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Abstract

Background: Standardized Nucleic Acid Quantification for SEQuencing (SNAQ-SEQ) is a novel method that utilizes
synthetic DNA internal standards spiked into each sample prior to next generation sequencing (NGS) library
preparation. This method was applied to analysis of normal appearing airway epithelial cells (AEC) obtained by
bronchoscopy in an effort to define a somatic mutation field effect associated with lung cancer risk. There is a need
for biomarkers that reliably detect those at highest lung cancer risk, thereby enabling more effective screening by
annual low dose CT. The purpose of this study was to test the hypothesis that lung cancer risk is characterized by
increased prevalence of low variant allele frequency (VAF) somatic mutations in lung cancer driver genes in AEC.

Methods: Synthetic DNA internal standards (IS) were prepared for 11 lung cancer driver genes and mixed with
each AEC genomic (g) DNA specimen prior to competitive multiplex PCR amplicon NGS library preparation. A
custom Perl script was developed to separate IS reads and respective specimen gDNA reads from each target into
separate files for parallel variant frequency analysis. This approach identified nucleotide-specific sequencing error
and enabled reliable detection of specimen mutations with VAF as low as 5x 10~ (0.05%). This method was
applied in a retrospective case-control study of AEC specimens collected by bronchoscopic brush biopsy from the
normal airways of 19 subjects, including eleven lung cancer cases and eight non-cancer controls, and the
association of lung cancer risk with AEC driver gene mutations was tested.

Results: TP53 mutations with 0.05-1.0% VAF were more prevalent (p < 0.05) and also enriched for tobacco smoke
and age-associated mutation signatures in normal AEC from lung cancer cases compared to non-cancer controls
matched for smoking and age. Further, PIK3CA and BRAF mutations in this VAF range were identified in AEC from
cases but not controls.

Conclusions: Application of SNAQ-SEQ to measure mutations in the 0.05-1.0% VAF range enabled identification of
an AEC somatic mutation field of injury associated with lung cancer risk. A biomarker comprising TP53, PIK3CA, and
BRAF somatic mutations may better stratify individuals for optimal lung cancer screening and prevention outcomes.
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Background

Lung cancer is the leading cause of cancer-related death
in men and women, and cigarette smoking is the most
significant preventable risk factor [1]. Despite wide-
spread smoking cessation initiatives, due to past and
continued cigarette use, as well as the lack of effective
treatment for advanced disease, lung cancer will con-
tinue to be the deadliest cancer for decades to come [2].

The primary strategies to reduce lung cancer death are
prevention through reduction in exposure to tobacco
products and screening of high-risk subjects by annual
low-dose CT (LDCT) scan to diagnose lung cancer when
it is in early stage and curable [3]. Annual LDCT screen-
ing significantly reduces lung cancer mortality [4]. How-
ever, there is large inter-individual variation in lung
cancer risk among those currently recommended for
screening according to demographic criteria [5]. Overall,
lung cancer incidence is low (<10%) among those who
currently meet screening criteria [5, 6]. Thus, there is a
need for an effective biomarker that will more accurately
stratify individuals according to lung cancer risk, improve
specificity, and thereby reduce cost and harms related to
LDCT screening. One approach toward this goal is to
characterize differences in the prevalence and characteris-
tics of somatic cell genetic damage in histologically nor-
mal airway epithelium of lung cancer cases compared to
controls matched for smoking and age [7-9]. This idea is
supported by the presence of extensive morphologic and
molecular changes in the airway epithelium of lung tissue
from heavy smokers, including large chromosomal
changes and point mutations, and higher prevalence of
these changes in subjects with lung cancer than in non-
cancer subjects matched for smoking and age [7, 10, 11].

Inter-individual variation in airway epithelial cell
(AEC) somatic mutation prevalence may be due to vari-
ation in the relative contribution of a) random DNA rep-
licative errors during stem cell division and subsequent
tissue regeneration, b) environmental (e.g., smoking,
radon, asbestos) factors that increase risk for replicative
errors due to DNA damage, and c) hereditary germline
DNA variants associated with sub-optimal protection of
DNA from damage and/or damage repair [12, 13]. Thus,
it is reasonable to hypothesize that prevalence of somatic
mutations among certain genes in AEC will represent a
summation biomarker for the interactive effects of sto-
chastic replicative errors, hereditary risk variants, and
cigarette smoke exposure on lung cancer risk.

Advances in next generation sequencing (NGS) tech-
nology markedly increase the ability to measure somatic
mutations in AEC and other tissues. In a recent study,
targeted NGS capable of measuring mutations with vari-
ant allele frequency (VAF) >1.0% was used to assess
driver gene somatic mutations in lung cancer tissue and
adjacent matched normal tissue from a group of subjects

Page 2 of 14

[14]. A large number of mutations known to be drivers
for lung cancer were identified in non-cancer lung tis-
sues in close proximity to each cancer. As such, meas-
urement of mutations with VAF >1% may support
development of biomarkers for early diagnosis and/or
genetic characterization of a prevalent lung cancer.
However, the clone prevalence diminished proportional
to the distance from the cancer site, with very few mu-
tants in the normal airway of the lung not affected by
the cancer or in nasal epithelium. As such, this approach
did not support development of a non-invasive test for
future incidental lung cancer risk.

