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Abstract

Background: Abrogation of growth factor-dependent signaling represents an effective therapeutic strategy for
patients with colorectal cancer (CRC). Here we evaluated the effectiveness of targeting the epidermal growth factor
(EGF) receptors HER-2 and HER-3 in the three cell lines LS513, LS1034 and SW837.

Methods: Treatment with HER-2-specific antibodies trastuzumab and pertuzumab resulted in a mild reduction of
cellular viability. In contrast, the antibody-drug conjugate T-DM1 mediated a strong and dose-dependent decrease
of viability and Akt phosphorylation.

Results: The most striking effects were observed with the dual tyrosine kinase inhibitor lapatinib, and the Pan-ErbB
inhibitor afatinib. Selectively, the effect of EGF receptor inhibition was augmented by a combination with 5-
fluorouracil and oxaliplatin. Finally, high expression of HER-3 was detected in 121 of 172 locally advanced rectal
cancers (70.3%). In conclusion, inhibition of EGF receptors effectively blocks downstream signaling and significantly
impairs viability of CRC cells. However, the effectiveness of receptor inhibition highly depends on the inhibitors’
mode of action, as targeting HER-2 alone is not sufficient.

Conclusion: Since HER-2 and HER-3 are expressed in a relevant number of patients, targeting both receptors may

represent a promising therapeutic strategy for CRC.
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Background

Colorectal cancer represents the third most common
cancer and the second leading cause of cancer-related
deaths in the United States and Western Europe [1, 2].
However, despite implementation of multimodal treat-
ment approaches and novel targeted therapeutics
within the last two decades [3, 4], the occurrence of
distant metastases still limits the prognosis of affected
patients. In this context, up to 50% of patients with
CRC develop metastatic disease recurrence, predomin-
antly in the liver and the lung, and, until now, surgical
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resection represents the only curative strategy [5-7].
Unfortunately, resectability is technically not always
feasible, and disease recurrence after metastasis resec-
tion is frequently observed [8, 9]. Consequently, there
is an urgent clinical need to develop novel agents and
treatment strategies to inhibit metastatic cancer
progression.

In metastatic CRC, treatment regimens were com-
monly based on 5-fluorouracil (5-FU) and, recently, in
combination with irinotecan or oxaliplatin [10]. Due to
the lack of specificity of these drugs, there have been
major initiatives in targeted-therapy approaches. A pri-
mary focus was EGF receptor signaling, which plays a
key role in CRC development and progression [11-13].
Major clinical trials, including recent data from the CELIM
study, have demonstrated that initially unresectable CRC
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liver metastases can be surgically removed after combined
EGEFR inhibition and chemotherapy (CTx), resulting in a
better survival of these patients [14, 15]. Unfortunately,
most CRC develop resistance against EGFR-targeting
agents, which ultimately limits this therapeutic strategy
[16, 17]. Therefore, the evaluation of alternative thera-
peutic targets is crucial for the implementation of in-
novative treatment approaches. In this context, the
transmembrane receptors HER-2 and HER-3 represent
interesting candidates.

HER-2, a member of the EGF receptor family of recep-
tor tyrosine kinases (Erb), commonly referred as ErbB2,
represents a prognostic biomarker in breast cancer and
has been a molecular target for many years [18, 19]. Re-
cently, HER-2 inhibition has also been integrated into
therapeutic strategies for metastatic gastric cancer [20, 21].
Among other studies, the ToGA-trial demonstrated HER-2
positivity in about 20-30% of adenocarcinomas of the
stomach and gastro-esophageal junction [22], and a
survival benefit upon treatment with trastuzumab using
a specifically modified immunohistochemistry (IHC)
scoring algorithm, which differed from breast cancer
[20]. While data about the prognostic and functional
relevance of HER-2 expression are still limited for most
gastrointestinal malignancies [21, 23], we have recently
reported HER-2 positivity in more than 20% of primary
rectal cancer [24], and overexpression of HER-2 in
nearly 10% of CRC-derived liver metastases [25]. More-
over, we observed overexpression of another member
of the EGF receptor family, HER-3, in approximately
70% of CRC-derived liver metastases [25]. This observa-
tion is of high clinical interest because novel HER-3 inhib-
itors have been recently developed and are currently being
tested within early phase clinical trials [26, 27].

