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Abstract

Background: High grade serous ovarian carcinoma (HGSOC) is the most common subtype of epithelial ovarian
cancers (EOC) with poor prognosis. In most cases EOC is widely disseminated at the time of diagnosis. Despite the
optimal cytoreductive surgery and chemotherapy most patients develop chemoresistance, and the 5-year overall
survival being only 25–35%.

Methods: Here we analyzed the gene expression profiles of 10 primary HGSOC tumors and 10 related omental
metastases using RNA sequencing and identified 100 differentially expressed genes.

Results: The differentially expressed genes were associated with decreased embryogenesis and vasculogenesis and
increased cellular proliferation and organismal death. Top upstream regulators responsible for this gene signature
were NR5A1, GATA4, FOXL2, TP53 and BMP7. A subset of these genes were highly expressed in the ovarian cancer
among the cancer transcriptomes of The Cancer Genome Atlas. Importantly, the metastatic gene signature was
suggestive of poor survival in TCGA data based on gene enrichment analysis.

Conclusion: By comparing the gene expression profiles of primary HGSOC tumors and their matched metastasis,
we provide evidence that a signature of 100 genes is able to separate these two sample types and potentially
predict patient survival. Our study identifies functional categories of genes and transcription factors that could play
important roles in promoting metastases and serve as markers for cancer prognosis.
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Background
Ovarian cancer is the seventh most common cancer in
females worldwide, and the fifth most common in
Europe [1]. In Europe the rate of ovarian cancer is 12.9
per 100,000 [1] whereas globally 6 per 100,000 [2]. By the
time of diagnosis, nearly 70% of the patients with ovarian
cancer have widely disseminated disease with intraperito-
neal carcinosis and ascites. Regardless of optimal cytore-
ductive surgery and the high initial chemotherapy most
patients with advanced stage III-IV tumours develop
chemoresistance, explaining low (25–35%) 5-year overall

survival [3]. EOC is classified into five maintypes: high
grade serous (HGSOC), low grade serous (LGSOC), clear
cell, endometrioid and mucinous carcinomas [4]. HGSOC
is the most common type (70%) of EOCs and represents
the poorest prognosis. LGSOC has favourable prognosis
when present as small focus in borderline tumor but at
advanced stages the prognosis is worse. Also mucinous
tumor at stage I has excellent prognosis but when extrao-
varian spread is noticed the prognosis is poor [4]. Com-
pared to HGSOC endometrioid EOC has more favourable
prognosis with the 10-year OS rates 68.4% for endome-
trioid and 18.4% for serous histology has been reported
[5]. Similar to endometrioid, also clear cell tumors are
associated with endometriosis. Clear cell carcinoma is
usually considered a high grade malignancy with un-
favourable prognosis at advanced stages but in stage IA
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patients 80–90% 5-year survival is noticed [4]. Despite
EOC subclassification, the standard treatments including
cytoreductive surgery and platinum-based chemotherapy
combined with paclitaxel remain the same for all patients.
Understanding the distinct molecular characteristics of
the tumors would therefore offer the possibility to develop
personalized cancer treatments. Moreover, knowledge of
the different molecular and genetic patterns of primary tu-
mors compared to metastases might improve the develop-
ment of targeted therapies.
Despite large number of studies profiling the tran-

scriptome of EOC primary ovarian tumors, only limited
number of reports have compared gene expression
between primary tumors and their matched metastases.
These studies have identified differentially expressed
genes implicated in oncogenesis, metastasis, p53 signal-
ing [6], cell adhesion, immune related pathways [7] and
cellular functions related to proliferation and apoptosis
[8]. However, these studies were based on microarray
and did not specifically focus on the HGSOC [6–8]. In-
deed, RNA-Seq offers a number of advantages compared
to microarray analysis, such as broader dynamic range of
RNA expression, enhanced resolution and transcriptome
complexity [9].
Aim of this study was to study the differences in the

gene expression profiles of histologically validated
HGSOC metastases compared to primary tumors using
RNA-Seq. Samples were collected during the same
cytoreductive surgery before chemotherapy. To validate
our results, our data was compared to TCGA database
and to the known four molecular subtypes of HGSOC
described by Tothill et al. and TCGA [10, 11].