Untested so far is the hypothesis that lung cancer predis-
position may be measured as increased prevalence and/or a
characteristic spectrum of low variant frequency (VAF <
1.0%) mutations in AEC. Testing this approach presented a
challenge due to limited sensitivity and reliability of current
prevalent NGS analysis methods. Working together with
the FDA-sponsored Sequencing Quality Control Consor-
tium (SEQC), we identified actionable best practices for
mutation detection in clinical applications using NGS tech-
nologies [15]. We then implemented these best practices
while applying the novel Standardized Nucleic Acid Quan-
tification SEQuencing (SNAQ-SEQ) method in a retro-
spective case-control study. According to SNAQ-SEQ, we
mixed synthetic DNA internal standards (IS) into each
AEC gDNA specimen prior to NGS library preparation.
The IS enabled identification of nucleotide site-specific
technical error and clear identification of low VAF muta-
tion signal in samples relative to noise (technical artifacts
arising from sequencing error). Thus, synthetic IS provided
a reproducible measure of technical error in test samples
[16] as is routinely done to ensure quality-control in other
key molecular diagnostic testing methods, including liquid
and gas chromatography and mass spectroscopy [17, 18]
and the FDA-approved Roche COBAS® qPCR tests. We
previously reported that position-specific and mutation-
specific technical error observed in IS DNA is highly corre-
lated with technical error in respective sample DNA mea-
sured in the same sequencing library [16]. As implemented
here, SNAQ-SEQ was able to measure variants at VAF as
low as 5 x 10~ % (0.05%). We also demonstrated the value of
including IS in targeted NGS for both RNA-Seq and muta-
tion analysis [11, 19, 20].

In this study, target genes were chosen for analysis
based on high prior likelihood of being mutated in lung
cancer as reported by The Cancer Genome Atlas
(TCGA) study, including some considered to be drivers
of malignancy [21].

Methods

Study cohort enrollment and characterization

For this retrospective case-control study, we used AEC
specimens collected from nineteen subjects, including
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eleven smokers with lung cancer (CA-SMK), five
smokers without cancer (NC-SMK) matched for age and
smoking history, and three non-smokers without cancer
(NC-NON) (Table 1). Subjects were enrolled into re-
search trials at the University of Toledo Medical Center
(UTMC) between 2000 and 2018. Each subject included
in this research study provided written informed consent
under protocols approved by the University of Toledo
Institutional Review Board. Clinical characteristics, in-
cluding lung cancer diagnosis, smoking history, and
demographic information were obtained from the med-
ical record. Lung cancer histology was reviewed and
confirmed by an independent pathologist certified in
anatomical and clinical pathology.

Definition of non-Cancer subjects (Additional file 1: table
S1)

Subjects were defined as non-cancer based on negative
chest CT (no nodules or masses reported by Radiologist)
at time of sample collection, or specific benign patho-
logical diagnosis of CT abnormality followed by confirm-
ation of no lung cancer 2 or more years after sample
collection. When possible, subjects’ medical records
were reviewed at least yearly to determine lung cancer
status. Indeed, there was one subject (subject #128) that
was diagnosed with lung cancer 11 years after sample

Table 1 Patient Demographics
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collection and this subject was treated as a cancer in this
report.

Specimen acquisition

AEC were obtained via bronchoscopic brush biopsy of
normal appearing airway epithelium at the time of a
diagnostic procedure done according to standard of care
indication as previously described in detail [22]. For pa-
tients with a lung cancer diagnosis, sampling of AEC
was from the main bronchus of the lung not involved
with cancer. Specimens were immediately placed in cold
saline and processed within one hour of collection.

DNA extraction and quantification

Genomic DNA (gDNA) was extracted from approxi-
mately 500,000 AEC per subject using a FlexiGene DNA
kit (Qiagen, Hilden, Germany) according to manufac-
turer protocol and quantified using competitive poly-
merase chain reaction (PCR) amplification of a well-
characterized genomic locus in the Secretoglobin, family
1A, member 1 gene as described previously [23].

Target selection

Twelve loci in seven gene regions recently reported by
The Cancer Genome Atlas (TCGA) project to be the
most commonly mutated in non-small cell lung cancer
were selected as targets [21]. The targeted regions,

Sample # Cancer Status Pack Years Sex Age Range Smoking Status Diagnosis
946 CA 45 F 50-59 Former NSCLC-SQ
167 CA 50 F 60-69 Unknown NSCLC
947 CA 45 M 60-69 Former SCLC

146 CA 46.5 F 60-69 Former NSCLC

887 CA 28 F 70-79 Current NSCLC-AD
885 CA 90 M 70-79 Current SCLC

940 CA 60 M 70-79 Former NSCLC-AD
191 CA NA* M 70-79 Current NSCLC-SQ
147 CA 75 M 70-79 Former SCLC

128 CA 40 F 50-59 Current NSCLC

923 CA 15 M 70-79 Former NSCLC

210 NC 34 M 40-49 Current Noncancer
886 NC 0 F 40-49 Never Noncancer
952 NC 30 M 50-59 Former Noncancer
157 NC 100 M 60-69 Unknown Noncancer
943 NC 0 F 60-69 Never Noncancer
956 NC 20 M 60-69 Current Noncancer
884 NC 54 M 70-79 Former Noncancer
883 NC 0 M 80-89 Never Noncancer

*Not available: The exact pack year smoking history for this patient was not recorded. However, it was recorded that the patient was an active 2 PPD smoker at
time of lung cancer diagnosis at age 75 and had advanced stage COPD, thus there is compelling circumstantial evidence for large smoking history
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specified according to Human Genome Organization
(HUGO) names with exon numbers and abbreviations
provided in parentheses, included B-Raf proto-oncogene
exon 15 (BRAF_15), epidermal growth factor receptor
exons 18-21 (EGFR_18, EGFR_19, EGFR_20, EGFR_21),
erb-b2 receptor tyrosine kinase 2 (ERBB2), KRAS proto-
oncogene exon 2 (KRAS_2), notch receptor 1 exon 26
(NOTCH1_26), phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha exon 10 (PIK3CA_10), and
tumor protein p53 exons 5-7 (TP53_5, TP53_6, TP53_7).

