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Abstract

Background: In the era of genome-guided personalized cancer treatment, we must understand chemotherapy-
induced genomic changes in tumors. This study evaluated whether adjuvant FOLFOX chemotherapy modifies the
mutational profile of recurrent colorectal cancer (CRQ).

Methods: Whole exome sequencing was performed on samples from primary CRC tumors, untreated metastatic
tumors, and recurrent tumors following adjuvant FOLFOX chemotherapy. The samples were resected from four
patients.

Results: The number of mutations or the mutation spectrum in individual patients was nearly identical. Copy
number variants persisted regardless of FOLFOX therapy administration. The genomic signature of oxaliplatin
exposure (G>T/C>A, T>A/A>T) was not enriched after FOLFOX chemotherapy. Overlapping single nucleotide
variants (SNVs) and indels remained in 26-65% of the patient-matched tumor samples. One patient harbored an
AKTT E17K mutation in the recurrent tumor, whereas PIK3CA E542K and E88Q mutations were detected in the
primary and untreated metastatic tumor samples. Genes related to intracellular Ca®* homeostasis were enriched
among the genes uniquely mutated after FOLFOX chemotherapy.

Conclusions: We found that the mutation rates, mutation spectrum, and copy number variants were nearly identical
regardless of the administration of FOLFOX therapy in the four CRC cases. The mutational discordance between the
patient-matched tumor samples is likely caused by tumor heterogeneity and chemotherapy-induced clonal selection.
These findings might be useful as pilot data for larger studies to clarify the changes in the mutational landscape
induced by adjuvant FOLFOX chemotherapy.
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Background

Colorectal cancer (CRC) is the third most common type
of cancer and the fourth leading cause of cancer death
worldwide [1]. Combination chemotherapy with cyto-
toxic and molecular targeting agents has prolonged the
survival time of patients with metastatic CRC. In the era
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of genome-based personalized cancer treatment, an as-
sessment of the molecular profile of individual tumors is
necessary to guide the selection of appropriate therapy
methods. For example, activating KRAS and NRAS
mutations are negative predictive markers for the effect-
iveness of the anti-epidermal growth factor receptor
(EGFR) antibodies panitumumab and cetuximab [2, 3].
Intensive chemotherapy is recommended for patients
with the BRAF V600OE mutation because this mutation is
a strong prognostic factor for poor survival [4, 5]. More-
over, several genetic alterations that are potential
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prognostic and predictive biomarkers or therapeutic tar-
gets have been explored. Extensive data sets of the muta-
tional profiles of CRC have been generated [6], and large
collaborations have created gene expression-based classi-
fications that predict patient outcomes [7].

However, systemic chemotherapies could alter the mu-
tational landscape of several cancers [8, 9]. A previous
exome sequencing study revealed that mutagenic
chemotherapy regimens, such as adjuvant chemotherapy
with the DNA-alkylating-like agent temozolomide to
treat glioma, can induce new mutations and cause the
malignant progression of recurrent tumors [9].

FOLFOX is a combination chemotherapy regimen that
consists of leucovorin-modulated 5-fluorouracil (5-FU)
and oxaliplatin (L-OHP), which are commonly used
worldwide as standard adjuvant chemotherapies for cura-
tively resected stage III and IV CRCs [10]. L-OHP is a
third-generation platinum (Pt)-containing antitumor com-
pound that induces DNA damage associated with intra-
and inter-strand cross-links (Pt-GG adducts) [11-13].
Previously, in vitro studies have demonstrated the muta-
genic activity of L-OHP [14]. Therefore, adjuvant FOL-
FOX chemotherapy has the potential to alter the
mutational profiles of recurrent cancers so that they differ
from those of primary CRC tumors. Our previous report
showed that the mutational status of predictive biomarker
genes for the effectiveness of anti-EGFR-antibodies was
not altered by FOLFOX therapy [15]. However, the influ-
ence of FOLFOX therapy on exome-wide mutational pro-
files has not been reported previously.

This study used whole exome sequencing to compare
gene alteration profiles of recurrent cancers after adju-
vant FOLFOX chemotherapy in patient-matched pri-
mary CRC and metastatic tumor samples prior to
chemotherapy.

