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Abstract

Background: Programmed cell death protein 1(PD-1) blocking antibodies have been used to enhance immunity in
solid tumors and achieve durable clinical responses with an acceptable safety profile in multiple types of cancer.
However, only a subset of patients could benefit from PD-1 blockade therapy. Prognostic information including PD-
1 ligand (PD-L1) expression, IFN-γ expression signature, tumor mutational burden, and microsatellite instability (MSI)
have been evaluated for patients who are selected to receive immune checkpoint therapeutic treatment. Yet the
relationship of those biomarkers in determining immune checkpoint therapy is largely unknown.

Methods: Immune-profiles of MSI subtype colon cancer were identified from integrating published MSI associated
gene expression data. The enriched pathways and transcription factors were analyzed by GSEA assay. The
infiltrations of immune cell types into MSI subtype colon cancer tissues were determined by CIBESORT assay.

Results: In the MSI subtype colon cancer patients, PD-L1, IFN-γ and IFN-γ associated genes are highly expressed.
And all those genes are favorable effects in colon cancer progress. In addition, we find that Wnt-β-catenin and
TGFβ signaling pathways which are two important factors inhibiting PD-1 checkpoint blockade therapy are
negatively related with MSI status. We also identify that the immune-profiles in MSI subtype colon cancer are
contributed by M1 macrophage infiltration in the tumor environment.

Conclusions: Our results provide the detailed underlying mechanisms of MSI subtype cancer patients are sensitive
to PD-1 checkpoint blockade.
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Background
The MisMatch Repair (MMR) repair system copes with
nucleotide mutations, insertions and deletions occurred
during DNA replication, including MLH1, MSH2,
MSH6 and PMS2 genes [1]. Germ line mutations in
MMR genes are associated with Lynch syndrome, which
have high probability to develop colon cancer. Somatic
mutations of MMR genes or loss of MMR genes by
hyper-methylation in patients is associated with MSI sta-
tus [2]. Clinical results across 12 different tumor types
have shown that MMR deficient patients are more
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sensitive to immune checkpoint blockade therapy [3, 4].
And FDA has approved MSI as a biomarker to ensure
the success of cancer immunotherapy in multiple types
of cancer. Although, the gene expression signature of
MSI subtype colon cancer patients was previously stud-
ied [5–7], most of those studies are not focusing on how
those changed genes influence the cancer response to
checkpoint blockade immunotherapy.
PD-L1, IFN-γ expression and IFN-γ associated im-

mune gene signature are critical factors in determining
the sensitivity of anti-PD-1 therapies [8, 9]. Non-
responders to PD-1 checkpoint blockade immunother-
apy are associated with defects in the pathways involved
interferon receptor signaling pathway [10–12]. It has
been reported that MSI subtype of colorectal cancer
exhibits an active expression of checkpoint molecules,
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like PD-L1 and IFN-γ in the tumor microenvironment
[13]. However, the immune-profiles in MSI subtype
colon cancer need to be further studied in a globe
expression manner.
T cells distribution is a key factor that influences the

response to cancer immunotherapy [14]. Immunother-
apy responding patients are characterized by the pres-
ence of CD8 T cells in the tumor environment.
Fig. 1 PD-L1 and IFN-γ signature genes are activated in MSI subtype colon
5 GEO datasets. P values showed the difference of PD-L1expressions betwe
b Box plots showed the IFN-γ (IFNG) expression in 7 GEO datasets. c Un-su
and MSS colon cancer patients in GSE13294, GSE18088 and GSE39084 data
Conversely, patients who do not respond to anti-PD-1
antibodies present devoid of T cells. This default in CD8
T cell infiltration in tumor has been observed in lung,
pancreatic, and ovarian carcinomas [15]. In the PD-1
checkpoint blockade responding tumor microenviron-
ment, activated T cells, as well as natural killer cells pro-
duce IFN-γ. IFN-γ directly up regulates PD-L1
expression [16]. Macrophage cells play important roles
cancer patients. a Box plots showed the PD-L1 (CD274) expression in
en MSI and MSS colon cancer patients determined by Student’s t test.
pervised clustering heatmaps showed the IFN-γ signature genes in MSI
sets