SNAQ-SEQ method

Reagent synthesis

Primers and synthetic internal standard mixtures were
prepared for SNAQ-SEQ at Accugenomics, Inc. (Wil-
mington, NC) for each of the selected targets (Add-
itional file 2: Table S2). Primers for all targets except for
NOTCH1_26 performed efficiently in multiplex and
downstream library preparation. As such, data are re-
ported for the remaining 11 targets.

Synthetic internal standard mixture preparation
Competitive synthetic DNA internal standard (IS) mole-
cules for TCGA targets described above were designed
with known dinucleotide substitution mutations relative
to target analyte native template (NT) every 50 bases.
This enabled separation of NT and IS reads during post-
sequencing data processing of either PCR amplicon li-
braries used in this study, or of random fragment hybrid
capture libraries in other ongoing studies not reported
here. IS were cloned into plasmids and selected as pure
clonal isolates using Sanger sequencing confirmation to
verify the final sequence. This additional purification
step was taken to select clones free of any potential er-
rors introduced by synthesis. Based on prior studies, due
to the high fidelity of endogenous E.coli polymerase, the
frequency of variants in the cloned IS can be expected to
be between 1077 to 10~ % [24]—well below the desired
limit of detection for this study. Each cloned plasmid
was linearized, quantified by digital droplet PCR, then
combined in an equal genome copy balance. An internal
standard mixture (ISM) containing equal concentrations
(per genome copy) of each linearized target analyte IS
molecule was prepared. We previously reported that
technically-derived base substitution errors occur at the
same rate in synthetic IS as in the respective target se-
quence within gDNA test samples during the combined
library preparation and sequencing steps. Therefore,
each IS controls for target-specific site and regional dif-
ferences in base substitution error rate [16].

Multiplex competitive PCR amplicon libraries
In order to amplify each target in a sample and
maximize opportunity to detect low frequency variants,
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a multiplex competitive PCR amplicon library was pre-
pared for each AEC DNA sample. Conditions were opti-
mized to minimize technical error during PCR,
including use of Q5 HotStart High Fidelity DNA Poly-
merase with a reported error frequency of 10 ° (New
England Biolabs, Ipswich, MA) and minimization of PCR
cycles in each round.

Round 1: competitive multiplex PCR

Twelve target-specific primers with universal tails were
synthesized by Life Technologies (Carlsbad, CA). Indi-
vidual primer solutions for each target were created by
adding TE buffer (10mM Tris-Cl, pH7.4, 0.1 mM
EDTA) to the lyophilized primers to make a 100 uM
stock. A 2.5 uM multiplex primer mixture was prepared
by mixing 5 pL of each 100 uM forward and reverse pri-
mer stock solution and bringing the final volume to
200 puL with TE buffer.

For each subject, an aliquot of AEC DNA was com-
bined with equal genome copies of ISM to control for
nucleotide-specific substitution error occurring during
library preparation and/or sequencing. Reactions con-
taining at least 50,000 genome equivalents of both sam-
ple and IS in a mixture, 6 uL 5X Q5 Buffer (New
England Biolabs, Ipswich, MA), 0.6 uL 10 mM dNTP
(Promega, Madison, WI), 3 uL 2.5 uM multiplex primer
mixture, 1.5uL 2% w/v bovine serum albumin (New
England Biolabs, Ipswich, MA), 0.3 uL Q5 HotStart High
Fidelity DNA Polymerase (New England Biolabs, Ips-
wich, MA, Ipswich, MA), and molecular-grade water to
a final reaction volume of 30 puL were prepared.

Each competitive multiplex reaction mixture was amp-
lified in a 7500 Fast Real-Time PCR System (Applied
Biosystems, Foster City, CA) for a total of 20 cycles
under modified gradient PCR conditions: 95 °C/2 min
(Q5 HotStart DNA Polymerase activation); 20 cycles of
94°C/10s (denaturation), 70°C/10s, 68°C/10s, 66°C/
10s, 64°C/10s, 62°C/10s, (annealing), and 72°C/30s
(extension); a final extension 72°C/2 min extension to
ensure complete extension of all products. PCR products
were column-purified using QIAquick PCR Purification
Kit (Qiagen, Hilden, Germany) according to manufac-
turer protocol.

Round 2: Singleplex PCR
Following multiplex amplification, a second round of 12
parallel singleplex PCR reactions using primers for each
individual target at a final concentration of 500 nM were
performed to ensure robust amplification of product for
primers with lower efficiency in multiplex. High fidelity
Q5 Hot Start Polymerase and other PCR reagents were
used as described above.

Singleplex reactions were amplified in a 7500 Fast
Real-Time PCR System (Applied Biosystems, Foster City,
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CA) for 15 cycles using the following conditions: 95 °C/2
min (Q5 polymerase activation); 15 cycles of 94°C/10s
(denaturation), 65°C/20s, (annealing), and 72°C/30s
(extension); a final extension 72 °C/2 min extension was
performed to ensure complete extension of all products.
Each singleplex PCR product was checked for quality
and quantity with an Agilent 2100 Bioanalyzer using
DNA Chips with DNA 1000 Kit reagents according to
manufacturer protocol (Agilent Technologies, Deutsch-
land GmbH, Waldbronn, Germany). Sample-specific sin-
gleplex reactions then were (a) mixed in equimolar
amounts to ensure an equal balance of target reads
among sequencing read counts and (b) column-purified
using QIAquick PCR Purification Kit (Qiagen, Hilden,
Germany) according to manufacturer protocol.