In the present study, we determined the protein ex-
pression of HER-2 and HER-3 in 12 CRC cell lines using
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immunocytochemistry (ICC). Selected cell lines were
treated with the HER-2-specific antibodies trastuzumab
or pertuzumab, which either prevent ligand binding or
dimerization of HER-2 with other HER receptors. Add-
itionally, cells were incubated with the antibody-drug
conjugate T-DM1, the dual tyrosine kinase inhibitor
lapatinib, and the irreversible Pan-ErbB (HER-1/HER-2/
HER-4) inhibitor afatinib. Specific targeting of Erb re-
ceptors was combined with 5-FU and oxaliplatin, which
represents a standard regime in the clinical setting.
Finally, we evaluated the frequency of HER-3 protein
expression in patients with primary rectal cancer using
IHC.

Methods

Cell lines and cell culture

Human CRC cell lines HT29, SW403, SW837, SW1116,
LS513, LS1034, Caco-2, SW1463, SW480, SW620,
HCT116, and LS411N were obtained from the American
Type Culture Collection (ATCC, Manassas, VA) and
cultured in their recommended media (Invitrogen, Karls-
ruhe, Germany), supplemented with 2 mM L-glutamine
(Lonza, Verviers, Belgium) and 10% fetal bovine serum
(Biochrome, Berlin, Germany). Periodically, mycoplasma
contamination was excluded using the MycoAlert®
Mycoplasma Detection Kit (Lonza, Cologne, Germany),
and cell-line cross-contamination was excluded using
short tandem repeat profiling [28]. Relevant characteris-
tics of these cell lines are summarized in Table 1.

Drugs

Trastuzumab, pertuzumab, and T-DM1 (Roche, Penzberg,
Germany) were obtained by the local pharmacy of the
University Medical Center in Goettingen. Small-molecule
inhibitors afatinib and lapatinib were purchased from

Table 1 Genetic characteristics and HER-2/HER-3 immunostaining of 12 CRC cell lines

Cell Line TP53 Mutation KRAS Mutation APC Mutation MMR Status HER-2 Mutation HER-2 ICC HER-3 ICC
HT29 + - + MSS - 1+ 3+
SW403 + + + MSS - T+ T+
SW837 + + + MSS - 2+ 1+
SW1116 + + + MSS - 2+ 3+
LS513 - + - MSS - 2+ 3+
LS1034 + + + MSS - 2+ 3+
Caco-2 + - + MSS - 2+ T+
SW1463 + + + MSS - 1+ 3+
SW480 + + + MSS + 0 0
SW620 + + + MSS - 0 0
HCT116 - + - MSS 0 0
LS411N + - + MSS + 2+ 1+

MMR mismatch repair, MSI microsatellite-instable, MSS microsatellite-stable, ICC immunocytochemistry
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Santa Cruz (Dallas, TX), and 5-FU and oxaliplatin from
Sigma (Munich, Germany).

Cellular viability assays

Cellular viability was determined using the CellTiter-Blue®
reagent (Promega, Madison, WI), as previously described
[29]. Briefly, cell lines growing in log-phase were seeded at
different densities (8000 cells per well for LS513; 6000 cells
for LS1034; and 6000 cells for SW837, respectively) into
black clear bottom 96-well plates (Corning, Corning, NY).
Cells were allowed to adhere overnight, and drugs were
added with increasing concentrations. Twenty-four, 48, and
72 h upon treatment start, reduction of resazurin to resoru-
fin was measured using a plate reader (VICTOR™ X4,
Perkin Elmer, Waltham, MA) according to the manufac-
turer’s instructions. Cellular viability of antibody-treated
cells was compared to untreated cells, and viability of in-
hibitor-treated cells was compared to DMSO-controls, as
previously described [30]. All experiments were performed
as three independent replicates, with three technical repli-
cates per plate.