Fig. 2 Immune associated signaling pathways and transcription factor IRF1 are activated in MSI subtype colon cancer patients. a Enrichment
plots showed the natural killer cell mediated cytotoxic pathway, T cell receptor signaling pathway and RIG-1 like receptor signaling pathway in 5
datasets. Enrichment of NES and P values were shown. b Enrichment plots showed the transcription factor IRF in 3 datasets. c Un-supervised
clustering heatmaps showed the expressions of IRF1 and genes from immune associated signaling pathways in MSI and MSS colon cancer
patients in GSE13294, GSE18088 and GSE39084 datasets
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 Wnt-β-catenin and TGFβ signaling pathways are inactivated in MSI subtype colon cancer patients. a Enrichment plots of the Wnt-β-catenin
signaling pathway in 4 datasets. b Box plots showed the TGFβ associated TGFBR2 and TGFB1 expressions in 7 GEO datasets. P values showed the
difference of genes expression between MSI and MSS colon cancer patients and were determined by Student’s t test
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in CD8 T cells tumor surveillance and tumors response
to anti-PD-1 treatment [17]. However, the roles of
macrophage infiltrations in the tumor environment in
MSI subtype colon cancer are largely unknown.
TGFβ [18, 19] and Wnt-β-catenin [20, 21] are new

identified signaling pathways associated with PD-1
checkpoint blockade therapy. Inhibition of TGFβ or
Wnt-β-catenin signaling increases the benefits of im-
mune therapies on tumor patients. However, the rela-
tionship between MSI status and TGFβ/Wnt-β-catenin
signaling pathway have not been studied.
Here, we attempt to address the relationship between

MSI status and immunotherapy sensitivity by integrating
published MSI associated expression datasets in colon
cancer patients. We find that PD-L1 mRNA is highly
expressed in the MSI subtype colon cancer patients.
And MSI expression signature contains high IFN-γ ex-
pression and IFN-γ associated immune gene activation.
While the TGFβ and Wnt-β-catenin signaling pathways
are inactivated in MSI subtype colon cancer patients. At
last, we find that the immune-profiles in MSI subtype
colon cancer are contributed by M1 macrophage infiltra-
tion in the tumor environment.
Methods
Data collection
Gene expression series matrix of colon cancer samples
with clinical annotation MSI or MSS status were down-
loaded from GEO website (https://www.ncbi.nlm.nih.
gov/geo/) with GEO number GSE13067, GSE13294,
GSE18088, GSE24551, GSE26682, GSE39084 and
GSE41258. Brief descriptions of the 7 datasets could be
found in Additional file 1: Figure S1a.
Gene expression series matrix of 6 cohorts of colon

cancer patients used for Immune Cellular Fraction Esti-
mation were downloaded from GEO website with GEO
number GSE14333, GSE17536, GSE24551, GSE33113,
GSE39084 and GSE39582. Brief descriptions of the 6
datasets could be found in Additional file 1: Figure S1c.
Colon cancer samples with gene expression and

