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Abstract

Background: Circulating tumor cells (CTC) and plasma cell-free RNA (cfRNA) can serve as biomarkers for prognosis
and treatment response in lung cancer. One barrier to the selected or routine use of CTCs and plasma cfRNA in
precision oncology is the limited quantity of both, and CTCs are only seen in metastatic disease. As capture of CTCs
and plasma cfRNA presents an opportunity to monitor and assess malignancies without invasive procedures, we
compared two methods for CTC capture and identification, and profiled mRNA from CTCs and plasma cfRNA to
identify potential tumor-associated biomarkers.

Methods: Peripheral blood was collected from ten patients with small cell lung cancer (SCLC), ten patients with
non-small cell lung cancer (NSCLC) and four healthy volunteers. Two methods were used for CTC capture: the
standard epithelial cell adhesion molecule (EpCam) CellSearch kit (unicapture) and EpCAM plus HER2, EGFR and
MUC-1 specific combined ferrofluid capture (quadcapture). For the quadcapture, anti-cytokeratin 7 (CK7) was
additionally used to assist in CTC identification. NanoString analysis was performed on plasma cfRNA and on mRNA
from combined ferrofluid isolated CTCs. Expression data was analyzed using STRING and Reactome.

Results: Unicapture detected CTCs in 40% of NSCLC and 60% of SCLC; whereas, quadcapture/CK7 identified CTCs
in 20% of NSCLC and 80% of SCLC. Bioinformatic analysis of NanoString data identified high expression of a platelet
factor 4 (PF4)-related group of transcripts.

Conclusions: Quadcapture ferrofluid reagent did not significantly improve CTC capture efficacy. NanoString analysis
based on CTC and plasma cfRNA data highlighted an intriguing PF-4-centric network in patients with metastatic
lung cancer.
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Background
Lung cancer is the leading cause of cancer-related mor-
tality in both men and women in the United States [1].
Non-small cell lung cancer (NSCLC) accounts for ap-
proximately 85% of all lung cancer cases [2]; the major-
ity of patients with NSCLC present with distant
metastases, for which chemotherapy continues to be the
mainstay of treatment [2]. Stage IV metastatic NSCLC
has a historic five-year survival rate of 16% [3]. Small cell
lung cancer (SCLC) accounts for about 15% of all lung
cancer cases and is an aggressive malignancy with fre-
quent and early metastatic events, with a dismal 5-year
survival rate of only 7% [4]. Challenges of treating lung
cancer include its heterogeneity [5], tumor evolution
throughout treatment [5], therapy resistance [6] and de-
tection at advanced stages. For both SCLC and NSCLC,
the current intensive search for reliable biomarkers that
can guide treatment decision-making and management
is limited by the lack of easily accessible tumor speci-
mens. Nucleic acid secreted by the tumor cells can serve
as predictive and prognostic biomarkers [7, 8]. Analysis
of circulating tumor cells (CTCs) and circulating cell-
free RNA (cfRNA) has shown promise in addressing
some of these challenges [8–10] and may provide prac-
tical means of surveilling disease status.
CTCs are malignant cells that are found in the periph-

eral blood once a tumor has become metastatic [11].
These cells may provide surrogate markers to guide de-
cisions regarding prognosis and treatment. CTCs can
help in early detection of malignancy and are indicative
of metastatic disease, and high levels of CTCs are sug-
gestive of worse outcomes [12]. In more advanced cases,
CTCs may provide prognostic information as well as as-
sist in monitoring response to treatment, with utility
thus far most notably demonstrated in breast cancer and
colorectal cancer [13–16]. In non-small cell lung cancer,
CTCs have been shown to be associated with worse
progression-free and overall survival [17, 18].
Technological advances have made it possible to use

CTCs as a source of tumor DNA/RNA, which can be
molecularly profiled to detect informative genomic or
transcriptomic signatures and to identify genetic muta-
tions that predict response to targeted therapies [19, 20].
In cases where CTCs are undetectable, an alternative ap-
proach is the measurement and analysis of cfRNA in the
plasma of patients.
One aim of this study was to compare an alternative

combined ferrofluid (quadcapture) capture method to
the standard assay (unicapture) and to evaluate the
addition of anti-CK7 to enhance the identification of
CTCs from patients with NSCLC and SCLC. CTCs can
be distinguished from other peripheral blood cells on
the basis of their physical and biologic properties [20].
The CellSearch™ Epithelial Cell kit was used for the

isolation of CTC by EpCAM specificity (unicapture); it
is the gold standard and remains the only FDA-
approved test for the capture and identification of CTCs:
it utilizes an immunomagnetic separation with epithelial
cell adhesion molecule (EpCam) specific ferrofluid [21,
22]. However, some cells may be lost to capture due to
low levels or downregulation of EpCAM [23, 24]. We
hypothesized that targeting additional tumor specific
membrane markers in conjunction with the current
EpCAM-ferrofluid (unicapture) CellSearch platform
would increase CTC capture and yield. To this end, we
assessed a novel immunoferrofluid capture with a novel
ferrofluid cocktail of MUC-1, EGFR and HER2 in
addition to EpCAM (quadcapture).
A second aim was to define an mRNA expression sig-

nature for NSCLC and/or SCLC based on analysis of
CTCs and plasma cfRNA using the NanoString digital
genomics platform [25], which covers 770 discrete can-
cer relevant genes. Validation of CTC mRNA and
plasma cfRNAs profiles is an underexplored concept and
may assist in identifying prognostic and treatment re-
sponse predictive biomarker signatures and provide the
foundation for hypothesis generation and advanced
translational research. This effort identified four genes:
one involved in immunity (CCL5) and three involved in
platelet degranulation (CLU, SPARC and SRGN) as part
of a platelet factor 4 (PF4)-centric network. The role of
platelets in lung tumorigenesis and tumor progression
has attracted much interest [26–29] and has been
strongly linked to tumor production of PF4 [27].

Methods
Patients and study design
The protocol for this study was approved by the Fox
Chase Cancer Center (FCCC) Institutional Review
Board (IRB), study number 10–043. This prospective
study was entirely conducted at FCCC. Twenty patients
with either metastatic NSCLC (n = 10) or extensive
stage SCLC (n = 10) and initiating a new therapy, signed
consent forms and were enrolled in the protocol. Nor-
mal control plasma from four healthy individuals with-
out known chronic conditions or cancer was also
collected. Figure 1a summarizes the overall workflow.
Nanostring mRNA expression analysis was additionally
covered by the FCCC IRB, study number 18–4002.