Western blot analysis

Cell lines were seeded into six-well plates (10° cells per
well) with increasing concentrations for the indicated
drugs. Twenty-four hours later, cells were stimulated with
100 ng/ml neuregulin (NRG, Cell Signaling, Danvers, MA)
for 10 min at 37 °C. Subsequently, cells were lysed using
RIPA buffer (50 mM Tris, 150 mM NaCl, 0.5% Na-deoxy-
cholate, 1% NP-40, 2 mM EDTA) followed by sonification.
Finally, 20 pg of whole-cell protein lysate was resolved on
a 10% Bis-Tris gel (Roth, Karlsruhe, Germany) at 30 mA
per gel. Proteins were transferred by wet blotting (Criter-
ion™ blotter, Bio-Rad, Hercules, CA) onto a PVDF
membrane (Merck-Millipore, Billerica, MA), and
probed with primary antibodies p-Akt (1:1000; Cell Sig-
naling), Akt (1:1000; Cell Signaling), and Actin (1:2000;
Sigma, Saint Louis, MO) at 4 °C over night. On the next
day, membranes were incubated for 2h with the sec-
ondary antibody goat-anti-rabbit-HRP (1:30,000; Acris,
Hiddenhausen, Germany). Signals were detected using
ECL Luminata forte (Merck-Millipore) and a CCD
camera system (LAS 4000mini; GE Healthcare, Munich,
Germany).

Immunostaining

Cell lines with 70 to 80% confluence were trypsinized,
washed with PBS, and fixed with buffered 4% formalde-
hyde (AppliChem, Darmstadt, Germany) over night at
room temperature. Subsequently, cells were incubated
with increasing concentrations of ethanol (60-100%) for
30 min, followed by incubation with isopropanol and
xylene for 30 min. Finally cells were covered with hot
paraffin for 10 min and embedded into a paraffin block.
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HER-2 immunostaining was conducted using a PATH-
WAY® anti-HER-2/neu (4B5) rabbit monoclonal anti-
body (Ventana Medical Systems, Mannheim, Germany)
on a Ventana BenchMark XT immunostainer (Ventana,
Tucson, AZ), visualized by the ultraView Universal DAB
Detection Kit (Ventana Medical Systems), as previously
described [24, 25]. HER-3 expression was determined in
both cell lines and primary rectal cancer specimens
using the anti c-erbB-3/HER-3 rabbit monoclonal anti-
body (clone SP71; Zytomed Systems, Berlin, Germany).

HER-2 and HER-3 scoring

For HER-2 scoring, we used an established protocol,
which has been developed within the ToGA-trial and
which is now being used to determine HER-2 protein
expression in patients with adenocarcinoma of the stom-
ach and the gastroesophageal junction [20, 22, 31, 32].
Importantly, we have previously used this protocol to
score HER-2 and HER-3 expression in primary rectal
cancers and CRC liver metastases [24, 25].

Cell lines or cancer cells from formalin-fixed paraffin
embedded patient samples were considered ICC 2+ if at
least 10% of the tumor cells had a medium membrane
staining for HER-2 or HER-3, respectively, at high mag-
nification (10x, 20x magnified), or ICC 3+ if at least 10%
of the tumor cells had a strong membrane staining at
low magnification (2.5x, 5x magnified). No membrane
staining was scored ICC 0, and weak membrane staining
in at least 10% of the tumor cells was defined as ICC 1+
(40x magnified).