Round 3: addition of sample-specific barcodes

The column-purified mixture of singleplex reactions
from each patient sample was labeled using a unique set
of dual-indexed barcode primers to reduce likelihood of
false-indexing/barcoding a sequencing read [25]. A pair
of fusion primers containing the barcode sequences and
[lumina priming sites were designed with 1) their 3'-
end complementary to the universal sequence tails
added during the initial multiplex and singleplex reac-
tions, 2) 5° to that a 10-nucleotide index/barcode se-
quence, and [3] 5’ to that, an [llumina Read 1 or Read 2
priming site. The final concentration of the barcode
primers in each reaction was 500 nM. PCR conditions
were identical to those described for singleplex reactions
except the cycle number was reduced to 10.

PCR products were checked for quality and quantity
with an Agilent 2100 Bioanalyzer using DNA Chips with
DNA 1000 Kit reagents according to manufacturer
protocol and diluted 100-fold with molecular grade
water for input into final sequencing adapter PCR.

Round 4: addition of sequencing adapters

Individual diluted barcoded samples were labeled with
an Illumina platform-specific adapter using a second set
of fusion primers designed with their 3'-end
complimentary to the Illumina Read 1 or Read 2 priming
sites and 5 Illumina sequencing adapter using the same
PCR conditions used in Round 3.

Sample pooling

Following Round 4, each uniquely barcoded sample was
quantified on an Agilent 2100 Bioanalyzer as described
above. The samples then were mixed in equimolar ratios
to optimize the percentage of sequencing reads that each
library would eventually receive; in most cases 1 : 1 was
used.
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Product purification and sequencing

The combined sequencing library was purified using gel
electrophoresis on a 2% w/v agarose gel. The resultant
product band was then cut out, separating it from un-
wanted heterodimers, extracted using a QIAquick Gel
Extraction Kit (Qiagen, Hilden, Germany), and eluted in
50 pL elution buffer. The purified sequencing library was
sent to the University of Michigan Genomics core facil-
ity for Next Generation Sequencing on an Illumina
NextSeq 550 sequencing instrument.

Analysis of NGS data

FASTQ data files generated by the University of Mich-
igan Genomics core facility were processed using a cus-
tom Perl script to separate the internal standard (IS) and
native template (NT) reads into separate NT and IS files
(Additional file 7: File 1), followed by parallel analysis
using the Qiagen CLC Genomics Workbench 12 soft-
ware suite for quality-trimming, alignment, and variant
calling (Additional file 7: File 1). Primer sequences, in-
ternal standard dinucleotide positions plus their 5° and
3" bases, and known single nucleotide polymorphism
(SNP) positions were excluded from variant analysis.

Variant calling

Variants were called based on NT signal significantly
above the background error measured in IS for the re-
spective mutation type at each respective position. Sig-
nificance was determined using contingency table chi-
square analysis of each individual variant type at each
nucleotide position, as previously described for identify-
ing rare variants in pooled samples [26]. To maximize
stringency of test for signal above noise, a variant was
called if the proportion of variant reads to wild-type
reads in the specimen was significantly higher than the
proportion of variant reads to wild-type reads at the
same site in the IS mixed with the respective specimen,
and also higher than the proportion observed in IS
mixed with each of the other 18 specimens. Thus, each
variant in a specimen was considered a true positive
(p <0.05) only if the proportion of variant reads to wild-
type reads was significantly higher in the specimen rela-
tive to each of the 19 IS replicates. A Bonferroni correc-
tion for false discovery was used based on the number of
nucleotides assessed (760 bp) and the number of substi-
tution mutations possible at each nucleotide position.
Further, to avoid potential analytical variation from sto-
chastic sampling, only mutations with significant signal
above IS noise, and with VAF > 0.05% were called.

Variant annotation and hotspot analysis

Called variants were characterized for pathogenicity
using publicly-available databases including dbSNP,
COSMIC, and FASMIC. Identification of known
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oncogenic hotspots and generation of corresponding fig-
ures were assessed using the cBioPortal for Cancer Gen-
omics developed at Memorial Sloan Kettering (MSK)
Cancer Center [27].

Statistical analysis

Calling of variants based on contingency table chi-
square analysis of each individual variant type at each
nucleotide position was performed using R: A Language
and Environment for Statistical Computing (http://www.
R-project.org/). Assessment of hotspot enrichment for
called variants was performed using Kruskal-Wallis test
using a chi-square distribution. Mutation prevalence
based on type of mutation and target was assessed using
Kruskal-Wallis test with Nemenyi test for multiple com-
parisons (Additional file 8: File 2).

Results

Measurement of low frequency mutations in non-cancer
airway epithelium

In this study of 11 driver gene target regions in AEC
specimens from normal airways of 19 subjects, there
were 129 called variants with VAF ranging from 5 x 10~
% (0.05%) to 4.6 x 1072 (0.46%) (Additional file 3: Table
S3). As described in the Methods section, a VAF mini-
mum threshold of 0.05% was used to minimize risk of
false discovery due to stochastic sampling. Among the
129 called variants, the relationship between sample mu-
tation signal (Mutation VAF) and background technical
error (noise) (IS VAF) for the respective variant at the
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same site is presented in Fig. 1. For each sample muta-
tion VAF, there is displayed the IS VAF for 19 IS. These
represent the VAF for the IS mixed with the sample that
contained the mutation as well as the VAF for each of
the IS mixed with the other 18 samples. These 19 inde-
pendent IS replicate values represent the variation
around the IS VAF (error) measurement within an ex-
periment. As is evident, the inter-replicate variation in
IS VAF values increases with decreasing IS VAF, consist-
ent with effects of the Poisson distribution on stochastic
sampling as previously reported [16] (Fig. 1, Additional
file 3: Table S3). These effects of Poisson distribution
presented challenges for statistical analysis of signifi-
cance for observed sample mutations (Additional file 3:
Table S3) that we addressed through use of a non-
parametric contingency table approach.