survival data were available at GEO website with GEO
number GSE39582 and GSE24551.
GEO data processing
All the expression profiles were processed separately. A
probe was removed if it was not corresponded gene
symbol, and the expression values were averaged if
multiple probes corresponded to the same gene symbol
using R software “plyr” package.
Gene set enrichment analysis (GSEA)
Gene set enrichment analysis was performed using
GSEA 2.0 software. CP: KEGG gene sets (CP: KEGG)
and TF transcription factor targets (TFT) gene sets were
downloaded from the GSEA Web site (http://www.
broad.mit.edu/gsea/index.html). Genes ranked by signal-
to-noise ratio, and statistical significance was determined
by 1000 gene set permutations.
Gene ontology (GO) enrichment analysis
Gene Ontology (GO) enrichment analysis was per-
formed using DAVID website (https://david.ncifcrf.gov).
Survival analysis
Kaplan-Meier estimator was applied to identify the influ-
ence of gene expression on overall survival or relapse
free survival using “survival” package in the R statistics
software.
The consensus molecular subtypes (CMS) of colorectal
cancer classification
Colon cancer patients from GSE13924, GSE18088 and
GSE39084 datasets were divided into CMS1, CMS2, CMS3
and CMS4 subtypes by R software “CMScaller” package.
Heatmap presentation
Heatmaps were created by R software “pheatmap”
package.
Drug sensitivity analysis
Human colon cancer cell lines with PARP inhibitors
sensitivity and expression data were downloaded from
Genomics of Drug Sensitivity in Cancer (http://www.
cancerrxgene.org/). The colon cancer cell lines were
divided into MSI or MSS two group based on the cell
lines annotation.
Immune cellular fraction estimates
The relative fractions of 22 immune cell types within the
leukocyte compartment were estimated using “CIBER-
SORT” package in the R statistics software [22]. Statis-
tical significance was determined by 10 gene set
permutations.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.broad.mit.edu/gsea/index.html
http://www.broad.mit.edu/gsea/index.html
https://david.ncifcrf.gov
http://www.cancerrxgene.org/
http://www.cancerrxgene.org/
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Fig. 4 IFN-γ signature genes are associated with favorable outcomes in colon cancer. a Relationships of the MSI/MSS status and overall survival
were analyzed from GSE39084. Kaplan Meier survival analysis was used to compare between MSI colon cancer patients and MSS colon cancer
patients. Log-rank test estimated p value. b Relationships of the PD-L1, IRF1, IFN-γ and IFN-γ signature genes IDO1, HLA-DRA, CXCL9, CXCL10,
STAT1 expressions and colon cancer relapse free or overall survival were analyzed from GSE39582 and GSE24551 datasets. Kaplan Meier survival
analysis was used to compare colon cancer patients with high gene expression to patients with low genes expression. Log-rank test
estimated p value. c Relationships of β-catenin (CTNNB1), TGFBR2 expression and colon cancer overall survival were analyzed
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Spearman correlation
Spearman correlation was used to study the correlation
between PD-L1 expression and 22 immune cell types
cibersort fraction or MLH1 expression and 22 immune
cell types cibersort fraction.

Statistical analysis
The box plots and contingency graphs were generated
from prims5.0. Statistical analysis was performed using
the Student’s t test or Chi-square test. P value less than
0.05 was chosen to be statistically significant difference
unless specifically notified.

Results
PD-L1 and IFN-γ signature genes are activated in MSI
subtype colon cancer patients
To address the mechanistic basis of MSI status in deter-
mining immune checkpoint therapy sensitivity, we
analyzed colon cancer patients with expression data and
MSI annotation from previously published GEO
datasets. Totally, 830 patients were collected from 7
published datasets based on 3 platforms. Two hundred
seven patients are MSI or MSI high, 623 patients are
microsatellite stability (MSS) (Additional file 1: Figure
S1a). MSI patients are characterized by epigenetic silen-
cing of MLH1 or mutation in one of the MMR genes
MLH1, MSH2, MSH6 or PMS2. To validate the MSI sta-
tus annotation in the datasets, we analyzed the MLH1,
MSH2, MSH6 and PMS2 expression in those patients.
In all the 7 datasets, MLH1 mRNA was significantly
down regulated in MSI patients than MSS patients
(Additional file 1: Figure S1b). However, MSH2, MSH6
and PMS2 mRNA was not significantly down regulated
in MSI patients.
First, we wanted to test PD-L1 expression in the colon

cancer patients. Among five datasets GSE13067,
GSE13294, GSE18088, GSE24551 and GSE39084, PD-L1
(CD274 for PD-L1 gene symbol) was highly expressed in
MSI patients than MSS patients (Fig. 1a). No PD-L1
probe was designed in GSE26682 and GSE41258 data-
sets. Those observations provided the clue that MSI
positive patients were sensitive to PD-1 blockage was
due to the high mRNA expression of PD-L1 in MSI
subtype colon cancer.
IFN-γ and IFN-γ associated immune gene signatures

are critical factors in determining the response of anti-
PD-1 therapies [9]. Defects in IFN-γ pathway genes in-
duce acquired resistance to PD-1 blockade immunother-
apy [23, 24]. Results showed that IFN-γ was highly
expressed in MSI patients in all 7 datasets (Fig. 1b).
Except IFN-γ itself, IFN-γ associated immune gene sig-
nature including IDO1, CXCL10, CXCL9, HLA-DRA
and STAT1 and IFN-γ expanded immune gene signature
LAG3, CCL5, NKG7, GZMK and CXCL13 were also
increased in MSI patients as presented through gene
expression heatmaps in GSE13924, GSE18088 and
GSE39084 datasets (Fig. 1c).