Statistical analysis

Significant effects in cellular viability assays were ana-
lyzed using logistic regression with generalized linear
models (glm) and analysis of variance (ANOVA). In the
linear model, the cellular viability (in percent) was
modeled as dependent on different replicates, different
duration effects (24-h, 48 h, 72 h), a log10 dose effect and
dose:duration interaction effects. Model comparisons
were performed via ANOVA using the F-Test to assess
whether the addition of the duration, dose or interaction
variables adds significant information to the model. Stat-
istical analyses were conducted using R statistical com-
puting environment version 3.1.1. The (estimated) half
maximal effective concentration (ECs,) was estimated
based on the fitted logistic regression curves for each
measurement series. If the ECsg lies outside the range of
measured doses, extrapolations can be inaccurate and
lead to very large estimates. Comparisons of two meas-
urement series were performed using a similar logistic
regression model. Here, an additional drug combination
effect plus all interaction effects were estimated. The
ANOVA P-value for the combination effect indicates
that the drug combination displays a significantly
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different effect from the treatment with one drug alone
(Additional file 5: Table S1).

The association of HER-3 expression levels with other
clinico-pathological parameters was assessed using
Fisher’s exact test. Survival rates were supplied by
means of Kaplan-Meier analysis and tested using the
Cox proportional hazards model. Time to recurrence
(TTR) was defined as the interval between surgical re-
section of the primary tumor and disease recurrence,
and cancer-specific survival (CSS) as time from surgical
resection to Colorectal cancer-related death. The P-value
was set to P < 0.05 to be considered statistically significant.
Survival analysis was performed using the R package
survival.

Results

HER-2 and HER-3 status in CRC cell lines

Since Erb receptor positivity has been reported in a
substantial proportion of colorectal cancer patients, we
analyzed the expression of HER-2 and HER-3 in a large
set of colorectal cancer cell lines. These cell lines were
specifically chosen because we had extensively charac-
terized them before [29, 33-35]. Using immunocyto-
chemistry, strong expression of HER-3 was detected in
five out of 12 cell lines (ICC score >2+; Table 1),
whereas high (3+) or borderline (2+) expression of
HER-2 was present in 50% of our model system (ICC
score > 2+; Table 1). This indicates that a relevant
proportion of CRC cell lines overexpresses either HER-
2 or HER-3 or a combination of both. Three cell lines
with borderline HER-2 overexpression (defined as ICC
score > 2) and/or HER-3 overexpression were selected
for further experimentation, i.e., LS513, LS1034, and
SW837 (Additional file 1: Figure S1; Table 1, highlighted
in red).

Influence of HER-2 inhibition on cellular viability

To functionally characterize the impact of HER-2
expression on cell survival, HER-2 positive cell lines
were treated with increasing doses of the HER-2-specific
antibodies trastuzumab and pertuzumab, which either
prevent ligand binding or dimerization of HER-2 with
other HER receptors, with the antibody-drug conjugate
T-DM1, the dual tyrosine kinase inhibitor lapatinib,
and the irreversible Pan-ErbB (HER-1/HER-2/HER-4)
inhibitor afatinib. As shown in Fig. 1, treatment with
trastuzumab or pertuzumab resulted in a rather mild
reduction of cellular viability in all cell lines (Fig. 1a, b).
For pertuzumab (Fig. 1b), but not for trastuzumab
(Fig. la), this observation was accompanied by de-
creased Akt phosphorylation at Serine 473, indicating
reduced Akt activity. In contrast, T-DM1 mediated a
strong and dose-dependent decrease of cellular viability
in all cell lines, accompanied by a distinct reduction of

Page 4 of 12

Akt phosphorylation (Fig. 1c). The most striking effect,
however, was observed after treatment with lapatinib,
which inhibits the EGFR and HER-2 receptor (Fig. 1d),
or afatinib, which irreversibly alters HER-1, HER-2,,
and HER-4 signaling (Fig. le). Treatment with either
lapatinib or afatinib resulted in a complete abrogation
of cellular viability for prolonged time periods. The
respective P-values and the (estimated) half maximal
effective concentrations (ECsp) for all drugs and time
points are listed in Additional file 5: Table S1.