Characteristics of sequencing error in the targeted
regions

As is evident from Fig. 1 and Additional file 3: Table S3, at
sites within the targeted regions for which a sample variant
was called the maximum technical error (Median IS VAF
across replicates) observed was 0.06%. This error rate is
lower than the median error rate observed for non-targeted
sequencing on a comparable Illumina platform [28] [29].

Prevalence of low frequency mutations in AEC

Mutation prevalence was calculated as called mutations
per nucleotide positions assessed for each target. The
number of nucleotides assessed for each target varied

Sample Mutation Signal vs.
IS Sequencing Error

~

variant allele reads/total allele reads
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Fig. 1 Mutations identified in patient specimens. Sample mutation signal versus IS sequencing error. Variant allele frequency (VAF) of sample
mutations (red triangle) relative to VAF of corresponding nucleotide-specific error variants in 19 IS replicates (black circle). VAF = site specific
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somewhat based on region spanned by primers and num-
ber of dinucleotide sites blocked from analysis due to
modification in IS to enable separation of IS reads from
NT reads. Among all 19 subjects, the average mutation
prevalence, across the summary of targeted DNA regions
(760 bp) in each subject (mutations/bp/subject) was 8.9 x
1073, (Table 2). This AEC mutation prevalence value is
much higher than reported for methods that only detect
mutants with relatively high variant frequency (VAF > 1%)
[14], or that are more sensitive but non-targeted [30].
However, it is consistent with our previous analysis of
AEC using a highly sensitive PCR-based method [31, 32].

Association of low frequency substitution mutations in
TP53, PIK3CA, and BRAF with Lung Cancer

Among the three measured exons of TP53, the prevalence
(mutations/bp/subject) of substitution mutations was 10.4-
fold higher (p <0.05) in AEC from CA-SMK subjects rela-
tive to NC-SMK subjects matched for smoking and age
(Fig. 2a, Table 3). In addition, PIK3CA or BRAF mutations
were observed in seven cancer subjects and no non-cancer
subjects (Table 4). Notably, the majority of mutations in
TP53 (Fig. 2¢), all of the mutations in PIK3CA, and one of
three mutations in BRAF (Additional file 6: Fig. S2) oc-
curred in previously identified “hotspots” associated with
biological changes that drive carcinogenesis [21, 33].

As is evident in Fig. 3, the prevalence of AEC muta-
tions in TP53 exons 5,6, and 7 increased at a lower VAF
range and the separation between cancer and non-
cancer AEC was most prominent between 0.05 and 0.1%
VAE. Importantly, and consistent with prior studies of
field effect in AEC [14], there were no mutations mea-
sured in AEC above 1% VAF.

Toward the goal of developing a biomarker that might
contribute to improved determination of lung cancer

Table 2 Target- and cohort-specific mutation prevalence
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risk, we assessed subject-specific inter-cohort differences
in prevalence of these low frequency mutations (Fig. 4).
Based on data obtained in this small retrospective case-
control study, a TP53 exon mutation prevalence cut-off
of 0.002 mutations/bp would have 100% specificity and
55% sensitivity (Fig. 4a). Similar discrimination was ob-
served when TP53 exon mutations were combined with
PIK3CA, and BRAF mutations (Fig. 4b).

Nearly all of the TP53 mutations in CA-SMK subjects
were tobacco signature or age-related mutations (C > A, C >
T, and T > C substitutions) (Fig. 2B, Table 5), closely ap-
proximating the spectrum of TP53 mutations reported for
lung cancer tissues [34, 35]. The prevalence of each type of
tobacco or age signature TP53 mutation was significantly
higher in cancer subjects than in non-cancer subjects, in-
cluding C> A (p =0.002), C>T (p =0.003),and T >C (p =
0.001) (Table 5). For example, while C to A mutations com-
prised 29.8% (17/57) of TP53 mutations observed in AEC
from CA-SMK subjects, there was only one C to A TP53
mutation observed in all non-cancer subjects (NC-TOT)
(Table 5). C>T transitions comprised 47% of TP53 muta-
tions in lung cancer subjects in this study. Further, TP53
mutations in CA-SMK subjects were enriched significantly
(p =0.002) at “hotspot” lung cancer driver mutation sites
(Fig. 2¢) [33, 34].

Lack of association of TP53 mutations with smoking
history

Notably, among non-cancer subjects, smoking was not
associated with higher TP53 mutation prevalence (Table
3), and this is consistent with our prior study [31]. Spe-
cifically, only half of NC-SMK subjects had even a single
TP53 mutation with VAF > 0.05% and in each case, only
one variant was observed. (Fig. 3, Table 4). Due to the
small number of PIK3CA and BRAF mutations it was

Target CA-SMK NC-SMK NC-NON NC-TOT Average (All Subjects)
BRAF_15 67x10°° 0 0 0 39%10°°
EGFR_18 0 0 0 0 0
EGFR_19 0 0 0 0 0
EGFR_20 39x107? 34x10°° 45%x102 38x10°° 38x 102
EGFR_21 17%x10°°2 0 0 0 99%10™*
ERBB2 11x10°? 14x10°° 14x10°7 14x107 12x10°7
KRAS_2 0 0 0 0 0
PIK3CA_10 42x107° 0 0 0 24x10°°2
TP53_5 22%10°2 47x10°° 0 29% 1073 14x10 2
TP53_6 22%x107° 0 31%x107° 12x10°°3 13x107?
TP53_7 13%x 102 29% 102 0 18x10°° 85x 10 °
Average (All Targets) 12x10°? 47x10°° 53%107°2 49x10°° 89% 10732