Immune associated signaling pathways are activated in
MSI subtype colon cancer patients
To further reveal the transcription property of MSI
status, we identified the signaling pathways enriched in
MSI subtype colon cancer patients using GSEA assay.
Among all the enriched signaling pathways, natural killer
cell mediated cytotoxic, T cell receptor signaling pathway
and RIG-1 like receptor signaling pathway were highly
enriched in at least 2 datasets (Fig. 2a). Particularly,
natural killer cell mediated cytotoxic signaling pathway
was most significantly enriched in 5 datasets.
Natural killer cell mediated cytotoxic signaling path-

way presents an important executor mediating PD-1
blockage to eliminate tumor cells. The significant activa-
tion of natural killer cell mediated cytotoxic pathway
suggested that MSI tumor cells may activate a more dra-
matic immunity function to eliminate tumor cells upon
immunotherapy treatment. T cell receptor signaling
pathway and RIG-1like receptor signaling pathway are
important regulators of IFN-γ production and antiviral
gene expression [25]. The activated signaling pathways
were greatly consistent with the high expression of IFN-
γ signature genes in MSI subtype colon cancer patients.
Next, we showed that T cell receptor signaling path-

way and RIG-1like receptor signaling pathway associated
genes granzyme A (GZMA), perforin (PRF1), T cell
receptor CD8A and DDX58 (RIG-1) were increased in
MSI subtype colon cancer patients as presented through
gene expression heatmaps in GSE13924, GSE18088 and
GSE39084 datasets (Fig. 2c). We also noticed that TP53
signaling pathway and TP53 target genes PTEN, FAS
and MDM2 were also activated in MSI patients (Fig. 2c
and Additional file 1: Figure S2). Loss of PTEN expression
in tumor cells promotes resistance to immunotherapy in



Fig. 5 (See legend on next page.)
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Fig. 5 PD-L1 and IFN-γ are activated in CMS1 colon cancer subtype patients. a Contingency graphs showed the number of MSI or MSS subtype
colon cancer patients in each CMS subgroup. P values showed the difference between MSI (red) and MSS (blue) colon cancer patients
determined by Chi-square test. b Box plots showed the PD-L1 and IFN-γ expressions in different CMS subgroups in GSE13294, GSE18088 and
GSE39084 datasets. b Box plots showed the TGFβ associated TGFBR2 and TGFB1 expressions in in different CMS subgroups in GSE13294,
GSE18088 and GSE39084 datasets
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both melanoma and uterine leiomyosarcoma by decreas-
ing T cell infiltration [26, 27]. Based on those results, we
speculated that the MSI subtype colon cancer patients
were more easily induced into an immune activated status
and were more sensitive to PD-1 blocking antibodies in-
duced enhanced immunity to eliminate solid tumor cells.
Transcription factor IRF1 is activated in MSI subtype
colon cancer patients
Except signaling pathways, the transcription factors
enriched in MSI subtype colon cancer patients were also
identified. No transcription factor was enriched in at
least 3 datasets. The enriched transcription factors var-
ied from dataset to dataset, suggesting a diverse property
of MSI subtype colon cancer. However, we noticed that
IRF (Interferon regulatory factor) was highly enriched in
GSE13294 and GSE39084, and less significantly enriched
in GSE26682, representing the most frequent enriched
transcription factor (Fig. 2b). Results have suggested that
IRF factors orchestrate immune responses and destruc-
tion of allogeneic organ transplants [28]. IRF contains
nine families, from IRF1 to IRF9. In the MSI subtype
colon cancer patients’ datasets, we showed that IRF1
was highly up regulated in MSI patients (Fig. 2c).
Interferon-receptor–associated Janus kinase 2 (JAK2)
was also highly expressed in MSI subtype colon cancer
patients (Fig. 2c), suggesting the activation of IFN-γ-
JAK2-IRF1 axis.
Wnt-β-catenin and TGFβ signaling pathways are
inactivated in MSI subtype colon cancer patients
Contrast to the IFN-γ signature, which promotes immu-
notherapeutic efficiency, Wnt-β-catenin [20, 21] and
TGFβ [18, 19] signaling pathways are two important
factors inhibiting PD-1 checkpoint blockade therapy.
Inhibition of Wnt-β-catenin and TGFβ signaling could
increase the benefit of immune therapies on tumor pa-
tients. We noticed that Wnt-β-catenin signaling was sig-
nificantly negatively related to MSI status in GSE13294,
GSE18088 and GSE26682 datasets, implying the inhibi-
tory roles of Wnt-β-catenin signaling pathway (Fig. 3a).
We did not observe significantly enriched TGFβ sig-

naling pathway in any of the 7 datasets. But we found
that TGFβ signaling associated genes TGFBR2 and
TGFBI was highly expressed in MSS subtype of colon
cancer (Fig. 3b), suggesting the potential inhibition of
TGFβ signaling pathway in MSI subtype colon cancer
patients.