CTC capture and processing
To capture CTCs, peripheral blood samples were col-
lected into two 10 mL CellSave Preservative tubes™
(Menarini, Bologna, Italy) and one EDTA tube. All tubes
were maintained at ambient temperature until processed
– the EDTA tube within 24 h and the CellSave tubes
within 96 h of collection. The CellSearch™ Epithelial Cell
kits (Menarini, Bologna, Italy) were used for the isolation
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of CTC by EpCAM specificity (unicapture). In addition,
CTCs from one CellSave tube and one EDTA tube were
processed using a custom mixture of EpCAM-, HER2-,
EGFR- and MUC-1-ferrofluid (quadcapture) prepared by
Menarini (Huntington Valley, PA), for this collaborative
study. All automated CTC isolations were performed on
the CellTracks™ AutoPrep System (Menarini, Bologna,
Italy). Data was collected and analyzed on the Cell-
Tracks™ Analyzer II (Menarini, Bologna, Italy).
Anti-pan cytokeratin (CKs 8, 18, 19)-PE, anti-CD45-

APC and DAPI stain (CellSearch Epithelial Cell kit,
Menarini, Bologna, Italy) were used to label CTCs after
uni- or quadcapture (Fig. 1a). In addition, an anti-CK7

antibody provided by Menarini (Bologna, Italy) was added
to the staining cocktail and used in the CTCs captured
using the quadcapture mixture. Immunomagnetic enrich-
ment of CTCs using the CellTracks AutoPrep System has
been previously described in detail [30]. Briefly, ferrofluid
particles conjugated with anti-EpCAM (unicapture) or
EpCAM/MUC-1/EGFR/HER2-captured (quadcaptured)
are used to capture CTCs from 7.5mL of blood via mag-
netic separation. Captured cells are washed, permeabilized
and labeled with fluorescent antibodies. Following label-
ing, cells are washed, re-suspended in cell fixative and
loaded into cartridges. Cartridges are placed in magnetic
holders (MagNest, Menarini, Bologna, Italy) which align

Fig. 1 Workflow and CTC/cfRNA capture. a Workflow and data analysis. b Representative images of captured and fluorescently labeled CTCs from
patients with NSCLC (top) and SCLC (bottom). (c) Quantified CTC detection using Uni (unicapture) and Quad (quadcapture) for patients
with NSCLC or SCLC. NSCLC = non-small cell lung cancer; SCLC = small cell lung cancer; NC = normal control samples; cfRNA = cell free
RNA; CK = cytokeratin (tumor stain); DAPI = nuclear stain; EpCAM = epithelial cell adhesion molecule
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the ferrofluid-captured cells with the cartridge surface.
The MagNests are placed into the CellTracks Analyzer II,
where the fluorescently-labeled cells are scanned, and im-
ages are captured. Images are sorted by computer-assisted
software selecting events based on: negative CD45, posi-
tive cytokeratin and positive DAPI. Captured images are
displayed as “thumbnails” and reviewed. Images depicting
complete cells are selected as a CTC. CTCs for enumer-
ation were defined as EpCAM-captured (unicaptured) or
EpCAM/MUC-1/EGFR/HER2-captured (quadcaptured),
cytokeratin positive, nuclear stain (DAPI) positive and
CD45 negative.

RNA processing and analysis
The NanoString nCounter PanCancer Progression Panel
[25] (NanoString Technologies, Seattle, WA) was used
to profile gene expression of 770 genes (Additional file 1:
Figure S1 and Additional file 4: Table S1). Briefly, plasma
RNA extraction was performed using Norgen plasma/
serum RNA purification kit (Cat#55000, Thorold,
Canada). Plasma RNA concentration was measured
using a BioAnalyzer 2100 (Agilent, Santa Clara, CA).
RNA in normal control samples was: mean 44 pg/ul,
max 51 and min 41; while in lung cancer specimen it
was: mean 400 pg/ul, max 1228 and min 109. Additional
Multiplexed Target Enrichment (MTE) was performed
before hybridization to the code sets of NanoString’s
nCounter PanCancer Progression Panel, in which with
the use of SuperScript® VILO, plasma RNA was con-
verted to cDNA, which was then amplified with target-
specific primers using TaqMan® PreAmp MasterMix. For
the NanoString procedure, capture probes, reporter
probes and specimen total RNA were hybridized over-
night in a thermocycler, and then were applied to
nCounter cartridges. Purification was then processed on
the nCounter Prep Station, and finally images were cap-
tured on the nCounter Digital Analyzer. Plasma derived
specimens used 300 ng of total input RNA.

cfRNA preparation
Ferrofluid-captured material was placed in 1mL RNAla-
ter solution (Qiagen Sciences Maryland USA), and were
stored at -80 °C. RNA was prepared for the plasma and
ferrofluid samples using a standard kit (http://www.
nanostring.com, NanoString Technologies, Seattle, WA)
[25]. The single-cell analysis procedure was used for cell
free plasma samples to prepare RNA for analysis, which
has additional Multiplexed Target Enrichment (MTE)
before hybridization, in which with the use of Super-
Script® VILO input total RNA was converted to cDNA,
and the cDNA was then amplified with target-specific
primers using TaqMan® PreAmp MasterMix.

Statistical methods for CTCs
Allard and colleagues previously found that the rate of
patients who had ≥2 CTCs/7.5 ml blood was 20% in a
group of patients with NSCLC or SCLC [21], and we
used this as the promising rate (i.e. alternative hypoth-
esis). We used 1% as a discouraging rate (i.e. null hy-
pothesis). With a target of 20 patients enrolled in the
study, we pre-determined that our novel method would
be considered comparable to historical methods if 2 or
more of the 20 samples had ≥2 CTCs/7.5 mL of blood.
Under this decision rule, our study had 93% power and
1.7% Type I error (one-sided). We used STATA (Stata-
Corp, College Station, Texas) for analyses. Criteria for
statistical significance was set to p-values < 0.05.

Analysis of the Nanostring data
Quality control and normalization were performed as
recommended by manufacturer (using nSolverAnalysis-
Software version 3.0), and data points with the extreme
low counts (<=2) were removed. For each sample, the
remaining data points were ranked, to remove the batch
effect.
Genes of interest were selected using the 3 biologically

relevant scenarios:

A) genes consistently showing higher expression in
tumor, than in controls (higher than average in no
less than 75% of all tumor samples, while lower
than average in no less than 75% of all controls B)
rare cancer-specific events were defined as a subset
of genes highly ranked (top 10) in at least one tumor
sample, but in none of the controls C) a second tier
of rare cancer-specific events was defined as a subset
of genes which were highly or moderately expressed
(top 20 by rank) in at least five tumor samples, but in
no more than 1 control sample.

For the subsets of plasma- and CTC-derived nano-
string data (using selection criteria outlined above), hier-
archical clustering was used to identify top candidates
compared to normal control samples. Hierarchical clus-
tering (similarity metric: Euclidean distance, clustering
method: complete linkage) generation of the heatmaps
was performed using gplots package (Gregory R.
Warnes, Ben Bolker, Lodewijk Bonebakker, Robert
Gentleman, Wolfgang Huber Andy Liaw, Thomas Lum-
ley, Martin Maechler, Arni Magnusson, Steffen Moeller,
Marc Schwartz and Bill Venables (2016). gplots: Various
R Programming Tools for Plotting Data. R package ver-
sion 3.0.1.(https://CRAN.R-project.org/package=gplots).

Transcriptomic database analysis
The Kaplan-Meier plotter (http://kmplot.com/analysis/
index.php?p=service&cancer=lung) was used to access
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publicly available databases (Cancer Biomedical Inform-
atics Grid (caBIG, https://biospecimens.cancer.gov/rela-
tedinitiatives/overview/caBig.asp)), the Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) and
The Cancer Genome Atlas (TCGA, http://cancergen-
ome.nih.gov) from patients with lung cancer. Transcrip-
tomic data from 1926 patient tumors were analyzed in
terms of overall survival for genes of interest. Default
settings were used and ‘Compute median survival’ was
selected. Kaplan-Meier plots were generated and re-
ported median survivals and p-values were calculated by
Kaplan-Meier Plotter [31].