Methods

Patient selection

We reviewed the clinical records of patients with CRC
who had been treated with adjuvant FOLFOX chemo-
therapy after curative resection at the National Cancer
Center Hospital East (Kashiwa, Japan). From January
2006 to December 2009, 156 patients were treated with
adjuvant FOLFOX at our institution, and 66 patients de-
veloped recurrent tumors during or after adjuvant FOL-
FOX chemotherapy. Of these patients, 26 underwent
curative resection of recurrent tumors. We selected four
CRC patients for whom tumor specimens from primary
tumors, metastases resected prior to FOLFOX chemo-
therapy (pre-FOLFOX metastasis), and recurrent meta-
static tumors in the same organ after adjuvant FOLFOX
(post-FOLFOX metastasis) were available. Informed con-
sent to use tissue specimens for this study was obtained
from all patients, and the tissue samples were provided
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by the National Cancer Center Biobank, Japan. The in-
stitutional review board at the National Cancer Center
approved the study protocol. This study was performed
according to the Epidemiological Study Guidelines of
the Ministry of Health, Labor, and Welfare of Japan. We
disclosed the study design on the National Cancer Cen-
ter website and gave the relatives of deceased patients
the opportunity to decline participation.

DNA samples

We obtained matched primary CRC, pre-FOLFOX metas-
tasis, post-FOLFOX metastasis, and normal colorectal
tissue samples from four patients. The normal colorectal
tissues were collected from surgical specimens of the pri-
mary tumors. All tissue samples were formalin-fixed,
paraffin-embedded (FFPE) specimens. DNA samples were
obtained from macroscopically dissected FFPE specimens
cut into 10-pum-thick sections. Genomic DNA was
extracted using EZ1 Advanced XL and EZ1 DNA Tissue
Kits (Qiagen, Hilden, Germany) according to the manu-
facturer’s instructions [16]. Nucleic acid yields were deter-
mined using a NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA), and the quality of genomic DNA
was examined using a Quant-iT picoGreen dsDNA (Life
Technologies, Carlsbad, CA, USA) assay kit.

Whole exome sequencing and variant calling

Using genomic DNA from tumors and matched normal
samples, we performed exome capture sequencing.
Using an Agilent SureSelect Human All Exome V5 +
UTRs kit (Agilent Technologies, Santa Clara, CA, USA),
whole exome sequencing was performed using an Illu-
mina HiSeq 2000 system (Illumina, San Diego, CA,
USA) to generate 100-bp paired-end sequencing reads
according to the manufacturer’s instructions.
Burrows-Wheeler Aligner (BWA, http://bio-bwa.source-
forge.net/) [17] was used to align the sequencing reads
to the human reference genome (hgl9). The Genome
Analysis ToolKit version 1.6 (GATK, http://www.broad-
institute.org/gatk/) was used for the local realignment
and score recalibration of the sequencing reads [18]. We
employed Picard (http://broadinstitute.github.io/picard/)
for the basic processing and management of the sequen-
cing data. To reduce the false-positive rate, the following
filtering criteria were applied: (i) GATK confidence score
[18] = 50; (ii) number of forward and reverse reads >1;
and (iii) variants present in at least 10% of the reads. All
mutations detected in the paired non-tumor colon tis-
sues were excluded from our analysis. We also excluded
alterations present in dbSNP151, the 1000 Genomes
Project, and in-house Japanese exomes derived from 299
normal tissues in our previous studies, with the aim of
identifying tumor-specific variants. We also performed a
visual inspection to filter out false-positive variants.
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All mutations with clinical inference were annotated
using ANNOVAR [19].

Gene ontology analysis

A Gene Ontology (GO) analysis was performed using
the Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID, http://david.abcc.ncifcrf.gov)
[20]. Adjusted P-values less than 0.05 were considered
significant. The GO analysis was performed for nonsense
mutations, small insertions/deletions (indels), and mis-
sense mutations that were predicted as “probably dam-
aging” and “possibly damaging” by PolyPhen2 (http://
genetics.bwh.harvard.edu/pph2/) [21].

Copy number variant analysis

The log ratio of the depth of coverage between the
tumor and normal colorectal tissues was calculated
using the GATK-depth of coverage tool. Then, copy
number variant (CNV) segments were identified from
the log ratio of the depth of coverage using the Exome
CNV R package [22]. Log ratios of the depth of coverage
that were greater than two were considered indicative of
significant copy number amplification.