IFN-γ signature genes are associated with favorable
outcomes in colon cancer
Clinically, MSI colon cancer patients have favorable
prognosis than MSS colon cancer patients [2]. Indeed,
MSS subtype colon cancer patients in GSE39084 were
with low overall survival rate (Fig. 4a). Since, PD-L1,
IRF1, IFN-γ and IFN-γ associated immune gene were
important features of MSI status, we then investigated
the roles of those genes in colon cancer progress. We
collected colon cancer patient expression profiles
containing prognostic information from public database
GSE39582 and GSE24551. The kaplan-meier survival
analysis was used to show the different prognosis be-
tween high gene expression group and low gene expres-
sion group of colon cancer patients. PD-L1, IRF1, IFN-γ
and IFN-γ associated immune signature genes IDO1,
CXCL10, CXCL9, HLA-DRA and STAT1 all had similar
prognostic effects. High expressions of those genes were
associated with favorable prognosis (Fig. 4b). However,
in colon cancer patients, β-catenin (CTNNB1) and
TGFBR2 were all unfavorable effects on tumor progress.
Patients with high expression of CTNNB1 or TGFBR2
were with low overall survival rate (Fig. 4c). Those re-
sults consisted with the inhibitory roles of Wnt-β-
catenin signaling and TGFβ signaling in MSI subtype
colon cancer patients.

PD-L1 and IFN-γ are activated in CMS1 colon cancer
subtype patients
Previously, multiple colon subtypes had been identified
with different methods based on the DNA methylation,
DNA somatic copy number alterations (SCNA) or gene
expression profiling [29–31]. However, the expressions
of PD-L1 and IFN-γ in those different subtypes of colon
cancer patients were not clear. We used the consensus
molecular subtypes (CMS) of colorectal cancer classifi-
cation to demonstrate the PD-L1 and IFN-γ expressions.
Using CMScaller [32], patients from GSE13924,
GSE18088 and GSE39084 datasets were divided into
CMS1, CMS2, CMS3 and CMS4 subtypes. The majority
of MSI colon patients were in CMS1 subtype. While, the
majority of MSS colon patients were in CMS2 and
CMS4 subtypes (Fig. 5a). Particularly, in GSE18088,
CMS1 subtype was all MSI colon patients. And in
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Fig. 6 IFN-γ signature genes are not activated in MSI subtype colon cancer cell lines. a Box plots showed the MLH1, MSH2, PD-L1 (CD274) and
IFNG expressions in colon cancer cell lines. P values showed the difference of gene expression between MSI and MSS colon cancer cell lines
determined by Student’s t test. b Un-supervised clustering heatmaps showed IFN-γ signature genes expressions in MSI and MSS colon cancer cell
lines. c Functional pathways enrichment analysis from the regulated genes in MSI colon cancer cell lines using DAVID. The most enriched
pathways were demonstrated. d Box plots showed the TGFBR2, TGFB1, PARP1 and PARP2 expressions in colon cancer cell lines. e Box plots
showed the LN-IC50 of PARP inhibitors talazoparib, rucaparib and olaparib in MSI or MSS colon cancer cell lines
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GSE39084, CMS2 was all MSS colon patients (Fig. 5a).
Those results were consistent with the previous observa-
tion that CMS1 encompassed the most of MSI colon
cancer patients [30].
Next, we determined the PD-L1 and IFN-γ expression

in CMS1, CMS2, CMS3 and CMS4 subtypes from the
GSE13924, GSE18088 and GSE39084 datasets. Consist-
ent with the high proportion of MSI patients in CMS1
subtype colon cancer, PD-L1 and IFN-γ were highly
expressed in CMS1 than other three CMS subtypes
(Fig. 5b). Those results further highlighted the im-
mune infiltration and activation property of CMS1.
Previous results showed that CMS2 subtype colon