STRING analysis of plasma and CTC genes
To assess the potential functional interrelationships
within the identified gene set, we conducted STRING
[32, 33] analyses to better understand interactions be-
tween gene products identified in patient plasma and
CTCs (Table 1). Within a subset of eight genes for which
the interaction was detected using the default settings,
we have narrowed down on the top genes identified as
highly expressed in patient samples (CCL5, CLU, SRGN
and SPARC). The expanded 4-gene network was based
on the input of these genes, with the basic settings as
follows: ‘meaning of network edges: confidence’; ‘active
interaction source: experiments, databases, co-
expression’; ‘minimum required interaction score: high
confidence (0.700)’; ‘max number of interactors to show:
1st shell – no more than 10 interactors, 2nd shell – none.’
For the enhanced visualization of the biologically most
relevant groups in the interaction networks, we have
used ‘clusters’ setting, ‘kmeans clustering’ was selected
with the number of clusters set at two. To test the confi-
dence of interactions between top gene products and
PF4, a focused, high confidence (setting at 0.900) net-
work was generated: the input proteins also included
PF4; minimum required interaction score was changed
to highest confidence (0.900); the maximum number of
interactors was kept at none for the 1st shell; and the
kmeans clustering was selected with the number of clus-
ters set at one.

Functional pathway analysis using Reactome
Relevant functional pathways for the gene set of interest
(CCL5, CLU, SPARC, SRGN and PF4) were queried
using The Reactome Knowledgebase (https://Reactome.
org) [34]. Reactome version 63 (released December 18,
2017), which includes 2179 human pathways, 11,426 in-
teractions, 10,996 proteins, 1764 small molecules and
27,694 literature references was used. The five genes of
interest were used as input. Four of five genes were
identified as expressed in the ‘platelet alpha granule
lumen’. The platelet degranulation pathway was further
explored, and a list of genes involved in the pathway as

well as a list of genes involved specifically in ‘platelet
alpha granule contents’ were downloaded. Pictorial rep-
resentation of ‘platelet degranulation’ was also down-
loaded from the Reactome platform [34].

Results
Patient characteristics
Between January 2011 and February 2012, 21 patients
were enrolled: n = 10 with SCLC and n = 11 with NSCLC
(Additional file 5: Table S2). One NSCLC patient (num-
ber 017) declined sample collection and no further test-
ing was performed. The patient was not included in the
final analysis. As matched controls for the plasma and
CTC RNA analysis, we used samples from four healthy
volunteers.

CTC capture
For each patient, both unicapture and quadcapture
methods were applied to peripheral blood specimens

Table 1 Top transcripts in patients with metastatic lung cancer
based on hierarchical clustering

Genes Plasma detection CTC detection

CCL5 A,B,C B

CLU A,B,C B

GPX1 A,B,C B

AKT3 A,B,C

ARHGDIB A,B,C

SPARC A,B,C

SRGN A,B,C

TNXB A,B,C

THBS1 B,C B

BAI1 B,C

CLDN1 B,C

EGF B,C

FHL1 B,C

PDK1 B,C

PLEKHO1 B,C

RBL1 B,C

RBX1 B,C

TGFB1 B,C

GIMAP4 B B

ITGB3 C C

PECAM1 C B

LRG1 B,C

PKN1 B,C

Only genes satisfying at least two cutoff criteria are shown. A, genes
consistently showing higher expression based on plasma and CTC analyses; B
and C, first and second tier of rare cancer-specific events. See Material and
Methods for details. Bold face, genes forming a tight (confidence score > 0.9)
cluster by interaction analysis using String database
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(Fig. 1a). CTCs were detected and analyzed for NSCLC
samples and SCLC and fluorescent labeling of DAPI,
CK, and CD-45 was performed (Fig. 1b). Table 2 sum-
marizes results for CTC capture. CTCs were detected in
6 out of 10 NSCLC samples (60%) and 8 out of 10 SCLC
samples (80%) by at least one of the two methods (uni-
capture or quadcapture).
Detectable CTCs for NSCLC ranged from 1 to 84 in

number. For NSCLC, the unicapture method identified
CTCs in four patients, with one patient having 84
CTCs/mL and the remaining three having 1 CTC. The
quadcapture method identified CTCs in two patients,
with one CTC each (Fig. 1c). Overall, we observed a
trend with decrease in CTC-positive patients with the
new method in NSCLC. Using ≥1 CTC positivity cutoff,
4/10 patients were positive by unicapture, while 2/10
were positive by quadcapture, and when using ≥2 CTC
positivity cutoff, 1/10 NSCLC was positive with unicap-
ture and none were positive by quadcapture (Table 2).
Detectable CTCs for SCLC ranged from 1 to 4007 in

number. The unicapture method identified CTCs in 6
patients, with a range of 1–4007 CTCs (Fig. 1c). The
quadcapture method identified CTCs in 8 patients, with
a range of 1–3810. All specimens with CTCs that were
identified by unicapture were also identified by quadcap-
ture, and the 6 patients demonstrating CTCs by both

methods showed similar numbers by both enrichment/
detection procedures (Table 2). Overall, we observed a
trend with increase in CTC-positive patients with the
new method in SCLC. Using ≥1 CTC positivity cutoff, 6/
10 patients were positive by unicapture, while 8/10 were
positive by quadcapture, and when using ≥2 CTC posi-
tivity cutoff, 5/10 NSCLC was positive with unicapture,
while 7/10 were positive by quadcapture (Table 2).
Nonetheless, the general difference in number of CTCs
for the SCLC patients between the two methods was not
statistically significant (P = 0.37).
The concordance rate between two methods was 60%

with ≥1 CTC positivity cutoff and 85% with ≥2 CTC
positivity cutoff.
In summary, no significant improvement was seen

with the new quadcapture method compared to standard
unicapture method. No association was noted between
CTC enumeration and the demographic characteristics
of age, gender or smoking history.