These findings suggest that HER-2 inhibition results in
reduced cellular viability of CRC cells, but the effect is
dependent on the mode of action of the respective
inhibitor. It also indicates that blockade of HER-2 alone
is not sufficient for appropriate cell growth inhibition.

Effectiveness of dual HER-2 inhibition on cellular viability

Because neither treatment with trastuzumab nor pertuzu-
mab markedly decreased cellular viability, we tested the
combination of both drugs, which is routinely used for
breast cancer patients [36], and which is currently being
tested for gastric cancer patients in the INNOVATION
trial (ClinicalTrials.gov Identifier: NCT02205047). Two
different doses of pertuzumab were combined with
increasing concentrations of trastuzumab, and vice versa
(Fig. 2). Despite striking inhibitory effects on downstream
signaling, as demonstrated by decreased Akt phosphoryl-
ation, the combination of these drugs had only mild
effects on cellular viability, regardless of the duration of
the treatment (Fig. 2, Additional file 5: Table S1). These
results corroborate the interpretation that specific inhib-
ition of HER-2 is neither effective nor sufficient for signifi-
cant alteration of cellular viability in colorectal cancer
cells.

Effectiveness of HER-2 inhibition combined with 5-FU and
oxaliplatin

Since systemic treatment of metastatic CRC patients fre-
quently involves a combination of targeted therapy with
either 5-FU and/or oxaliplatin [37], we now aimed to
evaluate the effectiveness of combining HER-2 inhibition
with 5-FU and oxaliplatin. To define a treatment base
line we first determined the impact of 5-FU, and oxali-
platin, alone on cellular viability [34], and tested distinct
combinations thereof (Additional file 2: Figure. S2 and
Additional file 3: Figure S3, Additional file 5: Table SI).
For further combination experiments with Erb inhibi-
tors, we selected 5-FU and oxaliplatin concentrations
that decreased relative cellular viability to approximately
60—-80% (Additional file 3: Figure S3).

Trastuzumab combined with 5-FU and oxaliplatin
exhibited a relatively moderate effect, which was time-
dependent, but dose-independent, in LS513 and LS1034
cells (Fig. 3a). A similar result was observed for pertuzumab
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(See figure on previous page.)

listed in Additional file 5: Table S1

Fig. 1 Influence of HER-2/HER-3 inhibition on cellular viability. Cellular viability of LS513, LS1034, and SW837 cells was determined 24 h (black
curve), 48 h (red curve), and 72 h (blue curve) after treatment with increasing concentrations of trastuzumab (a), pertuzumab (b), T-DM1 (c),
lapatinib (d), and afatinib (e). To assess the inhibitory effect on downstream signaling, cells were treated with increasing concentrations of the
respective inhibitors for 24 h, stimulated with 100 ng/ml neuregulin for 10 min, and referred to Western blot analysis. All experiments were
performed in triplicate, independently repeated three times. The respective P-values and the (estimated) ECs, for all drugs and time points are

and 5-FU/oxaliplatin (Fig. 3b). In contrast, T-DM1 com-
bined with 5-FU/oxaliplatin mediated a strong dose- and
time-dependent effect on cellular viability (Fig. 3c). The
strongest effect, however, was detected upon treatment
with either lapatinib (Fig. 3d) or afatinib (Fig. 3e) in com-
bination with 5-FU and oxaliplatin. In both cases, the
observed result was dose- and time-dependent.

Finally, we aimed to explore synergistic effects of Erb
inhibition and conventional chemotherapy in colorectal
cancer cells. Therefore, we statistically compared the
effect of Erb inhibition (Fig. 1) with combined treatment
of Erb inhibitors and 5-FU/oxaliplatin (Fig. 3). We
applied a statistical model that fitted logistic regression
curves, and used ANOVA analysis to determine signifi-
cant differences between these treatments. Interestingly,
the combination of 5-FU/oxaliplatin with T-DM1
(Fig. 4a), lapatinib (Fig. 4b), and afatinib (Fig. 4c) medi-
ated stronger effects on cellular viability in LS513 and
LS1034 colorectal cancer cells.