Mutations were defined as substitutions with VAF (variant allele reads/total allele reads) > 5 x 10~ * and significantly above IS VAF (i.e,, background noise) based
on contingency table analysis. Mutation prevalence was defined as mutations/target bp/subject (see Methods)
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Fig. 2 Inter-cohort comparison of TP53 mutation mean prevalence. a Mean mutation prevalence among subjects within each cohort in each
separate TP53 exon 5, 6, or 7 (mutations/target base/subject). b Cohort- and substitution-specific mean mutation prevalence for the combined
three TP53 exon targets. ¢ Number of mutations at TP53 hotspot sites. Inset: number of mutations according to mutation type. Mutations were
defined as those with VAF (variant allele reads/total allele reads) > 0.05% and significantly above IS background VAF based on contingency table
analysis (see Methods). TP53 mutations in CA-SMK subjects were enriched significantly at “hotspot” lung cancer driver mutation sites (p = 0.002)

not possible to assess these for a statistically significant
association with smoking.

Characteristics of low frequency AEC mutations not
associated with Lung Cancer

In contrast to TP53, at non-TP53 targets the mutation
prevalence was not significantly different in cancer com-
pared to non-cancer subjects (Table 3). Among the 11

targets measured, mutation count was highest in the
EGFR_20 target region with a total of 43 mutations ob-
served across all subjects (Table 4). There was no differ-
ence in EGFR_20 mutation prevalence between cancer
and non-cancer (3.9x107% vs 3.8 x 10" % respectively;
p =0.72) (Fig. 5a, Table 3), and no association between
smoking and non-smoking (3.4 x 1072 vs 4.5 x 10~ re-
spectively; p = 0.74). ERBB2 mutations (N = 17) displayed

Table 3 Statistical analysis of target specific inter-cohort differences in mutation prevalence

Target CA-SMK vs. NC-TOT CA-SMK vs. NC-SMK CA-SMK vs. NC-NON NC-SMK vs. NC-NON
BRAF_15 0.12 04 0.54 1
EGFR_18 N/A N/A N/A N/A
EGFR_19 N/A N/A N/A N/A
EGFR_20 0.72 0.78 0.96 0.74
EGFR_21 0.39 0.76 0.83 1
ERBB2 035 073 08 1
KRAS_2 N/A N/A N/A N/A
PIK3CA_10 0.062 0.27 041 1
TP53_5 0.022 0.27 0.1 0.77
TP53_6 0.0083 0.037 0.333 0.849
TP53_7 0.028 0.25 0.16 09
TP53_Total 0.0019 0.047 0.043 092

p-value for differences in mutation prevalence in each target across cohorts was measured with Kruskal-Wallis test and p-values presented were adjusted for
multiple comparisons using Nemenyi test. Mutations were defined as those with VAF (variant allele reads/total allele reads) > 5 x 10~ * and significantly above IS
background VAF based on contingency table analysis
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Table 4 Distribution of mutations across targets and samples
Sample Diagnosis Cohort BRAF_15 EGFR_18 EGFR_19 EGFR_20 EGFR_21 ERBB2 KRAS_2 PIK3CA_10 TP53_5 TP53_6 TP53_7 Total

946 CA SMK 1 0 0 0 0 0 0 0 0 1 0 2
167 CA SMK 0 0 0 3 0 1 0 0 1 3 3 1
947 CA SMK 0 0 0 2 0 1 0 1 0 0 1 5
146 CA SMK 1 0 0 3 1 1 0 0 1 0 0 7
887 CA SMK 0 0 0 4 0 1 0 0 1 0 1 7
885 CA SMK 0 0 0 3 0 0 0 0 4 2 1 10
940 CA SMK 0 0 0 0 0 0 0 1 6 6 2 15
191 CA SMK 0 0 0 3 0 2 0 1 2 5 1 14
147 CA SMK 1 0 0 3 0 1 0 1 4 4 0 14
128 CA SMK 0 0 0 3 0 1 0 0 0 1 0 5
923 CA SMK 0 0 0 1 0 1 0 0 2 4 1 9
210 NC SMK 0 0 0 3 0 1 0 0 0 0 0 4
886 NC NON 0 0 0 2 0 1 0 0 0 0 0 3
952 NC SMK 0 0 0 1 0 1 0 0 1 0 0 3
157 NC SMK 0 0 0 2 0 1 0 0 0 0 1 4
943 NC NON 0 0 0 3 0 1 0 0 0 1 0 5
956 NC SMK 0 0 0 3 0 1 0 0 1 0 0 5
884 NC SMK 0 0 0 1 0 1 0 0 0 0 0 2
883 NC NON 0 0 0 3 0 1 0 0 0 0 0 4
Total 3 0 0 43 1 17 0 4 23 27 1 129

Inter-target and inter-sample distribution of mutations. Mutations were defined as those with VAF (variant allele reads/total allele reads) > 5 x 107* (0.05%) and
significantly above IS background VAF based on contingency table analysis
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Fig. 3 Effect of VAF cut-off on TP53 mutation prevalence detected in AEC of subjects with or without cancer. Hotspot regions in TP53 exons 5, 6,
and 7 were targeted. Variants were binned according to VAF lower limit and cumulative variants in cancer (solid symbol) or non-cancer subjects
(open symbol) above the indicated VAF threshold were plotted
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a similar spectrum to that of EGFR_20 with no age or to-
bacco signature mutation pattern and no difference
among the cohorts. Notably, in contrast to the high frac-
tion of C> T transitions among TP53 (29/61; 48%), only
1/43 (2.3%) EGFR_20 mutations, and 1 ERBB2 mutation
was C>T (Fig. 4b, Additional file 4: Table S4). Further,
the majority of the EGFR_20 mutations were synonymous
and not predicted to be pathogenic (Fig. 4c).