NanoString analysis of RNA from plasma and CTCs
Using samples from the eighteen patients and four nor-
mal controls, plasma cfRNA and CTC mRNA was quan-
tified with the single cell PanCancer Progression Panel
(Fig. 1). The most significant transcripts are broken

Table 2 Circulating tumor cell analysis in NSCLC and SCLC patients

Number of CTCs/ mL

Patient # Diagnosis Histology, stage, disease site Unicapture Quadcapture

001 NSCLC Adenocarcinoma, IV; bone 0 0

002 NSCLC Adenocarcinoma, IV; bone 0 0

003 NSCLC Adenocarcinoma, IV; brain 0 1

004 NSCLC Adenocarcinoma, IV; bone 0 0

006 NSCLC Adenocarcinoma, II; lymph nodes 0 1

007 NSCLC Squamous, IV; brain metastasis 0 0

008 NSCLC Adenocarcinoma, IV; lymph node metastasis 84 0

010 NSCLC Adenocarcinoma, IV; brain, bone, adrenal, subcutaneous tissue 1 0

011 NSCLC Adenocarcinoma, IV; adrenal 1 0

012 NSCLC Adenocarcinoma, IV; liver 1 0

005 SCLC Extensive; liver 1 1

009 SCLC Extensive; liver, adrenal, bone 1615 1491

013 SCLC Extensive; lymph nodes 84 62

014 SCLC Extensive; bone, liver, brain 121 112

015 SCLC Extensive; bone 0 0

016 SCLC Limited stage 0 2

018 SCLC Limited stage 0 0

019 SCLC Extensive; liver 4007 3810

020 SCLC Limited stage 0 6

021 SCLC Extensive 22 16
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down by cfRNA and CTC detection in Table 1 as well as
Fig. 2c and Additional file 2: Figure S2.
RNA was quantified from plasma and CTCs for both

SCLC and NSCLC samples (Fig. 2a, b). Comparisons of
RNA from normal volunteers to RNA from cancer pa-
tients identified highly expressed transcripts related to
cancer growth, progression and metastasis (Fig. 2c and
Additional file 2: Figure S2A).
Expression of a total of 41 genes were statistically sig-

nificantly and reliably detected in plasma from NSCLC
or SCLC patients relative to normal control samples
(Fig. 2c and Table 1). The most significantly overex-
pressed genes based on plasma and CTC mRNA

included inflammatory chemokine CCL5, and secreted
glycoprotein CLU (clusterin; Additional file 2: Figure
S2A). In addition, two pro-metastatic, pro-invasive, pro-
proliferation ligands were represented in the list, includ-
ing TGFB1 and EGF, the TGF-beta related gene, SRGN
and the secreted glycoprotein SPARC (osteonectin) (Fig.
2c and Table 1).

Focused interaction networks and overall survival
Three highly expressed genes were identified with high
confidence as present in patient CTCs, and as enriched
in patient plasma versus normal control plasma (Table 1):
CCL5, CLU and GPX1. Based on STRING analysis,

Fig. 2 Quantification of detected NSCLC and SCLC mRNA and supervised hierarchical clustering of statistically significant transcripts. a Concentration
of CTC mRNA for NSCLC (left) and SCLC (right). b Concentration of plasma derived circulating cell free tumor mRNA (cfRNA) from patients with NSCLC
(top) and SCLC (bottom). c Heatmap for and hierarchical clustering of 41 transcripts identified as significantly overexpressed in the plasma of patients
with NSCLC/SCLC compared to normal control (NC) samples; genes below the detection threshold were set to 0 (gray)
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CCL5 and CLU are components of an interaction net-
work also involving SRGN, SPARC, TGFB1 and several
critical inflammatory markers (Fig. 3a). Intriguingly,
platelet factor 4 (PF4), an endocrine factor with overex-
pression correlating with decreased overall survival of
patients with lung cancer [27], emerged as a central
node connected with high confidence to SRGN, SPARC,
CLU and CCL5 (Fig. 3a). PF4 (identified in silico and
not part of the 770 gene NanoString platform) and
SRGN, SPARC and CLU are functionally associated in
the release of platelet alpha granule content (Additional

file 3: Figure S3 and Additional file 6: Table S3 and Add-
itional file 7: Table S4).
We next used KM plotter to compare these identified

genes to transcriptomic data for 1926 NSCLC specimens
[31]. This analysis supported the idea that genes in the
PF-4 centered network were overexpressed in patients
with poor prognosis (Fig. 3a). For SRGN, SPARC, CLU
and CCL5, higher expression correlated with statistically
significant survival differences. Overexpression of each
of the four genes detected as highly expressed in patient
plasma (Fig. 2c and Table 1) indicated superior survival

Fig. 3 Circulating cancer cell and cfRNA-based interaction network and overall survival. a Expanded high confidence (0.700) four-gene (SPARC,
SRGN, CLU, CCL5) STRING [32] interaction network (left) with the correlating focused network (right). b Kaplan-Meier overall survival plots based
on 1926 transcripts form patients with lung cancer. [31]
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in a comparison of lung cancer cases (importantly, this
is not a comparison of lung cancer to healthy tissue)
with high versus low expression (Fig. 3b); specifically,
improved survival of 72.33 months versus 54.3 months
for cases with high CCL5 (P < 0.01); 110.27 months ver-
sus 52.0 months for cases with high CLU (P < 1E-16);
96.07 months versus 54.3 months for cases with high
SPARC (P < 7E-11); and 81.0 months versus 61.2 months
for cases with high SRGN (P < 0.001). Consideration of
PF4 in terms of overall survival validated recently re-
ported findings that high expression of PF4 correlates
with worse overall survival compared to lower expres-
sion [27]. Based on transcriptomic data, overall survival
of patients with high PF4 expression was 57.33 months
versus 79.27 months for cases with lower expression of
PF4 (Fig. 4a). Intriguingly, an additional platelet associ-
ated factor, TGFB1 – also identified in patient plasma
(Fig. 2c and Table 1) – paralleled CCL5, CLU, SPARC
and SRGN survival data, with improved survival seen
with TGFB1 expressed at high levels (low expression,
52.2 months; high expression, 91.0 months; P = 3.2e-09;
Fig. 4b). These findings for the first time, based on CTC
and plasma RNA data, propose and intriguing and pro-
vocative testable model in metastatic lung cancer,
wherein PF4 may act as a negative regulator – likely in

terms of platelet activity – of CCL5, CLU, SPARC,
SRGN and TGFB1 (Fig. 4c). This intriguing model de-
serves further study and requires extensive validation.

Discussion
Precision oncology applies advanced genomic and mo-
lecular analyses of tumors to optimize treatment, often
relying on target therapy and immunotherapy. An essen-
tial component of precision oncology is tracking the re-
sponse of a tumor to intervention and to adjust
treatment accordingly [35]. Precision oncology is only
possible with continuous collection and analysis of pa-
tient specific data; single genomic biomarkers based on
a single – temporal and spatial – tissue biopsy are sel-
dom sufficient to design comprehensive personalized
predictive models to accurately guide durable treatment
[36]. Intratumoral heterogeneity and tumor evolution [5]
are major obstacles of sustained therapeutic responses
and possibly curative interventions. Additional factors,
including immune-related (e.g., platelets and other
immune cells), metabolome-related and microbiome-
related, are likely needed to be considered as part of pre-
cision oncology. Capture of CTCs and plasma cfRNA
presents an opportunity to monitor malignancies
without invasive procedures [37]. Leverage of this

Fig. 4 Platelet factor 4 (PF4) survival correlation and proposed model. Kaplan-Meier overall survival for (a) PK4 and (b) TGFB1 based on
transcriptomic data for 1926 lung cancer patient samples. [31] (c) Proposed testable model

Beck et al. BMC Cancer          (2019) 19:603 Page 9 of 13



information through data mining to generate focused
interaction networks and to identify potential tumor vul-
nerabilities and novel treatment angles can help
maximize the impact of such data [35]. In this study, we
used different approaches to capture and analyze CTCs
and RNA from patients with malignant lung cancer and
subsequently used advanced data mining to augment
our findings and to identify an intriguing PF-4-centric
network (Figs. 3a and Fig. 4c).

