 major web-based re-
positories of analyzed TCGA data are the cBioPortal and
the Broad Institute’s FireBrowse [4]. However, both of
those platforms focus mainly on the analysis and
visualization of genomic and mRNA expression data;
neither of them enables in-depth analysis or comparative
visualization of miRNA data. Still other databases, such
as OncomiR, miRGator 3.0 and miRCancerdb enable
analysis of TCGA miRNA data, calculate miRNA sur-
vival  associations (OncomiR) or explore the
miRNA-mRNA interactions (miRGator 3.0 and miRCac-
nerdb) [5-7]. These databases do not provide simple
visualization of TCGA miRNA expression data or the
ability to explore miRNA clusters.

At the University of Minnesota, we developed the
OncomiR Cancer Database (OMCD), which enables (1)
simple visualization of TCGA miRNA sequencing data,
(2) statistical analysis of differentially expressed miRNAs
for each cancer type, and (3) exploration of miRNA
clusters across cancer types.
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Methods

To create OMCD, we used the LAMP software bundle
(Linux, Apache 2, MySQL 5.0, and PHP) and Hypertext
Markup Language (HTML), as described previously [8]
and made the resulting website accessible to researchers
across the globe. To host OMCD’s web application, we
chose an Apache web server. To generate the user inter-
face and enable communication with the MySQL data-
base at the back end, we chose PHP, given its
database-driven architecture that was designed for in-
corporation of additional information. Normalized ex-
pression data, statistical results, and annotation data are
all stored in OMCD. To facilitate data retrieval and se-
lection of different criteria for analysis, we designed a
user-friendly graphic interface.

To construct the content of OMCD, we downloaded
from TCGA the miRNA expression data of 9656
patients (represented by 8993 tumor samples and 663
control samples of normal tissue with 33 different cancer
types (https://gdc.nci.nih.gov; Table 1). We used a
2-group ¢ test to determine which miRNAs were differ-
entially expressed between 1) control and tumor sam-
ples, for a given cancer type, 2) a cancer patient’s control
sample, as compared with all other patients’ available
control samples, and 3) a cancer patient’s tumor sample,
as compared with all other patients’ available tumor
samples. It can be noted that each of our 3 analyses had
a different statistical power, which may account for the
absence of a given miRNA from a specific dataset.

Results

Our newly developed OMCD is available at www.oncomir.-
umn.edu/omed. It features 4 types of search functions
(Fig. 1a). For example, it currently includes miRNA expres-
sion data from 8 control colon tissue samples and 272
colon cancer (COAD) tumor samples. When we search for
miR-21 in COAD samples (Fig. 1a, b), we obtain a heatmap
showing the absolute expression level of miR-21 for all
COAD samples (Fig. 1c). We can also obtain the numeric
expression data (Fig. 1d; not completely shown, because of
space limitations) and relative expression data (Fig. 1le).
Clicking on hsa-miR-21 from the heatmap page, we are
taken to a page showing links to additional analysis (Fig. 1f).
These links provide detailed information about the
chromosomal location of miR-21 and the names of coloca-
lized miRNAs (miRNA clusters), as well as additional in-
ternal links to the expression data of miR-21 in other
cancer types and to further statistical analysis (Fig. 1h).

In our COAD example, each miRNA specific OMCD
webpage provides external links to the miRDB website
for target prediction (www.mirdb.org) and to Google
Scholar for literature searches [9]. From this webpage,
we generate a link that allows the visualization of coloca-
lized miRNA expression levels in a heatmap showing
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absolute expression (Fig. 1g). Expression levels of coloca-
lized miRNAs can be displayed for all cancer types (not
shown) and can be visualized in absolute and relative
heatmaps as well as in the form of numeric data.

The 3 statistical analyses that we performed—using
normal controls vs. tumor samples for each tumor type
where available; tissue control samples vs. all other pa-
tients’ control samples; and each tumor sample type vs.
all other tumor sample types—allowed us to visualize
the expression patterns of miR-21 across different cancer
types (Fig. 1h).