Discussion

Measurement of low frequency mutations in AEC

Use of synthetic internal standards in the novel
SNAQ-SEQ method to measure low frequency AEC
somatic mutations revealed a lung cancer-associated
TP53 mutation field effect (Figs. 3 and 4). This
TP53 mutation field effect would not have been evi-
dent if less sensitive NGS methods were used, as in
a recent study that employed a method with VAF
lower limit of >1% [14]. Inclusion of synthetic in-
ternal standards with confirmed reference sequence
in each library sample preparation enabled qualita-
tive and quantitative characterization of technical
error for each type of variant (transition and/or
transversion) at each nucleotide site in each library.
This approach enabled determination of significance
relative to background error for each measurement

(Fig. 1) as is desirable for all diagnostic applications
[36]. Use of synthetic IS, as described here for tar-
geted NGS diagnostics, is analogous to IS applica-
tions that are now standard in liquid and gas
chromatography, and mass spectrometry diagnostic
applications [17, 18]. As such, use of the approach
presented here for error control is highly suited for
analysis of somatic mutations with VAF >0.05% in
driver gene regions. Due to practical limits on size
of clinical specimens available for NGS analysis, it is
reasonable to consider the specimen-determined
lower limit for mutation VAF to be > 0.05% [37].

As is clear from Fig. 1 and Additional file 3: Table S3,
for the targeted driver gene regions spanned in this
study, the median technical error VAF measured in IS
for corresponding true positive sample variants was
0.014%. This error rate is similar to that reported from
other studies that employed targeted NGS on an Illu-
mina platform to assess cancer driver gene hotspot re-
gions and is much lower than the approximately 0.1%
median error reported for non-targeted NGS on Illu-
mina platforms [29]. These results strongly support the
conclusion that targeted NGS analysis of actionable mu-
tations with synthetic IS and without use of unique mo-
lecular indexes (UMI) has potential to improve quality
control and throughput while reducing costs.

Table 5 Inter-cohort comparison of type-specific substitution mutations across all TP53 exons

Mutation CA-SMK' NC-SMK? NC-NON? NC-TOT*
C>A 17 20 x 1079)* 1(12x107% 0 1(12x107%
C>G 1(1.2%x107% 1(1.2%x107% 0 1(1.2x107%
C>T 27 (32 x 1073 1(1.2%x107% 1(12x10°% 224x107%
T>A 336x10°% 0 0 0

T>C 9 (1.1x107%* 0 0 0

T>G 0 0 0 0

'CA-SMK; Cancer subject, present or past smoker. 2NC-SMK; Non-Cancer subject, present or past smoker. *NC-NON; Non-Cancer subject, never smoker. *“NC-TOT;

All Non-Cancer subjects, smokers and non-smokers
*p < 0.05; **p < 0.01; ***p < 0.005

Mutation number with prevalence in parentheses (mutations/target bp/subject) for each substitution type. Mutations were called as described in Methods section,
after testing for significance of mutation VAF above background and using a VAF of 0.05% as a minimum threshold
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A TP53 mutation field effect associated with lung cancer
risk

The higher prevalence of low frequency TP53 hot-spot
pathogenic tobacco smoke and age signature muta-
tions in AEC of CA subjects compared with NC sub-
jects matched for smoking and age represents a field
of injury strongly associated with lung cancer risk
(Figs. 2a, b, 4a, Tables 3, 5). The observed enrichment
for TP53 mutations in driver mutation sites and for
tobacco-smoke signatures provided another source of
validation that the observed mutations are true posi-
tives. These results justify further evaluation of low
frequency (i.e., VAF <1%) TP53 hotspot mutations in
AEC as a lung cancer risk biomarker. Moreover, in-
clusion of low frequency actionable mutations in
BRAF and PIK3CA may further enhance accuracy of
this proposed biomarker (Fig. 4b). If the AEC bio-
marker is validated in larger case/control and pro-
spective cohort studies, it will justify studies in
surrogate specimens that may be obtained through a
method less invasive than bronchoscopy, such as
brushing of nasal epithelium and/or collection of ex-
haled breath condensate. The range of prevalence for
low frequency TP53 mutations in AEC among sub-
jects in this study was similar to that previously ob-
served using a highly sensitive PCR method that
employed synthetic internal standards [31, 32].

Higher prevalence of low frequency TP53 mutations in
AEC of subjects with lung cancer

The observed higher prevalence of TP53 mutations in
cancer subjects reported in this study is consistent with
previously reported greater somatic cell genetic damage
in histologically normal airway epithelium of lung cancer
cases compared to controls matched for smoking and
age [7-9]. Together, these observations support the hy-
pothesis that lung cancer predisposition is due, in part,
to hereditary and/or acquired sub-optimal protection of
AEC DNA from damage associated with cigarette smok-
ing. For example, there is large inter-individual variation
in regulation of key DNA repair, antioxidant, and cell-
cycle control genes in AEC [11, 20, 38—40], and the lung
cancer risk test (LCRT) based on this variation has high
accuracy to identify lung cancer subjects [11]. The LCRT
prospective validation study is currently in progress
(NCT01130285) [22]. One of the variables in the LCRT
biomarker is TP53 transcript abundance, and there is a
100-fold variation in TP53 expression in AEC [11, 20].
TP53 plays a key role in upregulating DNA repair genes
in response to DNA damage [41], and TP53 protein dir-
ectly regulates the key nucleotide excision repair (NER)
gene, ERCC5, in AEC [42]. We recently determined that
germline allelic variation at rs2296147, a TP53 recogni-
tion site in the 5'-regulatory region of ERCCS5, is associ-
ated with variation in allele-specific expression of
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ERCCS5 in AEC [38-40]. Hereditary inter-individual vari-
ation in ERCC5 transcription regulation by TP53 is sig-
nificant because ERCC5 is the rate-limiting enzyme in
transcription-coupled NER, and mutations associated
with tobacco smoke result from inefficient NER of DNA
adducts arising from the binding of cigarette smoke car-
cinogen metabolites to the exocyclic N2-positions of
guanines on the transcribed strand [41, 43]. Thus, it is
reasonable to hypothesize that sub-optimal ERCC5 regu-
lation by TP53, determined by inherited germ line vari-
ants, is an important factor responsible for higher
prevalence of tobacco smoke induced hotspot mutations
in the transcribed strand of TP53 among cancer sub-
jects. Given the association of lung cancer risk with two
orthogonal biomarkers measured in AEC (i.e., low fre-
quency TP53 cigarette smoke signature somatic muta-
tions on the one hand, and gene expression patterns on
the other), a logical next step is to assess the perform-
ance of each type of biomarker in AEC from the same
subjects. This will clarify whether the two biomarkers
are measuring the same or independent informative risk
factors and whether a composite biomarker will be more
informative of risk.