CTC capture and CTC-RNA analysis
CellSearch capture reagent (unicapture) is based on
EpCAM expression, a proven method of detecting CTCs
[9, 38, 39]; however, EpCAM CTC capture has the po-
tential of missing cells that have, for example, undergone
EMT [10], a process linked to cancer cell invasion and
chemoresistance [6, 40]. A subpopulation of NSCLC and
SCLC express, in addition to EpCAM, EGFR, HER2
and/or MUC1; we therefore hypothesized that targeting
these additional molecules (quadcapture) would increase
the rate of CTC capture.
Overall, quadcapture did not significantly improve the

capture of CTCs. For samples that demonstrated CTCs
in both assays (uni- and quadcapture), CTC numbers
were generally lower in the quadcapture assay. The
quadcapture had equal amounts of each ferrofluid: 25%
anti-EpCAM, 25% anti-HER2, 25% anti-MUC1 and 25%
anti-EGFR. This suggests that EpCAM is potentially es-
sential to capture the maximum number of CTCs, espe-
cially for cases with lower than average EpCAM
expression. The maximum amount of EpCAM ferrofluid
(unicapture) appears capable of capturing CTCs with
minimal EpCAM expression. The 75% loss of EpCAM
in the quadcapture mixture may have been too steep to
realize an additive effect of targeting HER2, MUC1 and
EGFR in parallel. Notably, for no patients with NSCLC
did both methods identify CTCs (Table 2). The identifi-
cation of an additional two NSCLC (pts. 003 and 006)
and two SCLC (pts. 016 and 020) was potentially en-
abled by anti-CK7, allowing for the detection of these
CTCs in the quadcapture. Other cancers do not have as
great CK variance as lung cancer does and the addition
of anti-CK7 could enhance lung cancer CTC identifica-
tion. Due to an absence of accompanying tumor tissue,
we were unable to verify dependency on anti-CK7 to de-
tect cytokeratin in these patients. The CellSearch pan
cytokeratin reagent does cover the other CKs required
for the majority of epithelial cancers. Alternate antibody
labeling techniques could be developed in the future by
adding biotin-labeled multiple antibodies followed by
the maximum amount of streptavidin labelled ferrofluid.
Given that one endpoint of this analysis was to detect

≥2 CTCs in two or more samples with the novel quad-
capture ferrofluid, the study did meet its primary

endpoint. The presented study is limited by lack of
power to compare the number of CTCs detected. More
importantly, our study highlights the ability to study
RNA expression and novel technologies with small
blood samples. As we move further into the era of tar-
geted and immuno-oncology, the ability to study dy-
namic biomarkers in real time will be increasingly
important. Larger studies aimed at CTC subtype classifi-
cation with distinct molecular features (for instance,
EGFR-mutant, KRAS mutant, ALK-rearranged and PD-
L1 expressing) are needed.

Leveraging transcriptomic data and limitations of the
gene expression study
Analysis of RNA from plasma and from captured CTCs,
using the digital genomics NanoString platform, identi-
fied a number of genes that were expressed at higher
levels in cancer patients compared to normal controls.
These genes may have biologic significance as drivers of
metastasis and may indeed be of prognostic relevance.
Advanced data mining and network analysis using

STRING [32] and Reactome [34] revealed that four of
the identified gene products (for CCL5, CLU, SPARC
and SRGN) interact with PF4, a critical endocrine factor
previously described as associated with worse outcome
in patients with lung cancer [27]. PF4 functions as a pro-
motor of platelet chemotaxis into the tumor microenvir-
onment and has been linked to carcinogenesis [27]. The
roles of platelets in terms of tumor growth, proliferation
and metastasis is well-established and provides an im-
portant opportunity for possible therapeutic intervention
[26–29]. Our analysis proposes a provocative potential
model of negative regulation between PF4 and CCL5,
CLU, SPARC, SRGN and TGFB1 (Fig. 4c).
Determining the exact source of increased PF4 levels

in patient with cancer is complicated. At least three
sources for PF4 in have been described. A prominent
possibility is the aforementioned overexpression and se-
cretion of PF4 by tumor cell in an endocrine fashion
[27]. Alternatively, platelets may express higher levels of
PF4 in patients with cancer, which has been described
for patients with colorectal cancer; where the level of
PF4 in patients with cancer was double that of matched
healthy control individuals (Fig. 4c; [41]). Lastly, other
myeloid cells, such as dendritic cells or monocytes,
could potentially be a source of PF4 [42, 43].
CCL5 and CLU have previously been reported as up-

regulated and/or secreted in several cancer types. CCL5
is a soluble chemotactic cytokine/chemokine. Interest-
ingly, CCL5 is involved in cancer cell proliferation, me-
tastasis and the formation of an immunosuppressive
microenvironment [44]. Circulating CCL5 has also been
described as a potential biomarker for tumor load in
breast cancer [45]. CLU is a stress-activated, ATP-
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independent molecular chaperone, normally secreted
from cells; it is up-regulated in Alzheimer disease as well
as in many tumor types. CLU has also been proposed as
a therapeutic target in cancer [46]. Unlike CCL5, CLU is
functionally related to genes involved in platelet de-
granulation (Additional file 3: Figure S3).
Transforming growth factor beta 1 (TGFB1) belongs

to the TGF-beta superfamily of cytokines and is a se-
creted protein with multiple cellular functions, such as
regulation of cell growth, proliferation, metastasis and
angiogenesis [40, 47]. TGF-beta levels have been shown
to correlate with chemotherapy response in NSCLC and
have recently been shown to attenuate immunotherapy
responses [48]. The TGFB1 pathway is pro-metastatic in
late stages of cancer [47, 49, 50] and, like PF4, TGFB1
has been linked to platelet activity in cancer patients [26,
51]. It has also been shown that platelets are a crucial
source of bioavailable TGFB1 for tumor cells in the vascu-
lature and for support of tumor cell extravasation [26].
We found TGFB1 RNA significantly elevated in plasma of
patients with metastatic lung cancer. Two additional top
genes identified in our study were SRGN (serglycine) and
SPARC, which mapped to the same functional pathway
(i.e., platelet degranulation) that includes TGFB1 and PF4
(Additional file 3: Figure S3) [34].
Survival analyses [31] based on the network of identified

genes indicated that increased expression of CLU, CCL5,
TGFB1, SRGN and SPARC correlates with improved sur-
vival; whereas, high expression of PF4 correlates with re-
duced survival. A possible model of this apparent paradox
is based on the known importance of concentrations of
cytokines, a well-described phenomenon for PF4 [52, 53].
For example, at low concentrations, PF4 predominantly
occurs as a monomer and acts synergistically with IL-8 in
suppressing myeloid progenitor cell proliferation; at
sub-stimulatory concentrations PF4 also reduces neu-
trophil adhesion to endothelium. However, at high
concentrations, PF4 forms a tetramer and abrogates
IL-8 signaling [52, 53]. Our study leverages data from
plasma RNA and CTCs, published studies and fo-
cused data mining, to propose a testable model in
which high concentration of PF4 induces platelet at-
traction into the tumor microenvironment and regu-
lates expression and/or availability of CLU, CCL5,
TGFB1, SRGN and SPARC (Fig. 4c).
Our proposed model (Fig. 4c) focuses on a proposed

central role of PF4. The major sources of PF4 based on
established studies are likely from tumor cells and plate-
lets [27, 41–43]. PF4 then promotes downregulation of
CCL5, TGFB1, SRGN and SPARC within the tumor
microenvironment, immunoregulatory cells, platelets
and potentially tumor cells themselves; thus, blunting
the established survival benefit higher expression of
these genes is associated with [31].