cancer was characterized by WNT activation and CMS4
was characterized by the activation of TGFβ signaling
pathway [30]. Since, the majority of MSS colon patients
were in CMS2 and CMS4 subtypes, it was expected that
Wnt-β-catenin and TGFβ signaling pathways were
enhanced in MSS subtype colon cancer patients (Fig. 3a)
and TGFβ signaling associated genes TGFBR2 and
TGFBI was highly expressed in CMS4 subtypes of colon
cancer (Fig. 5c), particularly compared with CMS1 sub-
type. Those results also confirmed the fact that TGFBR2
and TGFBI genes were highly expressed in MSS not be-
cause of the Hypoxia/hypoxia-inducible factor signaling
pathway but because of the potential inhibition of TGFβ
signaling pathway in MSI subtype colon cancer patients.

IFN-γ signature genes are not activated in MSI subtype
colon cancer cell lines
Next, we tested the immune-profiles in MSI colon can-
cer cell lines. Colon cancer cell lines with gene expres-
sion data and MSI annotation were downloaded from
the Genomics of Drug Sensitivity in Cancer [33]. Box
plots showed the MMR genes MLH1 and MSH2 expres-
sion in colon cancer cell lines (Fig. 6a). MLH1 and
MSH2 mRNA was significantly down regulated in MSI
than MSS subtype colon cancer cell lines. However, un-
like in MSI subtype colon cancer patients, we did not
observe the high expression of PD-L1 and IFN-γ in MSI
colon cancer cell lines (Fig. 5a). Un-supervised clustering
of gene expression heatmaps showed that there were no
differences of IFN-γ signature genes expression between
MSI and MSS subtype colon cancer cell lines (Fig. 6b).
Functional pathway enrichment analysis from the regu-
lated genes in MSI subtype colon cancer cell lines
showed that no significant immune associated pathways
was enriched (Fig. 6c). Those results implied that the ac-
tivated immune-profiles in MSI colon cancer patients
were contributed by the immune tumor environment.
Globe different gene expression profiles between MSI

and MSS in colon cancer cell lines was further identified
(Additional file 1: Figure S2a). Overlapped with the
colon cancer patient’s data, we found that some genes
were both activated in MSI colon cancer patients’ tissue
and MSI colon cancer cell lines. For instance, TGFβ sig-
naling associated genes TGFBR2 and TGFBI were both
not enhanced in MSI colon cancer patients’ tissue and
MSI colon cancer cell lines (Fig. 3b and 6d). Importantly,
we found that TGFβ and Wnt signaling pathway were
significantly enriched from MSI colon cancer cell lines
regulated genes (Fig. 6c). Those results implied that the
inactivation of TGFβ and Wnt signaling pathways in
MSI subtype colon cancer patients were due to the
tumor cell itself.

MSI subtype colon cancer cell lines are particular
sensitive to PARP inhibitor talazoparib
PARP1 and PARP2 are the main repair system for the
DNA single strand breaks damage [34]. PARP1 and
PARP2 were both activated in MSI subtype colon cancer
patients’ tissue and cell lines (Fig. 6d and Additional file 1:
Figure S2b). Those results implied that MSI subtype colon
cancer patients may be sensitive to PARP inhibitor treat-
ment. To perform this analysis, we used the Genomics of
Drug Sensitivity in Cancer database, which included re-
sponse of colon cancer cells to PARP inhibitors treatment.
We found that one PARP inhibitor talazoparib but not
rucaparib and olaparib was particularly targeting on MSI
subtype colon cancer cells (Fig. 6e).