Methods
Sample collection
Samples of primary adnexal tumor and paired omental
metastases of 10 HGSOC patients were included in the
study. Primary and metastatic samples were collected in
the same cytoreductive surgery before chemotherapy in
each patient in Kuopio University Hospital between
2004 and 2013. The patients’ ages ranged from 44 to 75
(the median 58 years). All patients were FIGO (Inter-
national Federation of Gynaecology and Obstetrics)
stage IIIC (n = 4) or IV (n = 6). Histologically all tumors
were high grade serous ovarian carcinomas. Samples
were frozen in liquid nitrogen and stored at − 80 °C until
RNA preparation. For qRT-PCR analyses paired primary
tumors and omental samples of six additional HGSOC
patients were included. Those patients’ ages ranged from
46 to 86 (median 67 years) and FIGO stages of the pa-
tients were IIIC (n = 4) or IV (n = 2). The samples for
qRT-PCR were also collected in the same cytoreductive
surgery before chemotherapy like samples for RNA–seq.

RNA-Seq
Total RNA from tissues was isolated using Trizol
(Thermo Scientific) followed by DNase treatment using
the Turbo DNase kit (Thermo Scientific). Ribosomal
RNA was depleted using the Ribo-Zero Gold (Illumina).
Libraries were prepared as previously described by
Kaikkonen et al. [12]. Briefly, the RNA was base-
hydrolyzed, dephosphorylated with PNK and purified
using RNA Clean & Concentrator kit (Zymo). Poly(A)-
tailing was followed by cDNA synthesis using comple-
mentary poly(T)-primers containing Illumina adapter
sequences. Excess oligo was removed by Exonuclease I
and cDNA fragments were purified using ChIP DNA
Clean & Concentrator kit. The recovered cDNA was
RNaseH treated and circularized (CircLigase) and ampli-
fied for 11 cycles. The final product was ran on 10% TBE
gel, gel purified (190–350 bp) and cleaned-up using ChIP
DNA clean & Concentrator Kit. Sequencing was per-
formed with the HiSeq 2000 in 50 cycle single end run
at EMBL Genomic Core (Heidelberg, Germany).

qRT-PCR analysis
RNA was isolated using TRI-reagent (Thermo Scientific).
One microgram of RNA was treated with DNAse I (Thermo
Scientific) and converted into cDNA using RevertAid re-
verse transcriptase (Thermo Scientific) and random hexam-
ers (Thermo Scientific). Analysis of mRNA levels were done
using StepOnePlus Real-Time PCR System (Life technolo-
gies), TaqMan Universal PCR Mastermix (Applied Biosys-
tems) and gene-specific Prime PCR Probe Assays (BioRad):
AMHR2 (qHsaCEP0041252), GATA4 (qHsaCIP0028312),
MAL (qHsaCEP0039522), MYOCD (qHsaCEP0058240),
NR5A1 (qHsaCIP0028304), PPIA (qHsaCEP0041342),
PROK1 (qHsaCEP0024916), SFRP2 (qHsaCEP0052530),
WIPF3 (qHsaCEP0051213), WNT5A (qHsaCIP0028356).
Relative expressions were quantified with 2-ΔΔCT method
[13] using PPIA as the reference gene.

Data analysis
RNA-Seq was mapped using tophat allowing up to two
mismatches and reporting only one alignment for each
read. Poor quality reads were filtered out (minimum
97% of bp over quality cutoff 10) and tag per base value
was set to 3. RefSeq expression was quantified using
‘analyzeRNA.pl’ program in HOMER [14]. Differentially
expressed genes were identified using ‘getDiffExpression’
program in HOMER with edgeR [15] and batch analysis
mode for analysis of paired samples (primary vs metasta-
sis). Thresholds of FDR < 0.1, RPKM > 1 and fold change
> 2 were used. Motif enrichment for FOXL2
(BYTGTTTACWTT; GSE110093), GATA4 (NBWGA-
TAAGR; GSE35151) and NR5A1 (TTCAAGGTCA) was
tested using the ‘annotatePeaks.pl’ program with ‘–nmo-
tifs’ option. Clustering results were generated by Cluster
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3.0 [16] as detailed in each figure legend. The output
from clustering was viewed using Java Treeview 1.1.6r4
[17]. For gene ontology analysis, the Functional Annota-
tion Tool of DAVID Bioinformatics Resources 6.8 [18]
and Ingenuity® Pathway Analysis (IPA®, QIAGEN
Redwood City, www.qiagen.com/ingenuity) was used.
For IPA® upstream regulator analysis, the top transcrip-
tional regulators and growth factors were chosen based
on most significant P-values (P < 3.5E-04) and a clear
predicted activation state (− 2 < activation z-score > 2).