HER-3 protein expression in primary rectal cancer

As a result of these experiments, inhibition of the HER-
2 receptor alone is not sufficient to abrogate colorectal
cancer cell growth. Simultaneous inhibition of additional
members of the Erb receptor family altered cellular
viability and downstream signaling more effectively. Both
findings suggest that unspecific, i.e., simultaneous target-
ing of the Erb receptor family is a more promising
approach in colorectal cancer treatment. Obviously, a
pivotal requirement for this hypothesis is a relevant
expression of these Erb receptors in CRC patients.
Therefore, we assessed the expression of HER-3 in 172
tissue specimens of locally advanced rectal cancer sam-
ples using immunohistochemistry (Fig. 5a). We found
high expression (IHC 2+ and IHC 3+) in more than 70%
of our tumor samples (n =121, Fig. 5b). Heterogeneity
or focal HER-3 expression was detected in 52.3% of the
tissues. Importantly, HER-3 expression significantly cor-
related with HER-2 expression (P = 0.01, Additional file 4:
Figure S4). There was no correlation of HER-3 expres-
sion levels and clinico-pathological findings such as
UICC stage (P =0.7) or tumor regression grading upon
neoadjuvant chemoradiation (P =0.61). With a mean
follow-up time of 78.2months, patients with high
HER-3 expression showed a comparable time to re-
currence (TTR, P =0.78) and cancer specific survival

(CSS, P =0.51) as compared to patients with low
HER-3 expression (Fig. 5¢, d).

Collectively, our data indicate that a relevant propor-
tion of CRC cell lines and primary rectal cancer express
HER-2 and HER-3. Importantly, inhibition of these
receptors effectively blocks intracellular signaling and
significantly impairs the viability of CRC cells in vitro.
However, the effectiveness of receptor inhibition highly
depends on the inhibitors’ mode of action, and com-
bined inhibition of EGF receptor family members seems
to be more effective than individual targeting of HER-2.

Discussion

Given its high incidence in the Western world, treat-
ment of CRC remains an important interdisciplinary
task. Although innovative surgical concepts and the
implementation of multimodal treatment strategies have
considerably improved both local control and onco-
logical outcome [38-40], systemic treatment of CRC
patients with distant metastases remains a major clinical
challenge. In this context, advances were obtained by
combining cytostatic drugs such as 5-FU, oxaliplatin or
irinotecan, and by the discovery and successful targeting
of key signaling pathways, which promote colorectal car-
cinogenesis. Prime examples are the pharmacological
inhibition of the vascular endothelial growth factor
(VEGF) or the epidermal growth factor receptor
(EGFR) in selected patients, which has become clinical
routine [37, 41].

However, and despite initial responses to these thera-
peutic approaches, secondary resistance frequently
evolves over time, ultimately resulting in treatment fail-
ure [16, 42]. The underlying mechanisms that lead to
treatment resistance are quite complex and heteroge-
neous [43]. Recent work demonstrated that prolonged
inhibition of the EGF receptor (EGFR/ErbB1) leads to
selection of Ras mutations as well as an increased
expression of other members of the ErbB family, which
can replace EGFR in EGF-mediated oncogenic signaling
[44, 45]. The two most prominent members of the ErbB
family, which may substitute ErbBl to escape EGFR
inhibition, are HER-2 (ErbB2) and HER-3 (ErbB3). Espe-
cially the role of HER-2 has been described as a keystone
in EGF-mediated growth activation in breast or gastric
cancer [19, 46]. Based on our present results and on pre-
vious analyses of primary rectal adenocarcinomas and
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(See figure on previous page.)