MSI subtype colon cancer patients are with high M1
macrophage infiltration
Recent studies suggested that the immune cell infiltra-
tion could increase PD-L1 expression in cancer cells and
enhance the response to anti-PD-1 therapies [13]. To
characterize which immune associated cell types in the
tumor environment contributing the activated immune-
profiles in MSI subtype colon cancer, we scored immune
expression signatures to determine the fraction of im-
mune associated cell types by Cibersort assay [22, 35].
Un-supervised clustering heatmaps showed the cibersort



Fig. 7 (See legend on next page.)
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Fig. 7 MSI subtype colon cancer patients are with high M1 macrophage infiltration. a Un-supervised clustering heatmaps showed the cibersort
fraction of 22 immune associated cell types in MSI and MSS colon cancer patients in GSE18088 and GSE39084 datasets. b Box plots showed the
cibersort fraction of M1 macrophage cells in 7 GEO datasets. P values showed the difference of cibersort fraction of M1 macrophage cells
between MSI and MSS patients determined by Student’s t test
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fraction of 22 immune associated cell types in MSI and
MSS colon cancer patients in GSE18088, GSE39084 and
GSE13294 (Fig. 7a and Additional file 1: Figure S3a). We
found that in the colon tumor environment, the most
infiltrated cell type was plasma cells. And M0 macro-
phage cells were also significantly infiltrated into the
tumor environment. However, we did not find significant
difference in cell infiltration of plasma cells or M0
macrophage cells between MSI and MSS colon cancer
patients.
By studying the 22 immune associated cell types, we

found that the cibersort fraction of M1 macrophages cell
was greatly higher in MSI than MSS subtype colon
cancer patients in all 7 GEO datasets (Fig. 7b). CD8 T
cells (Additional file 1: Figure S3b) and γδ T cells (Add-
itional file 1: Figure S3c) were also highly infiltrated into
MSI colon tumor environment. Combined those results
suggested that the highly activated immune-profiles in
MSI subtype colon cancer were contributed by high
infiltration of M1 macrophages cells, CD8 T cells and γδ
T cells.

M1 macrophages infiltration fraction is negatively
associated with MLH1 expression but positively
associated with PD-L1 expression in colon cancer patients
To further confirm the contributions of M1 macrophage
cells to the activation of immune-profiles in MSI subtype
colon cancer patients, we studied other 1338 colon can-
cer patients with gene expression profiles from 5 GEO
datasets (Additional file 1: Figure S1c). We used MLH1
expression level as an estimator of MSI status. In each
GEO dataset, we first determined the infiltrated fraction
of 22 immune associated cell types using Cibersort.
Then we determined the correlation between cell frac-
tion and MLH1 expression. Un-supervised clustering
heatmaps of the spearman correlation efficient between
MLH1 expression and cibersort fraction of 22 immune
associated cell types from 6 colon cancer patients’ data-
sets suggested that M1 macrophages infiltration fraction
was highly negatively associated with MLH1 expression
(Fig. 8a). Similar procedures were used to determine the
correlation efficient between PD-L1 expression and
cibersort fraction of 22 immune associated cell types.
We found that PD-L1 expression was highly positively
associated with M1 macrophages infiltration fraction in
colon cancer patients (Fig. 8b).
Overall, in our data analysis, we identified multiple

expression characteristics in the MSI subtype of colon
cancer, for instance, inactivation of MMR system, TGFβ
signaling pathway and Wnt-β-catenin signaling pathway,
and the activation of PD-L1, IFN-γ signature, IRF1 tran-
scription factor and T cell signaling pathway. The high
infiltration of M1 macrophage and CD8 T cells may
contribute those signatures in MSI subtype colon cancer
patients (Fig. 8c).

Discussion
Blocking the immune checkpoint pathways presents new
generation of cancer therapy. Despite the durable clinical
response and acceptable safety profile, only a subset of
patients could benefit from immune blockade therapies.
Identification of clinically responsive biomarkers is im-
portant to ensure the success of cancer immunotherapy.
Multiple clinical studies have shown that patients with
MSI are more sensitive to anti-PD-1 antibodies. How-
ever the expression mechanistic basis for the link
between MSI genetic status and high efficiency of anti-
PD-1 antibodies is not clear. Here, evidences from 7
expression datasets showing that MSI subtype colon
cancer patients maintain immune activated statues, and
PD-L1, IFN-γ, IFN-γ associated immune gene signature
and transcription factor IRF1 are highly expressed in the
MSI subtype colon cancer patients. While TGFβ and
Wnt-β-catenin signaling pathways, which inhibit the
sensitivity of immune therapies, are inactivated in MSI
subtype colon cancer patients. Those results provide
critical links between MMR deficiency and PD-1 check-
point blockade therapeutic sensitivity in mRNA expres-
sion level.
Due to the direct functions of T cells as well as natural