While we detected several potential driver genes which
could be the drivers of disease progression and metastasis
in lung cancer, several potential limitations of the study
should be noted. First, there is the possibility that the
some of the mRNAs and associated gene expression sig-
nature from plasma and CTCs was in part derived from
WBCs. WBCs were contained in the CTC captured prod-
uct. Plasma from both patients and controls was not
double-spun to remove the majority of WBCs. Additional
experimental validation of the top genes would be needed
using purified WBC from both normal controls and can-
cer patients to validate the biological function of these
genes and clarify their origin. As an example, a recent cir-
culating DNA study demonstrated that a number of muta-
tions identified in the blood of lung cancer patients
actually represent clonal hematopoiesis captured from
WBCs rather than tumor cell mutations [54]. Second,
there is clearly a need for additional independent studies
of plasma and CTC mRNAs identification using Nano-
string and other platforms to ensure reproducibility of the
data. Third, due to inherent limitations of the PCR and
capture, reagents with enhanced sensitivity, optimized for
blood-based capture need to be developed to improve
scientific rigor of these studies, and determination of sen-
sitivity, specificity and validity of these techniques.
Additional studies should also be powered to enable com-
parisons of the number of CTCs detected and eliminated
potential technical artifact. However, this study does illus-
trate the potential of analyzing CTC mRNA as a corner-
stone for targeted data mining.

Conclusion
In summary, we believe that analysis of plasma and CTC
mRNA presents a new avenue to advance precision on-
cology and provides opportunities to generation new hy-
pothesis and translational research. While we identified
several possible interactions between PF4 and CLU,
CCL5, TGFB1, SRGN and SPARC using STRING [32]
and Reactome [34], our model needs careful validation
through focused clinical and laboratory-based studies
and predominantly serves as an example of leveraging
CTC and patient plasma derived data.
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Additional file 2: Figure S2. (A) Hierarchical clustering of differentially
expressed transcripts based on CTC derived mRNA; differences for 41
genes were statistically significant. (B) STRING network of 23 top transcripts.
(JPG 311 kb)

Additional file 3: Figure S3. Platelet degranulation pathway. Platelet
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Beck et al. BMC Cancer          (2019) 19:603 Page 11 of 13

https://doi.org/10.1186/s12885-019-5795-x
https://doi.org/10.1186/s12885-019-5795-x
https://doi.org/10.1186/s12885-019-5795-x


Additional file 4: Table S1. List of 770 screened genes. (DOCX 54 kb)

Additional file 5: Table S2. Patient and tumor characteristics.
(DOCX 17 kb)

Additional file 6: Table S3. Complete list of known proteins/
compounds involved in platelet degranulation. Data downloaded from
Reactome. (DOCX 29 kb)

Additional file 7: Table S4. List of known proteins associated with
platelet alpha granule content release. Data downloaded from Reactome.
(DOCX 22 kb)

Abbreviations
ALK: Anaplastic lymphoma kinase; APC: Adenomatous polyposis coli;
ATP: Adenosine triphosphate; CCL5: Chemokine (C-C motif) ligand 5;
CD45: Protein tyrosine phosphatase, receptor type, C (also known as PTPRC);
cDNA: Complementary DNA; cfRNA: Cell-free RNA; CK7: Cytokeratin;
CLU: Clusterin; CTC: Circulating tumor cells; DAPI: 4′,6-diamidino-2-
phenylindole; DNA: Deoxyribonucleic acid; EGF: Epidermal growth factor;
EGFR: Epidermal growth factor receptor; EMT: Epithelial-mesenchymal
transition; EpCam: Epithelial cell adhesion molecule; FDA: Food and Drug
Administration; GEO: Gene Expression Omnibus; GPX1: Glutathione
peroxidase 1; HER2: Human epidermal growth factor 2; IL-8: Interleukin 8;
KRAS: Kirsten Rat Sarcoma Viral Proto-Oncogene; mRNA: Messenger
ribonucleic acid; MTE: Multiplexed Target Enrichment; MUC-1: Mucin 1;
NSCLC: non-small cell lung cancer; PD-L1: Programmed death-ligand 1;
PF4: Platelet factor 4; RNA: Ribonucleic acid; SCLC: Small cell lung cancer;
SPARC: Secreted protein acidic and rich in cysteine; SRGN: Serglycin;
TGFB1: Transforming growth factor beta 1; TGF-beta: Transforming growth
factor beta; WBC: White blood cell

Acknowledgments
We thank our patients and their families for participating in this study. Our
colleagues and the clinical staff also deserve special thanks, as does Dr. Erica
Golemis for her critique of this manuscript.

Authors’ contributions
CTB, PF, JP, CR, CA and RKA collected patient samples and provided
technical expertise. TNB, YAB, CA, RV, HB, MC, RM, IS and RKA analyzed and
interpreted the collected data. TNB and IS generated tables and figures for
the data. TNB, YA, IS and RKA wrote the manuscript. CA, HB, MC and RM
edited the manuscript. TNB, YAB, IS and RKA supervised the study. All
authors have read and approved the manuscript.

Funding
The authors were supported by the Ruth L. Kirschstein National Research
Service Award F30 fellowship (F30 CA180607) from the National Institutes of
Health (to T.N.B.), the NIH R01 CA218802 NIH R21 CA223394 grants and V
Foundation translation award program T2018–013 (to Y.B.), and NCI Core
Grant P30 CA006927 (to Fox Chase Cancer Center). Bioinformatics analysis
performed by I. S and R.V. was in part supported by the Russian Science
Foundation (grant #15–15-20032). Y.A.B., R.V. and I.S. were in part supported
by the Russian Government Program for Competitive Growth of Kazan
Federal University. Menarini (Huntington Valley, PA) supported the research
by providing both the ferrofluid mixture capture reagent and the cytokeratin
staining reagent. The authors have no other funding to disclose. No direct
funding for this study was received.

Availability of data and materials
All data is included as part of the manuscript or as part of the supplemental
materials section. The datasets used and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The protocol for this study was approved by the Fox Chase Cancer Center
(FCCC) Institutional Review Board (IRB), study number 10–043. Nanostring
mRNA expression analysis was additionally covered by the FCCC IRB, study
number 18–4002. Informed consent was obtained from patients.

Consent for publication
Not applicable.