Data access
The experiments performed in this study are available in
GEO under the accession number GSE98281.

TCGA OV data
Survival time and status and RSEM RNA-seq data for
each TCGA OV sample was obtained from firehose
GDAC, doi:https://doi.org/10.7908/C11G0KM9.

Metastatic signature analysis using GSVA
One hundred differentially expressed genes between pri-
mary tumors and metastases, defined as metastatic sig-
nature were used in the analysis. The gene set variation
analysis (GSVA) [19], available in the R/Bioconductor
package GSVA 1.22.4, was used to compute a gene set
enrichment score for each TCGA OV sample with the
following settings: mx.diff = F, tau = 0.25, rnaseq = T.
Empirical P-value was computed using 1000 random
permutations of genes. Same amount of genes as the ob-
served gene set was used. The observed pathway score
was compared with the random permutations of a gene
set size and empirical P-value computed as the number
of higher/lower scores in the permuted set divided by
the total number of permutations. Upregulated and
downregulated metastasis genes were split to individual
gene sets to account for directionality of gene set enrich-
ment. Enriched samples were required to have signifi-
cant enrichment of both gene sets with P-value < 0.001
for Kapplan Meier survival analysis.

Kaplan-Meier survival analysis
The R package ‘survival’ was used to draw Univariate
Kaplan Meier curves comparing samples with significant
enrichment of metastatic signature to rest of the sam-
ples, as indicated above. The log-rank test was computed
for significance evaluation between the groups. Univari-
ate cox proportional hazard analysis was performed for
TCGA data for each 100 metastatic genes and BH
method was used to adjust P-values.

Results
Analysis of differentially regulated genes
The gene expression profile of 10 primary tumors and
10 related metastases was analyzed using RNA-Seq. We
identified 100 differentially regulated genes between the
two sets, with majority (87/100) of them exhibiting
downregulation in the omental samples (Fig. 1a-b:
Additional file 1: Table S1). Most of the differentially
regulated genes (81/100) corresponded to protein-
coding accessions (NM_), whereas the remaining 19%
represented non-coding RNAs (NR_), largely corre-
sponding to small nucleolar RNAs (SNORD113–15).
The gene ontology analysis (IPA) of the genes demon-
strated that cellular functions related to organismal
death and cellular proliferation were induced whereas
those related to embryonic development, vasculogenesis,
cellular function and maintenance were decreased (Fig. 1c
and Additional file 2: Table S2). We further confirmed the
differential mRNA expression of nine selected genes re-
lated to the top pathways, namely anti-Müllerian hormone
receptor type 2 (AMHR2), GATA binding protein 4
(GATA4), myelin and lymphocyte protein (MAL), myocar-
din (MYOCD), nuclear receptor subfamily 5 group A
member 1 (NR5A1), prokineticin 1 (PROK1), secreted
frizzled related protein 2 (SFRP2), WAS/WASL interact-
ing protein family member 3 (WIPF3) and Wnt family
member 5A (WNT5A) using qPCR from 6 + 6 samples
(Additional file 1: Fig. S1). Eight of these genes were in
concordance with the RNA-Seq results suggesting high re-
producibility of our results.
To study how the changes in transcriptional regulators

or growth factors could explain the global changes in
gene expression patterns, we performed the IPA up-
stream regulator analysis (Additional file 4: Table S4).
The results suggested that the top upstream regulators
in our data set were forkhead box protein A2 (FOXA2),
receptor subfamily 5, group A, member 1 (NR5A1) and
GATA-Binding Factor 4 (GATA4) (Fig. 1d). Accord-
ingly, NR5A1 and GATA4 and another member of the
FOXA2 family, FOXL2, were themselves repressed in
omental samples, thus suggesting a direct role for these
transcription factors in the establishment of metastasis-
specific gene signature (Fig. 1a). Supporting this, 1/5 of
FOXL2-targets (MYOCD), 4/6 GATA4-targets (GATA4,
RYR2, NR5A1, STAR), 3/4 NR5A1-targets (AMHR2,
NR5A1, STAR) were found to contain the respective
transcription factor motif within the gene promoter
(Additional file 3: Table S3). However, previous studies
[20, 21] have demonstrated that majority of binding sites
for FOXL2 are located outside gene promoters. In line
with this, all of the predicted target genes (Fig. 1d) had
FOXL2-motif located within +/− 50 kb from the tran-
scriptional start site. In addition, tumor protein p53
(TP53) was found associated with a significant negative
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Fig. 1 (See legend on next page.)