Statistical analysis

The Wilcoxon signed-rank test was used to evaluate the
difference in the number of genetic alterations between
primary, pre-FOLFOX metastatic, and post-FOLFOX
metastatic tumors. Increases in specific mutation types
among the post-FOLFOX unique mutations were also
assessed using this method. Microsoft Office Excel 2013
(Microsoft Corporation, Redmond, WA, USA) was used
to perform all the statistical analyses.

Results

Patient characteristics and clinical courses

Table 1 shows the patient characteristics. There were
two male and two female participants with a median
age of 68years. The primary tumor sites were the
colon in one patient and the rectum in three patients.
After curative resection of their primary and meta-
static tumors, all patients were treated with a

Table 1 Patient characteristics
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modified FOLFOX6 (mFOLFOX6) regimen including
an L-OHP dose of 85mg/m”> administered every 14
days; 12 treatment cycles were planned [23].
Post-FOLFOX metastasis developed during (cases 1
and 2) or after (cases 3 and 4) adjuvant chemother-
apy. Histopathological analyses diagnosed the primary
CRC tumors as well-differentiated adenocarcinoma
(cases 2 and 4) and moderately differentiated adeno-
carcinoma (cases 1 and 3). All metastatic tumors ex-
hibited histology concordant with the corresponding
primary colorectal adenocarcinoma.

Additional file 1 Figure S1 summarizes the clinical
courses of these four patients. In case 1, adjuvant
mFOLFOX6 was initiated after the colectomy for pri-
mary sigmoid colon cancer and hepatic resection was
performed for the synchronous colorectal metastases.
After three cycles of mFOLFOX®6, recurrence in the
remnant liver was examined by computed tomography
(CT) imaging. In case 2, the patient underwent high an-
terior resection and liver metastasectomy. Early recur-
rence in the liver was identified by CT imaging after
three cycles of adjuvant mFOLFOX6, which was contin-
ued according to the clinician’s discretion. In total, the
patient received nine cycles of mFOLFOX6 before resec-
tion of the liver recurrence. In case 3, the patient was di-
agnosed with stage IIA rectal adenocarcinoma, received
lower anterior resection without chemoradiotherapy,
and was followed without adjuvant chemotherapy. Liver
metastasis was diagnosed 14 months after the first oper-
ation. Adjuvant mFOLFOX6 was administered following
liver metastasectomy, and adjuvant therapy was discon-
tinued at 11 cycles as a result of intolerable peripheral
sensory neuropathy. Liver recurrence was identified four
months after the end of adjuvant chemotherapy. In case
4, the patient underwent lower anterior resection and
lung metastasectomy for metastatic diseases. Nine
months after completing the planned adjuvant chemo-
therapy, lung recurrence was identified by CT imaging.

A median of 10 mFOLFOX6 cycles was reported in
this study (range, 4-12cycles)) and the median
disease-free survival was 218.5days (range, 97-556
days).

Case Age Sex Primary Histopathological Metastatic site (Pre—/Post- FOLFOX DFS Days from end of FOLFOX
range site type FOLFOX) cycles (days) until recurrence

1 65-69 Male S Mode Liver 4 97 -16°

2 65-69 Male Rs-S Well Liver 9 109 -88?

3 60-64 Female Rs Mode Liver 11 328 120

4 65-69 Female Rb Well Lung 12 556 264

S sigmoid colon, Rs rectosigmoid, Rb rectum below the peritoneal reflection

Mode Moderately differentiated adenocarcinoma, Well Well-differentiated adenocarcinoma

DFS Disease-free survival
@FOLFOX administered after recurrence
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Comparison of the mutation rates and analysis of the
mutation spectrum

Whole exome sequencing was performed to investigate
the profile of somatic alterations in all tumor samples.
The tumors were sequenced to an average 124-fold
coverage (range, 90-155), enabling the sensitive detec-
tion of single nucleotide variants (SNVs) and indels to a
10% variant frequency. To identify germline mutations,
we sequenced the paired non-tumor colon tissues in
addition to the tumor tissues from each patient.
Additional file 2: Table S1 shows a summary of the
coverage details.

The mutation rate of the somatic SNVs and indels in
each tumor sample ranged from 0.90 to 3.26/Mb, with a
median of 1.66/Mb. The rates were consistent with those
of non-hypermutated CRC cases reported by The Can-
cer Genome Atlas (TCGA) [6]. Although the mutation
rates increased slightly after FOLFOX administration,
there were no significant differences between the
matched primary CRC, pre-FOLFOX metastatic, and
post-FOLFOX metastatic samples (P > 0.05, Fig. 1a).