Competing interests
Y.B. has served on advisory boards of Astra Zeneca, AbbVie and Caris Life
Sciences. YB. Is also an Editorial Board member for BMC Cancer. C.A. has
served on advisory boards of Genentech and Celgene. R. M. has served as a
consultant for Genentech and on advisory board of Bristol-Meyers Squibb. H.
B. has received research support for clinical trials from Millennium, Merck/Cel-
gene, BMS/Lilly, has served on advisory board or as a consultant for BMS,
Lilly, Genentech, Celgene, Pfizer, Merck, EMD-Serono, Boehringer Ingelheim,
Astra Zeneca, Novartis, Genmab, Regeneron, BioNTech, Cantargia AB, Amgen,
Abbvie, Axiom, PharmaMar, and on data and safety monitoring board for the
University of Pennsylvania, CAR T Program. M.C. has served on advisory
boards of Vortex, Dompe, and received research support from Pfizer and
honoraria from Pfizer. The authors have no other conflicts to disclose.

Author details
1Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia,
PA 19111, USA. 2Digestive Disease & Surgery Institute, Cleveland Clinic,
Cleveland, OH 44195, USA. 3Department of Hematology/Oncology, Fox
Chase Cancer Center, Philadelphia, PA 19111, USA. 4Kazan Federal University,
Kazan, Russian Federation. 5Abramson Cancer Center and Division of
Hematology/Oncology, Department of Medicine, University of Pennsylvania
Perelman School of Medicine, Philadelphia, PA 19104, USA. 6Genomics
Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA. 7Protocol
Support Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
8Janssen Diagnostics LLC, Valley, Huntingdon, PA 19006, USA. 9Feinberg
School of Medicine, Robert H Lurie Comprehensive Cancer Center, Chicago,
IL 60611, USA. 10Head and Neck Medical Oncology, University of Maryland
Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA.
11Biostatistics Facility, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.

Received: 11 October 2018 Accepted: 5 June 2019

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;

67(1):7–30.
2. Herbst RS, Morgensztern D, Boshoff C. The biology and management of

non-small cell lung cancer. Nature. 2018;553(7689):446–54.
3. Howlader N NA, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL,

Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ,
Cronin KA (eds): SEER Cancer Statistics Review, 1975-2010, National Cancer
Institute. 2013.

4. Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what
we need to know and the path forward. Nat Rev Cancer. 2017;17(12):765.

5. McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past,
present, and the future. Cell. 2017;168(4):613–28.

6. Beck TN, Korobeynikov VA, Kudinov AE, Georgopoulos R, Solanki NR,
Andrews-Hoke M, Kistner TM, Pepin D, Donahoe PK, Nicolas E, et al. Anti-
Mullerian hormone signaling regulates epithelial plasticity and
Chemoresistance in lung Cancer. Cell Rep. 2016;16(3):657–71.

7. Belyaeva MIV, N.I.; Vinter, V. G.; Balaban, N.P.: On secretion of nucleic acids
by cancer cells. Proceedings of the IX International Cancer Congress, Tokyo,
Japan 1966.

8. Kopreski MS, Benko FA, Kwak LW, Gocke CD. Detection of tumor messenger
RNA in the serum of patients with malignant melanoma. Clin Cancer Res.
1999;5(8):1961–5.

9. Aggarwal C, Wang X, Ranganathan A, Torigian D, Troxel A, Evans T, Cohen
RB, Vaidya B, Rao C, Connelly M, et al. Circulating tumor cells as a predictive
biomarker in patients with small cell lung cancer undergoing
chemotherapy. Lung Cancer. 2017;112:118–25.

10. Krebs MG, Hou J-M, Sloane R, Lancashire L, Priest L, Nonaka D, Ward TH,
Backen A, Clack G, Hughes A, et al. Analysis of circulating tumor cells in
patients with non-small cell lung cancer using epithelial marker-dependent
and -independent approaches. J Thorac Oncol. 2012;7(2):306–15.

11. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;
127(4):679–95.

12. Tognela A, Spring KJ, Becker T, Caixeiro NJ, Bray VJ, Yip PY, Chua W, Lim SH,
de Souza P. Predictive and prognostic value of circulating tumor cell
detection in lung cancer: a clinician's perspective. Crit Rev Oncol Hematol.
2015;93(2):90–102.

Beck et al. BMC Cancer          (2019) 19:603 Page 12 of 13

https://doi.org/10.1186/s12885-019-5795-x
https://doi.org/10.1186/s12885-019-5795-x
https://doi.org/10.1186/s12885-019-5795-x
https://doi.org/10.1186/s12885-019-5795-x


13. Cohen SJ, Alpaugh RK, Gross S, O'Hara SM, Smirnov DA, Terstappen LWMM,
Allard WJ, Bilbee M, Cheng JD, Hoffman JP, et al. Isolation and
characterization of circulating tumor cells in patients with metastatic
colorectal cancer. Clin Colorectal Cancer. 2006;6(2):125–32.

14. Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY,
Picus J, Morse M, Mitchell E, Miller MC, et al. Relationship of circulating
tumor cells to tumor response, progression-free survival, and overall
survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;
26(19):3213–21.

15. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM,
Doyle GV, Allard WJ, Terstappen LWMM, et al. Circulating tumor cells,
disease progression, and survival in metastatic breast cancer. N Engl J Med.
2004;351(8):781–91.

16. Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, Doyle GV,
Matera J, Allard WJ, Miller MC, et al. Circulating tumor cells: a novel
prognostic factor for newly diagnosed metastatic breast cancer. J Clin
Oncol. 2005;23(7):1420–30.

17. Wang J, Wang K, Xu J, Huang J, Zhang T. Prognostic significance of
circulating tumor cells in non-small-cell lung cancer patients: a meta-
analysis. PLoS One. 2013;8(11):e78070.

18. Li Y, Cheng X, Chen Z, Liu Y, Liu Z, Xu S. Circulating tumor cells in
peripheral and pulmonary venous blood predict poor long-term survival in
resected non-small cell lung cancer patients. Sci Rep. 2017;7(1):4971.

19. Pailler E, Oulhen M, Borget I, Remon J, Ross K, Auger N, Billiot F, Ngo Camus
M, Commo F, Lindsay CR, et al. Circulating tumor cells with aberrant ALK
copy number predict progression-free survival during Crizotinib treatment
in ALK-rearranged non-small cell lung Cancer patients. Cancer Res. 2017;
77(9):2222–30.

20. Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, Uhr JW.
Detection and characterization of carcinoma cells in the blood. Proc Natl
Acad Sci U S A. 1998;95(8):4589–94.

21. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AGJ,
Uhr JW, Terstappen LWMM. Tumor cells circulate in the peripheral blood of
all major carcinomas but not in healthy subjects or patients with
nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.

22. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W,
Coith C, Beck K, Janicke F, et al. Detection of circulating tumor cells in
peripheral blood of patients with metastatic breast cancer: a validation
study of the CellSearch system. Clin Cancer Res. 2007;13(3):920–8.

23. de Wit S, van Dalum G, Lenferink AT, Tibbe AG, Hiltermann TJ, Groen HJ,
van Rijn CJ, Terstappen LW. The detection of EpCAM(+) and EpCAM(−)
circulating tumor cells. Sci Rep. 2015;5:12270.

24. Hanssen A, Wagner J, Gorges TM, Taenzer A, Uzunoglu FG, Driemel C,
Stoecklein NH, Knoefel WT, Angenendt S, Hauch S, et al. Characterization
of different CTC subpopulations in non-small cell lung cancer. Sci Rep.
2016;6:28010.