Sallinen et al. BMC Cancer         (2019) 19:1121 Page 4 of 11



z-score (thus likely to be repressed) and bone morpho-
genetic factor 7 (BMP7) with a positive z-score (Fig. 1d).
This is in line with the current knowledge where
HGSOC is almost without exception accompanied with
mutated TP53 [11]. Altogether, these five upstream reg-
ulators were predicted to explain the observed gene ex-
pression changes of 22 of the differentially regulated
genes (Additional file 4: Table S4).

TCGA data comparison
The Cancer Genome Atlas (TCGA) contains publically
available data about the genetic alterations of different
cancers and also linkage to clinical features and progno-
sis. TCGA database contains information on the key
genomic changes in over 30 different cancer types and
also collection of primary ovarian tumors at the initial
site of cancer, which allows comparison between differ-
ent cancer types based on their gene expression profile.
To see which of our differentially regulated genes were
highly expressed in ovarian tumors, we compared the
expression level of the 100 genes identified in the study
throughout the TCGA cancer types. The analysis re-
vealed that many of the embryonic and cell development
genes are fairly high expressed in ovarian cancer includ-
ing FOXL2, GATA4, NR5A1, AMHR2, MAL and WIPF3
(Fig. 2).
Expression in primary tumors has been associated with

metastatic potential [22, 23] suggesting that metastatic
gene signature could identify more aggressive tumors as-
sociated with lower survival. To this end, we conducted
survival analysis based on expression profiles of TCGA
primary tumors using GSVA tool. Enrichment analysis
for the 100 differentially expressed genes in TCGA
ovarian cancer patients thus allowed us to observe the
correlation between our metastatic gene signature and
survival in TCGA data. The results suggested that our
metastatic gene signature could be associated with
poorer survival in TCGA patients with ovarian cancer.
(Fig. 3a). Among these, we were not able to identify one
gene with strong predictive value but rather 7 genes that
nominally affected survival (P-value < 0.05), including
AMHR2, GATA4, MAL, SFRP2, Family With Sequence
Similarity 19 Member A2 (FAM19A2), Paired Box 5
(PAX5) and Proprotein Convertase Subtilisin/Kexin

Type 6 (PCSK6) (Fig. 3b; Additional file 5: Table S5).
However, we acknowledge that the survival differences
in TCGA samples are very small which could be due to
the imperfect fit of samples for the analysis (TCGA pri-
mary tumor vs omentum). Still our results suggests that
metastatic transformation of HGSOC could correlate
with patient survival and identifies candidate genes that
warrant future research.

Correlation of the data to known ovarian cancer subtypes
Several recent studies have identified molecular subtypes
of ovarian cancer by gene expression profiling which
aims to link expression to clinical and pathologic fea-
tures. One of the most extensive study to date was per-
formed by Tothill et al. (2008) where they conducted a
whole tumor gene expression profiling of 285 predomin-
antly high-grade and advanced-stage serous cancers of
the ovary, peritoneum and fallopian tubes [10]. The au-
thors clustered and divided the HGSOC gene expression
data into four subgroups C1, C2, C4 and C5, which have
been later on confirmed in the TCGA study and termed
mesenchymal (C1), immunoreactive (C2), differentiated
(C4) and proliferative (C5) [11]. Therefore, we next ana-
lyzed if our study samples clustered based on the ovarian
cancer subtypes. Our results suggested that the upregu-
lated genes of the cluster C1 were able to separate the
primary tumor signature from omental signature (Fig. 4a)
much better than any other subgroup genes (data not
shown). These genes clustered into stroma signature and
accordingly the gene ontology analysis (DAVID) sup-
ported the genes being implicated in functions relating to
extracellular matrix and cell cycle (ARX, CADPS,
COLEC11, CTHRC1, DHRS2, DLK1, EDN3, FOXL2,
GATM, GPM6A, KLHDC8A, MYOCD, PCSK6, SFRP2,
TSPAN8) (Fig. 4b). Altogether, this suggested that the
mesenchymal C1 gene signature was more prominent in
the omental samples compared to the primary tumors.