Next, the mutation spectrum of each tumor was investi-
gated. All tumor samples harbored a predominance of C >
T/G > A transitions (range, 45—70%), which is reported as a
mutational signature of CRC [6, 24] (Fig. 1b). C>A/G>T
and T > A/A > T transversions were reported previously as
the most common mutations produced by L-OHP in cul-
tured cells [14]. In addition, C > A mutations were particu-
larly prominent in a CpC context (equivalently, G>T in a
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GpG context) as a result of intrastrand cross-links induced
by cisplatin, which is a Pt-containing antitumor compound
similar to L-OHP [25]. Therefore, we evaluated whether
these platinum exposure signature mutations were enriched
among the post-FOLFOX unique mutations. Figure 2
shows the mutation spectra of the primary CRC,
pre-FOLFOX, and post-FOLFOX unique mutations. There
was no significant increase in C>A/G>T (primary vs
post-FOLFOX metastasis, P =0.27; pre- vs post-FOLFOX

metastasis, P=1.00) or T>A/A>T (primary vs
post-FOLFOX metastasis, P =1.00; pre- vs post-FOLFOX
metastasis, P=0.14) transversions among  the

post-FOLFOX unique mutations. The incidence of C> A
mutations in a CpC context was not increased in
post-FOLFOX metastasis (primary vs post-FOLFOX metas-
tasis, P=0.18; pre- vs post-FOLFOX metastasis, P = 0.18).
In addition, there were no significant differences in other
mutation fractions (Additional file 3: Figure S2).

Analysis of CNVs

To evaluate whether the CNV was affected by FOLFOX
treatment, the CNVs in post-FOLFOX metastatic tumors
were compared to those in primary tumors and
pre-FOLFOX metastatic tumors. Our comparative ana-
lysis revealed that CNVs persisted regardless of the
administration of FOLFOX therapy in any tumor sample
in cases 1, 2, and 4 (Fig. 3). In case 3, we observed focal
amplification of the 7q21, 10q22, and 10q23 chromo-
somal regions, which persisted regardless of FOLFOX
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Fig. 2 Comparison of the mutation spectrum among unique mutations: The relative frequencies of 96 trinucleotides are shown for unique mutations
in the primary, pre-FOLFOX metastatic, and post-FOLFOX metastatic tumor samples. The presented number of mutations is the sum of the data
recorded for the four patients. For specific mutation types, a Wilcoxon signed-rank test was used, and significant enrichment in the platinum exposure
signature, C > A in a CpC context (equivalently, G > T in a GpG context), was not observed

therapy administration. However, the amplification of
some genes, such as SEMA3E, SEMA3A, PCLO,
AK055932, and BX647900, was observed only in pre-
and post-FOLFOX metastasis and not in the primary
tumor in case 3 (Additional file 4: Table S2).

Overlap of SNVs and indels between patient-matched
tumor samples

The overlap of the detected mutations between the pri-
mary, pre-FOLFOX metastatic, and post-FOLFOX meta-
static tumor samples in the individual cases was
investigated. Additional file 5: Table S3 lists the details
of all detected gene mutations. Of the gene mutations
detected in each post-FOLFOX metastatic sample, 112
(82%) in case 1, 114 (46%) in case 2, 71 (73%) in case 3,
and 125 (86%) in case 4 were shared in the matched
tumor samples, indicating that 14—54% of the mutations
were post-FOLFOX unique mutations (Fig. 4a).

Next, we focused on Mut-driver genes, as advocated
by Vogelstein et al. [26]; these genes include tumor sup-
pressor genes for which at least 20% of the mutations
caused truncation of the gene product and oncogenes
for which at least 20% of the missense mutations oc-
curred at a single position along the polypeptide chain.
High mutational concordance of these genes, including
frequent mutation in CRC genes such as APC, KRAS,

FBXW7, TP53, and PIK3CA, was observed between the
matched tumor samples in the individual cases (Fig. 4b).
However, in case 2, a lack of PIK3CA mutations was
found in the post-FOLFOX metastatic samples, although
the PIK3CA E542K and E88Q mutations were detected
in both the primary tumor and pre-FOLFOX metastatic
samples. By contrast, AKTI E17K (C>T) mutations
were found only in the post-FOLFOX metastasis sam-
ples in case 2.