Further demonstrating OMCD?’s utility, we were able to
identify miRNAs that were recurrently differentially
expressed between tumors and control samples. The dif-
ference was highly significant (P <0.000001). In 5 such
comparisons, the mean fold-change in the tumor samples
was greater than 2 (Fig. 2). Many miRNAs are functionally
well characterized and have been reported to be differen-
tially expressed (between tumor and control samples) in a
wide range of cancer types. For example, miR-21 is con-
sistently upregulated in most cancer types [10]. Thus, it
could potentially serve as cancer biomarker, but it may
not be a suitable for identification of a specific cancer type.
We were also able to observe decreases in miR-1/miR-133
in a number of cancers as well as gains in the miR-96/
miR-182/miR-183 cluster in a number of other cancers.

In our OMCD testing, we also found that the COAD
cluster and rectal cancer (READ) cluster had a very simi-
lar miRNA expression pattern, as compared with other
cancer types. In COAD miR-101 showed higher expres-
sion levelsthen normal tissue and this increase was also
observable in READ although not at the statistical power
available for COAD.(Fig. 2).

Additionally, because the miR-101 expression was not
significantly higher in other cancer types, it is reasonable
to hypothesize that this miRNA is a biomarker for
COAD. Similarly, we found that miR-10b expression was
uniquely higher in hepatocellular carcinoma (LIHC), but
not in other cancer types. These are a few examples of
the testable hypotheses that OMCD can generate. To
more thoroughly investigate the function of miR-21,
mir-96/miR-182/miR-183 cluster in cancer, miR-101 in
COAD, and miR-10b in LIHC, further experimental val-
idation is warranted.

Discussion

Evidence from the past decade indicates that miRNAs
play a crucial role in the development of various cancer
types. With the advent of high-throughput sequencing
technology, more high-throughput miRNA expression
data are now publicly available. Our OMCD database,
developed at the University of Minnesota, is a simple
web-based repository that allows easy and systematic
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Table 1 Number of patients in the OncomiR Cancer Database (OMCD), by cancer type

Cancer Type (TCGA Code) Total number of samples Tumor Normal
Breast invasive carcinoma [BRCA] 869 782 87
Brain Lower Grade Glioma [LGG] 530 530 0
Thyroid carcinoma [THCA] 573 514 59
Prostate adenocarcinoma [PRAD] 551 499 52
Ovarian serous cystadenocarcinoma [OV] 495 495 0
Head and Neck squamous cell carcinoma [HNSC] 532 488 44
Lung adenocarcinoma [LUAD] 504 458 46
Skin Cutaneous Melanoma [SKCM] 453 451 2
Uterine Carcinosarcoma [UCS] 450 418 32
Bladder Urothelial Carcinoma [BLCA] 436 417 19
Stomach adenocarcinoma [STAD] 450 404 46
Liver hepatocellular carcinoma [LIHC] 426 375 51
Lung squamous cell carcinoma [LUSC] 388 343 45
Cervical squamous cell carcinoma and endocervical adenocarcinoma [CESC] 313 310 3
Kidney renal papillary cell carcinoma [KIRP] 326 292 34
Colon adenocarcinoma [COAD] 280 272 8
Sarcoma [SARC] 263 263 0
Kidney renal clear cell carcinoma [KIRC] 332 261 71
Esophageal carcinoma [ESCA] 200 187 13
Pheochromocytoma and Paraganglioma [PCPG] 187 184 3
Pancreatic adenocarcinoma [PAAD] 183 179 4
Testicular Germ Cell Tumors [TGCT] 156 156 0
Thymoma [THYM] 126 124 2
Rectum adenocarcinoma [READ] 97 94 3
Mesothelioma [MESQO] 87 87 0
Uveal Melanoma [UVM] 80 80 0
Adrenocortical carcinoma [ACC] 79 79 0
Kidney Chromophobe [KICH] 91 66 25
Uterine Corpus Endometrial Carcinoma [UCEC] 57 57 0
Diffuse Large B-cell Lymphoma [DLBC] 47 47 0
FFPE Pilot Phase Il [FPPP] 45 45 0
Cholangiocarcinoma [CHOL] 45 36 9
Glioblastoma multiforme [GBM] 5 0 5
Total 9656 8993 663

comparative analyses of miRNA expression in various
cancer types.