Fig. 2 Cellular viability upon combined targeting of HER-2/HER-3. Cellular viability of LS513, LS1034, and SW837 cells was assessed 24 h (black
curve), 48 h (red curve), and 72 h (blue curve) after treatment with various combinations of trastuzumab and pertuzumab. The inhibitory effect on
downstream signaling was evaluated by Western blot analysis. All experiments were performed in triplicate, independently repeated three times.
(@ + b) Two different doses of pertuzumab were combined with increasing concentrations of trastuzumab. (c + d) Two different doses of
trastuzumab were combined with increasing concentrations of pertuzumab. The respective P-values and the (estimated) ECs for all drugs and
time points are listed in Additional file 5: Table S1
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Fig. 3 Effectiveness of HER-2/HER-3 inhibition combined with 5-FU and oxaliplatin. Cellular viability of LS513, LS1034, and SW837 cells was
assessed 24 h (black curve), 48 h (red curve), and 72 h (blue curve) after treatment with 5-FU and oxaliplatin combined with trastuzumab (a),
pertuzumab (b), T-DM1 (c), lapatinib (d), and afatinib (e). All experiments were performed in triplicate, independently repeated three times. The
respective P-values and the (estimated) ECsq for all drugs and time points are listed in Additional file 5: Table S1
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Fig. 4 Comparison of anti-HER-2/HER-3 monotherapy and a combination with 5-FU and oxaliplatin. Displayed are the respective ECsq 24 h (black
bar charts), 48 h (red bar charts), and 72 h (blue bar charts) after treatment. Compared to monotherapy, the combination of T-DM1 (a), lapatinib
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CRC liver metastases, we found both HER-2 and HER-3
overexpressed in a substantial proportion of CRC [24, 25],
and in CRC cell lines. In addition, activating HER-2
mutations have been identified in CRC patients within
the TCGA project as well as in several CRC cell lines
[11, 47]. More recently, activating HER-2 mutations
were also detected in Lynch-like CRC [48]. Conse-
quently, both receptors represent attractive therapeutic
targets.

Despite its activity in breast or gastric cancer [19, 46],
monotherapy with HER-2 inhibitors trastuzumab or per-
tuzumab only slightly reduced the viability of HER-2
positive CRC cells. Moreover, and in contrast to previ-
ous results in breast cancer [49], the favorable effect of
dual inhibition of HER-2 by simultaneous application of
both antibodies showed only mediocre activity on CRC
cell lines. A potential explanation why both antibodies,
which specifically target the HER-2 receptor from
outside the tumor cell, lack activity could be an intact
intracellular tyrosine kinase activity resulting from
heterodimerization with other ErbB family members or a
constitutively active tyrosine kinase activity. Congruent

with this assumption, inhibition of the tyrosine kinase
activity of the HER-2 receptor by either lapatinib or
afatinib dramatically impaired cellular viability in vitro.
This effect was even more pronounced when treatment
was combined with 5-FU and/or oxaliplatin, reflecting
the clinically more relevant situation. Of note, the
HERACLES phase-II trial recently tested as a proof of
concept a combination of trastuzumab and lapatinib in
patients with HER-2 positive metastatic CRC that were
primarily resistant to cetuximab or panitumumab [50].
This study demonstrated that approximately 5% of K-
RAS exon 2 wild-type metastatic CRC are HER-2 posi-
tive, which is comparable to other malignancies with
druggable molecular targets. Importantly, the treatment
was well tolerated, and about 1/3 of the patients experi-
enced either partial or complete response [50].