After FOLFOX administration, we also identified the
gain or loss of some mutations that were predicted as
functionally important variants by Polyphen2 [21].
Additional file 6: Table S4 lists the details of these
mutations.

Gene ontology analysis of post-FOLFOX unique mutations
Post-FOLFOX unique mutations in recurrent tumors
may reflect the mechanism of chemo-resistance because
recurrent tumors are thought to develop through
chemotherapy-induced selective pressure. A GO analysis
was performed to identify the molecular functions
enriched in post-FOLFOX metastatic samples. For this
analysis, we selected gene mutations that predict a pos-
sible impact of an amino acid substitution on the struc-
ture and function of a human protein (the analyzed gene
lists are shown in Additional file 7: Table S5). Although
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no identical gene mutations were detected in more than
two cases, four significant functional clusters were iden-
tified (Table 2). The genes annotated to the GO term
“calcium ion binding” were detected in all cases, and
genes annotated to “calcium ion transport” were de-
tected in three cases. These GO terms were not enriched
among the pre-FOLFOX unique gene mutations or
among common mutations (Additional file 8: Table S6).

Discussion

In this study, we performed whole exome sequencing on
primary colorectal, metastatic, and recurrent tumor sam-
ples after adjuvant FOLFOX therapy to evaluate the in-
fluence of this cytotoxic chemotherapy regimen on the
mutational profile of recurrent CRC. Recently, a wide
range of genomic alterations have displayed associations
with cancer behavior, and most of these alterations are
typically found in coding regions [27]. Therefore, whole
exome sequencing is a reasonable strategy for identifying
clinically actionable alterations induced by adjuvant
FOLFOX chemotherapy in recurrent CRC. Furthermore,
one of the most important aims of this study was to
evaluate whether adjuvant FOLFOX chemotherapy

produces genetic alterations in recurrent CRC. Thus, we
excluded variants that could possibly be regarded as
germline alterations from our analysis by using the
sequencing results from patient-matched normal tissues
and previous SNP databases.

Our data showed that the mutation rates and mutation
spectrum were nearly identical between the primary
CRC, pre-FOLFOX metastatic, and post-FOLFOX meta-
static samples. Although the mutagenic activity of
L-OHP was demonstrated in cultured cells [14], an en-
richment in the L-OHP signature was not observed in
post-FOLFOX metastatic tumors. Differences between
the results of that study and our results may be due to
differences in the drug concentration used in that in
vitro study and the concentration used in clinical prac-
tice. A significant dose-dependent increase in mutation
frequency was observed when CHO-K1 cells were ex-
posed to 10—40 uM L-OHP [14]. However, the Cmax of
L-OHP has been reported as approximately 3.6 uM in
the clinical dose setting with mFOLFOX6 therapy (85
mg/m?) [28], which might explain the differences be-
tween the in vitro findings and those of the present
study. A recent study revealed that some recurrent
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gliomas were hypermutated and harbored driver muta-
tions in the RB and Akt-mTOR pathways that bore the
signature of temozolomide-induced mutagenesis after
adjuvant temozolomide chemotherapy. Recurrent gli-
omas that showed evidence of temozolomide-induced
hypermutation underwent malignant progression to

high-grade tumors with a poorer prognosis [9]. By
contrast, our study suggests that FOLFOX is a safe
regimen that lacks the potential risk of inducing new
driver mutations and malignant progression, unlike
adjuvant chemotherapy involving temozolomide to
treat glioma.