In our OMCD testing, we were able to identify increases
in miR-101 as a biomarker candidate specifically for
COAD. We found that its expression level was signifi-
cantly higher in COAD tumors, but not in other tumors
relative to normal samples. Previous studies, however,
showed miR-101 expression levels in colorectal cancer
that were different from our results [11, 12]. Those previ-
ous studies suggested that miR-101 expression was

downregulated in colorectal cancer and that it was a
tumor-suppressing miRNA whose overexpression inhib-
ited tumor invasion and growth [11, 12].

Interestingly, when we used OncomiR (www.onco-
mir.org), which is also based on TCGA data, we again
found that miR-101 was overexpressed in COAD
tumors. Given the conflicting results for miR-101 in
COAD in those 2 previous studies vs. our own use of
both OMCD and OncomiR, further investigation into
the function of miR-101 in COAD is needed, in order
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Fig. 1 Screenshots of our sample analyses of miR-21 in COAD. a, b Advanced Search options in OMCD, enabling searches by miRNA, by cancer
types, and by statistical results. ¢ Heatmap. d Numeric view of absolute expressions of miR-21 in COAD control and tumor samples. e Heat map
of relative expression of miR-21 in COAD. f Information and external links. g Heat map of miR-21 cluster members, enabling exploration of the
expression patterns of colocalized miRNAs. h Statistical results of group-based comparisons of miR-21 in different cancer types
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Fig. 2 Heatmap of differentially expressed miRNAs in tumor vs.
control samples (P < 0.000001, with a mean fold change in the
tumor samples greater than 2 in 5 or more comparisons).

Red = upregulation; green = downregulation

to definitively ascertain whether or not it is a suitable
biomarker for COAD.

We also observed in our OMCD testing that miR-10b
could be a potential biomarker for LIHC [13]. Previous
studies showed that miR-10b was highly expressed in
LIHC, that it was involved in neoplastic transformation
of liver cancer stem cells, and that it promoted metasta-
sis [14—16]. Other previous studies showed an oncogenic
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role of miR-10b in breast cancer, gastric cancer, and
glioblastoma [17-20]. All of those studies suggest that
miR-10b has a multifaceted function in many cancer
types; further investigation is needed, in order to defini-
tively ascertain whether or not it is a suitable biomarker
for LIHC.

Conclusions

Our current version of OMCD, derived from TCGA,
contains the miRNA expression data of 9656 patients
(represented by 8993 tumor samples and 663 control
samples of normal tissue) with 33 different cancer types.
To our knowledge, OncomiR (www.oncomir.org) is the
only other TCGA-based online resource, besides
OMCD, for analyzing miRNA expression data [5]. A
limitation of both OncomiR and our current version of
OMCD is their lack of miRNA datasets from other can-
cer patient cohorts. However, these were implemented
in the miRGator 3.0 and miRCancerdb [6, 7]. But unlike
OMCD, none of these databases have the option to
analyze miRNA clusters. It is important to consider
miRNA cluster members when studying miRNAs in
cancers, especially to generate hypotheses from
high-throughput data. Usually, miRNA cluster members
have similar expression levels, but they potentially have
vastly different biological functions. The ability to
visualize and explore miRNA clusters in OMCD is
crucial to develop defendable hypotheses.

In the future, we plan to expand OMCD by incorpor-
ating additional miRNA expression datasets from public
data repositories such as Gene Expression Omnibus
(GEQO), Genomic Data Commons (GDC), and European
Bioinformatics Institute (EBI). Doing so, we believe, will
significantly improve the ability to use OMCD to
develop defendable hypotheses.
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