Discussion
This is the first study to compare gene expression between
primary EOC tumors and their matching omental metas-
tases using RNA-seq, allowing more sensitive and deeper
characterization of transcriptome compared to microarray
[9]. In line with previous array-based findings, we find that

(See figure on previous page.)
Fig. 1 a Hierarchical clustering of the 100 most differentially regulated genes between primary EOC samples and their matching omental
metastases based on average correlation of the log2 expression values (rpkm). Red = primary tumor, blue =metastasis. The image was generated
using Java Treeview 1.1.6r4 [17] b Volcano plot of log2 fold change and -log10 (FDR) of the differentially regulated genes demonstrated that
majority of the genes are downregulated in the omental samples. c IPA® gene ontology analysis of the genes demonstrated that cellular
functions related to embryonic development and vasculogenesis were decreased whereas those related to organismal survival, cellular
maintenance and proliferation were increased. d IPA® analysis of upstream transcription regulators identified activation of the TP53 and inhibition
of the BMP7 pathways. Blue color stands for predicted inhibition and orange for predicted activation. The tones of color indicate confidence level
(light = low confidence; dark = high confidence).
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Fig. 2 FOXL2, GATA4, NR5A1, AMHR2, MAL and WIPF3 were found highly expressed in ovarian cancers compared to many other cancers type in
TCGA dataset. The figures were downloaded from cBioPortal [43, 44]
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Fig. 3 (See legend on next page.)
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the gene expression profiles of metastases differ from
those of the primary tumors [6, 7]. In addition, our ana-
lysis confirms the metastasis signature being enriched for
TP53 pathway and functions related to cell adhesion and
proliferation [6–8]. Of the differentially expressed genes in
our study, NR1H4, CADPS, STAR, SFRP2 and EPYC were
also observed to be differentially expressed in the similar
direction in the earlier studies [6, 8]. In contrast to previ-
ous studies, our analysis identified repression of embry-
onic developmental genes as the biggest group of genes
repressed during metastasis formation in ovarian cancer.
Indeed, many of the embryonic developmental genes were
also found to be highly expressed in ovarian cancer com-
pared to many other cancers in the TCGA data, including
FOXL2, GATA4, NR5A1, AMHR2, MAL and WIPF3. Of
these, the first three were further identified as potential
upstream regulators that could explain the observed gene
expression patterns. Accordingly, the GATA4 has been
shown regulate genes involved in embryogenesis and
development of the female reproductive organs, testes,
GI-tract, heart and lungs [24]. Loss of this tumor suppres-
sor gene expression has been connected to certain ovarian
cancer subtypes in several studies: serous [25], clear cell
[25, 26] and endometrioid [25] ovarian cancers, while
mucinous ovarian cancer expresses GATA4 [25]. This is
in concordance with our finding that GATA4 is downreg-
ulated in our metastatic gene signature in HGSOC. Statis-
tically significant higher methylation leading to the loss of
GATA4 expression in endometrioid type compared to ser-
ous ovarian adenocarcinoma has been reported [27].
However, no correlation between GATA4 expression and
patient age, histologic type, histologic grade, stage of the
disease or survival in ovarian surface epithelial carcinomas
has been reported [28]. Another upstream regulator,
NR5A1 transcription factor, was also downregulated in
omental samples. It encodes a human steroidogenic factor
1-protein (hSF1) that is involved in gonad development in
both males and females [29]. hSF1 expression has been
found to be significantly lower in ovarian cancer than in
normal ovarian tissue [30] and mutations in NR5A1 are
associated with primary ovarian insufficiency [31]. The
third upstream regulator identified in our analysis was
FOXA2, that has demonstrated favorable prognosis based
on TCGA data [32] and was predicted to regulate six
genes that were downregulated in omental samples vs pri-
mary tumor (DLK1, GATA4, MAFA, MYOCD, NR1H4
and WNT5). However, FOXA2 was not differentially
expressed in our data but rather another member of the

FOX-family that encodes for transcription factor that is
involved in all stages of ovarian development and function,
FOXL2 [33]. Whether FOXL2 acts to regulate predicted
FOXA2-targets in ovarian cells remains to be studied.
Interestingly, C134W mutation in this gene is indicated to
be connected to granulosa cell tumors [34]. In a recent
study FOXL2-positive cells were found mainly in primary
and secondary ovarian tumors and very few in peritoneal
seeding sites suggesting that local tissue environment
could be responsible for its omental downregulation [35].
On the other hand, the changes in gene expression can
also be due to changes in proportions of cell types as re-
cently indicated by a decrease in cancer epithelial cells in
ovarian cancer metastases [36]. Future studies incorporat-
ing single cell technologies are needed to evaluate the
potential of the identified factors as prognostic or thera-
peutic targets versus cell-subtype markers.
The identification of different ovarian cancer sub-