Table 2 Significant functional clusters among post-FOLFOX unique mutations

Gene Ontology term Gene symbol

Adjusted

Case 1

Case 2

Case 3 Case 4 P value

GO:0007155~cell adhesion -

CDH9
TRPM7

PCDHA9 -
PDZD2

0.033

COL22A1
NLGN4X
PCDH17

GO:0030695~GTPase regulator activity -

DOCK1 -

TBC1D12 0.037

TBC1D9
RICTOR
IQSECT

GO:0006816~calcium ion transport CACNAITE

TRPM7 -

JPH3 0.0014

TRPVS
SLC24A6

GO:0005509~calcium ion binding CACNATE

CDH9
TRPM7

PDCHA9
PLCB3

DOC2A
RUNX1

0.00044

TBC1D9
TRPVS

SLC24A6
PCDH17
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The patterns of CNVs were nearly identical before and
after FOLFOX chemotherapy in all the cases. The focal
amplification of the 7q21, 10q22, and 10q23 chromo-
somal regions in the post-FOLFOX metastasis samples
was also detected in the primary or pre-FOLFOX metas-
tasis samples in case 3. However, we revealed that some
gene amplifications were observed only in the pre- and
post-FOLFOX metastasis samples and not in the pri-
mary tumor samples in case 3. Among these genes, we
focused on SEMA3E, which has an expression level re-
ported to be positively correlated with increased metas-
tasis in ovarian, melanoma, and colon cancers [29]. Our
results suggest that the acquisition of SEMA3E gene
amplification might relate to the metastatic potential in
CRC and that CNVs can change during the process of
tumor progression.

One of the limitations of our study is its small sample
size due to the strict patient selection criteria. Several
studies have reported that differences in mutational pro-
files depend on the metastatic site [30—32]. Therefore, it
was necessary to analyze patient- and organ-matched
pre-FOLFOX metastasis and post-FOLFOX metastasis
samples. However, such samples are rarely found in daily
clinical practice. Our analysis used valuable samples
from four CRC cases and accurately assessed the influ-
ence of adjuvant FOLFOX chemotherapy on the muta-
tional profile of CRC. The other limitation is the
possibility that our cases may have had primary resist-
ance to FOLFOX therapy. This resistance may have been
why we failed to observe a chemotherapy-induced signa-
ture in the recurrent tumor samples. Our findings
should be further validated in a large cohort that in-
cludes multiple patients with various backgrounds, such
as variations in the duration of FOLFOX chemotherapy
or the timing of recurrence.

It is also possible that there was simply not enough
time to observe a chemotherapy-induced signature in
the recurrent tumor samples that we used.
Twelve-cycle FOLFOX chemotherapy was planned as
the full adjuvant chemotherapy course, but it was
often discontinued due to tumor relapse or intolerable
adverse events. Our data reflect a correlation between
adjuvant FOLFOX chemotherapy and the mutation
profile of CRC in clinical practice, but further investi-
gation is necessary regarding whether long-term treat-
ment with FOLFOX chemotherapy, such as
chemotherapy for unresectable CRC, can induce add-
itional mutations. A previous study suggested that a
circulating tumor DNA analysis could be used to reli-
ably monitor tumor dynamics in subjects with cancer
who were undergoing surgery or chemotherapy for
CRC [33]. This non-invasive approach may be a more
suitable way to test residual tumor cells and analyze
temporal changes in mutation profiles.
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Previous comparative genomic studies have reported
varying degrees of divergence in the genomic profiles of
primary CRC and matched metastases. Substantial mu-
tational divergence between paired primary tumor and
metastasis samples was reported in a whole exome
sequencing analysis with a low sequencing depth [34]
and in shallow-targeted sequencing analysis variants
with a variant allele frequency greater than 20% [35]. By
contrast, a recent deep-targeted sequencing analysis [36,
37] and whole exome sequencing study with an average
sequencing depth of >100-fold [38] showed a high
degree of mutational concordance, generally 50-80%,
between primary CRC and metastases. These studies
also suggest an exceedingly high level of concordance
between primary CRC and metastases in genetic alter-
ations that occur early in colorectal carcinogenesis, such
as alterations in APC, KRAS, NRAS, and BRAF. In our
study, we achieved an average coverage depth of
124-fold, enabling the sensitive detection of SNVs and
indels to a 10% variant frequency. Our results are com-
parable to the results of previous high-resolution
sequencing analyses. Therefore, it is more accurate to
state that the majority of mutations are shared between
primary CRC and metastatic tumors in at least some
cases. Furthermore, our finding confirms our previous
results [15] showing that both primary tumors and their
subsequent metastases could be valid sources of DNA
for patient selection before commencing anti-EGFR
therapy.