killer cells in eliminating tumor cells, the infiltration of
those two cell types in tumor environment is well stud-
ied. T cells as well as natural killer cells could activate
the production of IFN-γ. And IFN-γ directly up regu-
lates PD-L1 expression in the PD-1 checkpoint blockade
responding tumor microenvironment [13]. However, the
roles of M1 macrophage cells in tumor microenviron-
ment are rather neglected. We find high infiltration of
M1 macrophage cells in MSI subtype colon cancer
patients. And more likely, M1 macrophage cells are
more important than CD8 T cells and γδ T cells in de-
termining the immune blockade therapies, as presented
by the results that M1 macrophages infiltration fraction
is negatively associated with MLH1 expression, but
positively associated with PD-L1 expression in colon
cancer patients.



Fig. 8 (See legend on next page.)
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Fig. 8 M1 macrophage infiltration fraction is negatively associated with MLH1 expression but positively associated with PD-L1 expression in colon
cancer patients. a Un-supervised clustering heatmaps showed the spearman correlation efficient between MLH1 expression and cibersort fraction
of 22 immune associated cell types from 6 colon cancer patients’ datasets. b Un-supervised clustering heatmaps showed the spearman
correlation efficient between PD-L1 expression and cibersort fraction of 22 immune associated cell types from 6 colon cancer patients’ datasets. c
A graphical picture showed the MSI signature with the inactivation of MMR system, TGFβ signaling pathway and Wnt signaling pathway, but
with the activation of PD-L1 expression, IFN-γ signature, IRF1 transcription factor activation and T cell signaling activation. The high infiltrations of
M1 macrophage and CD8 T cells may contribute those signatures in MSI subtype colon cancer patients
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Although, most knowing biomarkers, like PD-L1, IFN-
γ, IFN-γ associated immune gene signature, TGFβ/Wnt-
β-catenin signaling, and CD8 T cells infiltration could be
identified from the globe expression of MSI subtype
colon cancer patients, some biomarkers may be not in-
volved in MSI expression signature. Like transcription
factor MYC [36] and chromatin regulator PBRM1 [37],
which are reported to determine the sensitivity of PD-1
blockade therapy showed no difference between MSI
and MSS colon cancer patients in mRNA expression
level. One possible reason is that changes of MYC and
PBRM1 expression are mainly in protein level. Another
explanation is that MYC and PBRM1 represent inde-
pendent different biomarkers contrast to MSI status.
Further studies will reveal the relationship of MYC,
PBRM1 expression and MSI status.
Overall, our results provide the first multiple datasets

integrated description of globe expression of MSI
subtype of colon cancer and its relationship with cancer
immunotherapy. This new understanding of the molecu-
lar mechanisms underlying MSI subtype colon cancer
patients should help the development of strategies to
improve prognosis prediction and therapeutic efficacy.

Conclusions
MSI subtype colon cancer patients are immune-hyper
activated. Wnt-β-catenin and TGFβ signaling pathways
are negatively related with MSI status. The immune-
profiles in MSI subtype colon cancer are contributed by
M1 macrophage infiltration in the tumor environment.
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Additional file 1: Figure S1. Descriptions and validation of the datasets
used in this study. (a) Table showed the detailed 7 GEO datasets used for
MSI and MSS study in this paper. (b) Box plots showed the MLH1
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datasets used for cibersort fraction of 22 immune associated cell types
studied in this paper. Figure S2. IFN-γ signature genes are not activated
in MSI subtype colon cancer cell lines. (a) Heatmap demonstrated the
regulated genes in MSI subtype colon cancer cell lines. (b) Box plots
showed the PARP1 and PARP2 expressions in 7 GEO datasets. (supple-
mentary data to Fig. 6d). Figure S3. MSI subtype colon cancer patients
are with high M1 macrophage infiltration. (a) Un-supervised clustering
heatmaps showed the cibersort fraction of 22 immune associated cell
types in MSI and MSS colon cancer patients in GSE13294. (supplementary
data to Fig. 7a). (b) Box plots showed the cibersort fraction of CD8 T cells
in 4 GEO datasets. P values showed the difference of cibersort fraction of
CD8 T cells between MSI and MSS patients determined by Student’s t
test. (c) Box plots showed the cibersort fraction of γδ T cells in 4 GEO
datasets. (PDF 2753 kb)
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