25. Brown WS, Akhand SS, Wendt MK. FGFR signaling maintains a drug
persistent cell population following epithelial-mesenchymal transition.
Oncotarget. 2016;7(50):83424–36.

26. Labelle M, Begum S, Hynes RO. Direct signaling between platelets and
cancer cells induces an epithelial-mesenchymal-like transition and promotes
metastasis. Cancer Cell. 2011;20(5):576–90.

27. Pucci F, Rickelt S, Newton AP, Garris C, Nunes E, Evavold C, Pfirschke C,
Engblom C, Mino-Kenudson M, Hynes RO, et al. PF4 promotes platelet
production and lung Cancer growth. Cell Rep. 2016;17(7):1764–72.

28. Labelle M, Begum S, Hynes RO. Platelets guide the formation of early
metastatic niches. Proc Natl Acad Sci U S A. 2014;111(30):E3053–61.

29. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour
metastasis. Nat Rev Cancer. 2011;11(2):123–34.

30. Coumans F, Terstappen L. Detection and characterization of
circulating tumor cells by the CellSearch approach. Methods Mol Biol.
2015;1347:263–78.

31. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis
software to assess the prognostic value of biomarkers using transcriptomic
data in non-small-cell lung cancer. PLoS One. 2013;8(12):e82241.

32. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A,
Doncheva NT, Roth A, Bork P, et al. The STRING database in 2017: quality-
controlled protein-protein association networks, made broadly accessible.
Nucleic Acids Res. 2017;45(D1):D362–8.

33. Liu H, Beck TN, Golemis EA, Serebriiskii IG. Integrating in silico resources to
map a signaling network. Methods Mol Biol. 2014;1101:197–245.

34. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw
R, Jassal B, Korninger F, May B, et al. The Reactome pathway
knowledgebase. Nucleic Acids Res. 2018;46(D1):D649–55.

35. Kumar-Sinha C, Chinnaiyan AM. Precision oncology in the age of integrative
genomics. Nat Biotechnol. 2018;36(1):46–60.

36. Senft D, Leiserson MDM, Ruppin E, Ronai ZA. Precision oncology: the road
ahead. Trends Mol Med. 2017;23(10):874–98.

37. Krishnamurthy N, Spencer E, Torkamani A, Nicholson L. Liquid biopsies for
Cancer: coming to a patient near you. J Clin Med. 2017;6(1):1–8.

38. Zhou L, Dicker DT, Matthew E, El-Deiry WS, Alpaugh RK. Circulating tumor
cells: silent predictors of metastasis. F1000Res. 2017;6:1–8.

39. Adams DL, Stefansson S, Haudenschild C, Martin SS, Charpentier M, Chumsri
S, Cristofanilli M, Tang C-M, Alpaugh RK. Cytometric characterization of
circulating tumor cells captured by microfiltration and their correlation to
the CellSearch() CTC test. Cytometry A. 2015;87(2):137–44.

40. Nieto MA, Huang RY, Jackson RA, Thiery JP. Emt: 2016. Cell. 2016;166(1):21–45.
41. Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Connors S, Oenick M,

D'Amato RJ, Klement GL, Folkman J. VEGF, PF4 and PDGF are elevated in
platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.

42. Jian J, Pang Y, Yan HH, Min Y, Achyut BR, Hollander MC, Lin PC, Liang X,
Yang L. Platelet factor 4 is produced by subsets of myeloid cells in
premetastatic lung and inhibits tumor metastasis. Oncotarget. 2017;8(17):
27725–39.

43. Schaffner A, Rhyn P, Schoedon G, Schaer DJ. Regulated expression of
platelet factor 4 in human monocytes--role of PARs as a quantitatively
important monocyte activation pathway. J Leukoc Biol. 2005;78(1):202–9.

44. Aldinucci D, Colombatti A. The inflammatory chemokine CCL5 and cancer
progression. Mediat Inflamm. 2014;2014:292376.

45. Smeets A, Brouwers B, Hatse S, Laenen A, Paridaens R, Floris G, Wildiers H,
Christiaens M-R. Circulating CCL5 Levels in Patients with Breast Cancer: Is
There a Correlation with Lymph Node Metastasis? ISRN Immunology. 2013;
2013:5.

46. Wilson MR, Zoubeidi A. Clusterin as a therapeutic target. Expert Opin Ther
Targets. 2017;21(2):201–13.

47. Massague J. TGFbeta in Cancer. Cell. 2008;134(2):215–30.
48. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel Iii

EE, Koeppen H, Astarita JL, Cubas R, et al. TGFbeta attenuates tumour
response to PD-L1 blockade by contributing to exclusion of T cells. Nature.
2018;554(7693):544–8.

49. Kudinov AE, Deneka A, Nikonova AS, Beck TN, Ahn YH, Liu X, Martinez CF,
Schultz FA, Reynolds S, Yang DH, et al. Musashi-2 (MSI2) supports TGF-beta
signaling and inhibits claudins to promote non-small cell lung cancer
(NSCLC) metastasis. Proc Natl Acad Sci U S A. 2016;113(25):6955–60.

50. Beck TN, Chikwem AJ, Solanki NR, Golemis EA. Bioinformatic approaches to
augment study of epithelial-to-mesenchymal transition in lung cancer.
Physiol Genomics. 2014;46(19):699–724.

51. Hu Q, Hisamatsu T, Haemmerle M, Cho MS, Pradeep S, Rupaimoole R,
Rodriguez-Aguayo C, Lopez-Berestein G, Wong STC, Sood AK, et al. Role of
platelet-derived Tgfbeta1 in the progression of ovarian Cancer. Clin Cancer
Res. 2017;23(18):5611–21.

52. von Hundelshausen P, Koenen RR, Sack M, Mause SF, Adriaens W, Proudfoot
AE, Hackeng TM, Weber C. Heterophilic interactions of platelet factor 4 and
RANTES promote monocyte arrest on endothelium. Blood. 2005;105(3):924–30.

53. Broxmeyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP, Cerami A, Ralph
P. Comparative analysis of the human macrophage inflammatory protein family
of cytokines (chemokines) on proliferation of human myeloid progenitor cells.
Interacting effects involving suppression, synergistic suppression, and blocking of
suppression. J Immunol. 1993;150(8 Pt 1):3448–58.

54. Hu Y, Ulrich BC, Supplee J, Kuang Y, Lizotte PH, Feeney NB, Guibert NM,
Awad MM, Wong KK, Janne PA, et al. False-Positive Plasma Genotyping Due
to Clonal Hematopoiesis. Clin Cancer Res. 2018;24(18);4437–43.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Beck et al. BMC Cancer          (2019) 19:603 Page 13 of 13


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Patients and study design
	CTC capture and processing
	RNA processing and analysis
	cfRNA preparation
	Statistical methods for CTCs
	Analysis of the Nanostring data
	Transcriptomic database analysis
	STRING analysis of plasma and CTC genes
	Functional pathway analysis using Reactome

	Results
	Patient characteristics
	CTC capture
	NanoString analysis of RNA from plasma and CTCs
	Focused interaction networks and overall survival

	Discussion
	CTC capture and CTC-RNA analysis
	Leveraging transcriptomic data and limitations of the gene expression study

	Conclusion
	Additional files
	Abbreviations
	Acknowledgments
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