Brannon et al. demonstrated that some of the muta-
tional discordance could be explained by spatial het-
erogeneity in the patient tumors. They also suggest
chemotherapy-derived clonal selection based on the
finding that pre-treated tumors were less likely to
have unique mutations than chemo-naive tumors in
patients with concurrently resected tumors [36]. The
increase in unique mutations after FOLFOX chemo-
therapy in our cases is also likely explained by
intra-tumor heterogeneity and clonal selection rather
than by the mutagenicity of L-OHP. According to the
Big Bang model of human colorectal tumor growth
[39], numerous heterogeneous subclones predomin-
antly expand through tumor evolution. After
treatment-derived clonal selection via methods such
as surgery and cytotoxic chemotherapy, clones acquir-
ing a fitness advantage in the environment become
dominant in residual tumors. Our findings raise the
possibility that surgery and adjuvant FOLFOX chemo-
therapy change the clonal composition, resulting in
differences in genetic alterations before and after
FOLFOX administration. This hypothesis may explain
the mutational discordance in case 2. The AKTI
E17K mutation can activate the PI3K/AKT/mTOR
pathway in a similar manner as PIK3CA alterations
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and promotes carcinogenesis through increasing cell
proliferation or survival [40] via the PI3K pathway.
AKT1 mutant clones, which were found in the minor-
ity of primary tumor samples, might sufficiently in-
crease via clonal selection to detectable levels
following surgery and adjuvant chemotherapy. The
high rate of unique mutations in post-FOLFOX meta-
static samples (54% in case 2) also indicates that
there are differences in the clonal composition of
these tumors compared to those of primary tumor
and pre-FOLFOX metastatic samples. However, be-
cause of the very limited number of cases and the
heterogeneity of the tumors, further validation is ne-
cessary. Furthermore, in a recent report, Angelova M
et al. demonstrated that the immune system also in-
fluences tumor clonal composition and tumor evolu-
tion during the metastatic process [41]. In future
studies, we must focus on clonal selection induced by
not only chemotherapeutic agents but also by the im-
mune system.

In addition, we reported that some genes that might be
related to drug resistance were gained or lost during
chemotherapy. Previous studies have indicated that CIA-
PIN1 is involved in the development of multiple drug resist-
ance (MDR) [42]. PTPR] is expressed in CRC cells, and it is
reported that the sustained inhibition of PTPR] increased
cell resistance to 5-fluorouracil (5-FU)-induced apoptosis
[43]. Wang et al. indicated that the TopBP1 expression level
was related to the prognosis of non-small cell lung cancer
patients treated with platinum-based chemotherapy [44].
The CIAPINI R132W and PTPRJ L738 V mutations were
identified among the post-FOLFOX unique mutations in
case 2. Conversely, in case 2, the TOPBPI S630 L. mutation
was identified in primary and pre-FOLFOX metastasis but
not in post-FOLFOX metastasis. These mutations were
non-synonymous and were predicted as functionally im-
portant variants by ANNOVAR [19] in addition to Poly-
phen2 [21]. Thus, these mutations may affect the function
of proteins related to drug resistance. However, the true
function of these mutations is unclear, and further investi-
gation is necessary.

The results of the GO analysis showed an enrichment
of genes that are annotated as “calcium ion transport”
among genes uniquely mutated after FOLFOX. For ex-
ample, TRPM7 encodes a calcium-permeant ion channel
that is notable for its inherent serine/threonine kinase
activity [45]. The product of CACNAIE is the alpha 1E
subunit of R-type voltage-dependent calcium channels
[46]. The calcium-selective channel encoded by TRPVS5
is activated by a low internal calcium level [47].
SLC24A6 encodes a family of potassium-dependent so-
dium/calcium exchangers that maintain cellular calcium
homeostasis [48]. Previous in vitro studies have indi-
cated that there is a relationship between intracellular
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Ca®* homeostasis and the P-glycoprotein-dependent
MDR phenotype [49], which is considered one of the
mechanisms underlying resistance to L-OHP [50].
Although further investigation of the true function of
these mutations is necessary in a larger cohort, alter-
ations in genes involved in intracellular Ca** homeosta-
sis may be related to resistance to FOLFOX therapy with
the development of MDR.

Conclusions

In conclusion, our data showed that the mutation rates,
mutation spectra, or CNVs were nearly identical be-
tween the primary tumor, pre-FOLFOX metastatic, and
post-FOLFOX metastatic samples in four CRC cases.
We found that some gene mutations that might be re-
lated to FOLFOX resistance were gained or lost during
chemotherapy, and the inter-tumor discordance of the
mutational profiles suggests the existence of intra-tumor
heterogeneity and the induction of clonal selection as a
result of response to the FOLFOX chemotherapy. Our
findings might be useful as pilot data for a larger study
to clarify the changes in the mutational landscape in-
duced by adjuvant FOLFOX chemotherapy.
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