Lung cancer-associated TP53 mutations are limited to
small AEC clones

The prevalence of low frequency TP53 variants is ele-
vated in AEC of lung cancer subjects and this prevalence
decreases with increasing VAF (Fig. 3). A plausible ex-
planation for this is that as the TP53 mutation cell clone
size increases, driven in part by reduced TP53 function,
neo-antigens are detected and attacked by the immune-
surveillance system. This explanation is consistent with
a recent report that markers of immune activation are
observed in pre-malignant lesions [44]. Thus, it is likely
that the vast majority of TP53 driven clones are detected
and removed by immune surveillance, even among indi-
viduals who have a high burden due to sub-optimal
DNA protection, as described in the prior section. How-
ever, due to the high prevalence of TP53 driven clones
in those at higher risk for lung cancer, there is greater
risk that with reduced immune surveillance in advanced
age and perhaps due to a regional sub-optimal immune
surveillance deficit, a clone will escape detection, acquire
additional driver mutations, and begin to invade.

Interpretation of non-pathogenic EGFR mutations

In contrast to TP53, for EGFR the prevalence of AEC
somatic mutations was not different between cancer and
non-cancer subjects or smokers and non-smokers (Fig.
5a,b; Table 2, Table 3). Further, the substitution pattern
(evenly distributed between C > A and C> G) is not as-
sociated with cigarette smoke exposure [35]. Moreover,
evidence presented here supports the conclusion that
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the observed EGFR exon 20 mutations do not confer
growth advantage. Specifically, in contrast to the ob-
served non-synonymous pathogenic TP53 smoke- and
age-related mutations, only one of the 43 observed
EGFR_20 mutations was non-synonymous and present
at a known pathogenic hotspot (Fig. 5c). A reasonable
explanation, consistent with our observations in a prior
study, is that clonal populations with this type of muta-
tion (i.e., not associated with growth advantage, not as-
sociated with cigarette smoke signature) likely occurred
as stochastic DNA replication errors in stem cell prolif-
eration to generate the airway epithelium during the
fetal-juvenile period [31, 32, 45].

Potential biomarkers to guide targeted chemoprevention

Currently, there is no targeted therapy for lung cancer-
associated TP53 mutations. However, there are targeted
therapies for PIK3CA and BRAF driver mutations and
mutations at PIK3CA or BRAF hotspots were detected
in the AEC of six of the 11 lung cancer subjects and
none of the non-cancer subjects (Table 4). For each sub-
ject in this study, DNA was extracted from approxi-
mately 500,000 AEC, and for each of the six subjects
positive for PIK3CA or BRAF mutations, the average
mutation VAF was about 1072, Thus, if clones were
evenly distributed at a similar prevalence, using a prior
estimation of 5 x 10° AEC throughout bronchial trees of
both lungs [32], we would expect a total of 10° muta-
tions in 1000 colonies per subject. Relatively non-toxic
gene targeted therapies for PIK3CA and BRAF are FDA-
approved or in advanced trials for some cancers. For ex-
ample, alpelisib is currently in Phase III trials for treat-
ment of PIK3CA driver mutations in cancers of the lung
and other tissues [46], and a combination of dabrafenib
and trametinib has clear efficacy in treatment of BRAF:
V600E mutated non-small cell lung cancers [47]. Thus,
if the PIK3CA/BRAF prevalence in AEC is validated in a
larger study, it would be reasonable to consider trials in
which the AEC mutation spectrum is measured before
and after treatment of lung cancer subjects bearing can-
cers that also have the mutation. This would enable test-
ing of the hypothesis that relatively well-tolerated gene
targeted therapy could reduce the burden of AEC field
of injury mutations that contribute to development of
lung cancer. If the hypothesis is supported, then individ-
uals with elevated PIK3CA/BRAF mutation prevalence
in AEC could be considered for chemoprevention trials.

Statistical analysis comments

The contingency table statistical approach employed to
determine significance of observed sample mutations
[26] was useful in this study and provides a solution that
we plan to use in similar future studies. It is likely that
in most similar targeted NGS studies, the site and
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variant specific technical error will range over more than
two orders of magnitude, as observed in this study, and
as we previously reported [16].

Conclusion

Based on evidence presented here, measurement of
DNA variants in the 0.05-1.0% VAF range will enable
more informative analysis of AEC somatic mutations as-
sociated with cancer risk. Among lung cancer subjects,
TP53 mutations were more prevalent (p < 0.05) and sig-
nificantly more enriched for tobacco smoke and age sig-
natures compared to non-cancer subjects matched for
smoking and age.
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