The strongest impairment of cellular viability in our
analyses, however, was observed upon treatment with
the Pan-ErbB inhibitor afatinib, suggesting that other
members of the ErbB family may be involved in EGEF-
mediated oncogenic signaling in colorectal cancer cells.
These results together with the finding that HER-3 is
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Fig. 5 HER-3 protein expression of primary rectal cancer visualized by immunohistochemistry staining. a shows different intensities of HER-3
expression and the grading from no staining (IHC 0) to an intensive staining for HER-3 (IHC 3+). The positivity rate for HER-3 protein expression
and the distribution of different staining grades within the analysed cohort of 172 CRC patients are depicted in the bar graph in b. Kaplan-Meier
curves showing the time to recurrence (TTR) (c) and the cancer specific overall survival (d) in patients with tumors negative or with low
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expressed in a substantial proportion of CRC patients
and CRC cell lines highlight the clinical rationale to
simultaneously target members of the ErbB receptor
family. Importantly, antibodies targeting HER-3 such as
MM-121 (ClinicalTrials.gov: NCT01451632), RG7116
(ClinicalTrials.gov: NCT01482377) and U3-1287 are
currently being tested in several clinical trials across
various patient populations, including CRC patients. In
cancers with ligand-dependent activation of HER-3,
several studies suggest therapeutic potential of anti-
HER-3 substances [51]. Recently, HER-3 was identified
as predictive factor for clinical outcome in K-RAS wild-
type CRC patients treated with cetuximab [52]. An
ongoing clinical study evaluates treatment with MM-
121 plus cetuximab versus MM-121 in combination
with cetuximab plus irinotecan in CRC (ClinicalTrials.
gov: NCTO01451632). Another multicenter study is
recruiting participants to evaluate RG7116 alone,
RG7116 in combination with cetuximab, or RG7116
plus erlotinib in patients with metastatic and/or locally
advanced HER-3 positive solid tumors (ClinicalTrials.gov:
NCTO01482377).

Conclusion
In conclusion, selective inhibition of the HER-2 receptor
alone does not seem to represent a promising therapeutic

strategy for CRC treatment, in contrast to breast cancer or
other cancers of the gastro-intestinal tract. In clear con-
trast, simultaneous inhibition of different members of the
ErbB receptor family dramatically abrogated cellular via-
bility of CRC cells in vitro. Since both HER-2 and HER-3
are overexpressed in a relevant proportion of primary
CRC and CRC liver metastases, targeting of HER-2 and
HER-3 simultaneously may be considered as a potential
therapeutic strategy in these patients upon failure of EGFR
inhibition.

Additional files

Additional file 1: Figure S1. HER-2 and HER-3 status of CRC cell lines.
Twelve CRC cell lines were analyzed for membrane expression of HER-2
and HER-3. Overexpression of HER-3 (ICC = 2+4) was detected in five cell
lines, whereas HER-2 was overexpressed (ICC 2 2+) in six cell lines.
Depicted are representative HER-2 and HER-3 stainings of LS513, LS1034,
and SW837 cells, paraffin embedded. (PNG 5582 kb)

Additional file 2: Figure S2. Dose-response curves for oxaliplatin.
Cellular viability of LS513 (A), LS1034 (B), and SW837 (C) cells was
determined 24 h (black curve), 48 h (red curve), and 72 h (blue curve)
after treatment with increasing concentrations of oxaliplatin. All experiments
were performed in triplicate, independently repeated three times. (PNG 247 kb)

Additional file 3: Figure S3. Effect of a combination of 5-FU and
oxaliplatin. Cellular viability of LS513, LS1034, and SW837 cells was
determined 24 h (black curve), 48 h (red curve), and 72 h (blue curve)
after treatment with various concentrations of oxaliplatin and 5-FU.
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(A + B) Different doses of oxaliplatin were combined with increasing
concentrations of 5-FU. (C+ D) Different doses of 5-FU were combined
with increasing concentrations of oxaliplatin. All experiments were
performed in triplicate, independently repeated three times. (PNG 964 kb)

Additional file 4: Figure S4. Correlation of HER-2 and HER-3 protein
expression in the 127 rectal cancer resection specimens as determined
by immunohistochemical staining for HER-2 and HER-3 respectively.

Immunohistochemical scoring was performed in 3 different grades (no
expression =0, weak = 1 intermediate = 2 and strong = 3. (PNG 167 kb)

Additional file 5: Table S1. EC50s of L5513, L51034, SW837. (DOC 125 kb)
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