groups could allow for more personalized treatments
and is therefore heavily investigated. Previous molecular
subtyping systems defined by TCGA and Tothill studies
[10, 11] have demonstrated the existence of four
molecular HGSOC subtypes represented earlier by [10]
and termed them ‘mesenchymal’ (C1), ‘immunoreactive’
(C2), ‘differentiated’ (C4) and ‘proliferative’ (C5) [11].
Different molecular subgroups did not have prognostic
significance in the TCGA study, but later on it was dem-
onstrated that the proliferative and mesenchymal sub-
types are associated with the poorest prognosis [37] and
mesenchymal subtype with the lowest optimal-debulking
rates [38]. In our study, the metastatic tumors had a
gene expression signature more similar to the mesenchy-
mal C1-group in the TCGA study compared to primary
tumors. In line with this [10], the differentially expressed
genes in our metastasis samples were involved in pro-
cesses related to extracellular matrix signalling and cell
cycle, suggesting that regulation of connective tissue de-
position is upregulated in metastases. Recent study has
also demonstrated that this subtype demonstrates upreg-
ulation of the TGF-β pathway [38]. Similarly, several
other expression studies have reported that TGF-β path-
way activities are associated with worse clinical out-
comes and ovarian cancer metastasis [31, 38–40].
Therefore, tumours with the mesenchymal gene expres-
sion pattern might be considered for future trials con-
taining TGF-β inhibitors.
Finally, survival analysis based on gene set enrichment

analysis of TCGA primary tumors expression profiles

(See figure on previous page.)
Fig. 3 a Survival analysis of our differentially regulated genes in TCGA patients using GSVA tool. Gene set enrichment analysis was limited to
gene sets that were upregulated for upregulated metastasis genes and downregulated for downregulated metastasis genes. 29 samples enriched
with our metastasis signature showed poorer survival b Genes AMHR2, FAM19A2, GATA4, MAL, PAX5, PCSK6 and SFRP2 from univariate cox
proportional hazard regression (nominal P-value < 0.05 Walds test) are shown as Kaplan Meier curves.
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revealed that the differentially regulated genes identified
in this study could be indicative of poorer survival. This
is in line with previous report based on 19 matched pri-
mary and omental metastatic tumors from 3 different
serous adenocarcinoma types [8]. In contrast, another
study showed that many good prognosis genes were
more highly expressed and poor prognosis genes lower
expressed in the peritoneal metastasis vs primary tumor,
indicative of the metastatic lesions remaining closer to
normal tissue [7]. This is in line with the expression pat-
ters of MAL and FAM19A2 in our analysis. However,
among the five other genes with prognostic value, genes
associated with better prognosis were downregulated
(GATA4, AMHR2 and PCSK6) and genes with poorer
prognosis were upregulated (PAX5 and SFRP2) in the
metastatic samples. This could reflect subtype differ-
ences of the EOCs, as patients in our study were limited
to HGSOCs only. Recent reports have also identified
markers related to recurrence in ovarian cancer primary
tumors. These further identified networks related to
TP53 and TGF-β signaling, cell cycle, leukocyte migra-
tion and cellular adhesion [41, 42]. Evidently, decipher-
ing the molecular mechanisms and similarities of
metastatic transformation and recurrence of primary
tumors will be important for understanding the patho-
genesis of the disease and to improve the treatment,
especially in advanced stage. Despite the exploratory na-
ture of our study, limited by low sample amounts and
overall small effect on survival, our study provides many
candidates that warrant future research and replication
in other independent cohorts. Overall, our analysis
reveals novel aspects of metastatic transformation of
HGSOC, with potentially important implications for
prognosis and therapy.

Conclusions
In this study we provide evidence that the gene expres-
sion profile of primary HGSOC tumors differs from their
matched metastases, and that the 100 differentially
expressed genes identified could nominally predict pa-
tient survival. Identified functional categories of genes
and transcription factors could play important roles in
promoting metastases and serve as markers for cancer
prognosis. These findings serve candidates for future
research and could lead to improved treatments for
HGSOC in the future.

Fig. 4 a Normalized and centered log2 expression values of primary
tumors and metastasis of the upregulated genes of the cluster C1
[10] (blue = low expression, red = high expression, green = primary
tumor, orange =metastasis) b The gene ontology analysis (DAVID)
suggested that cellular functions related to extracellular matrix and
cell cycle were activated in the genes that clustered into C1 group
in Tothill et al study [10].
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