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Mycotoxin exposure is associated with
increased risk of esophageal squamous cell
carcinoma in Huaian area, China
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Abstract

Background: Consumption of moldy food has previously been identified as a risk factor for esophageal squamous
cell carcinoma (ESCC) in high-risk countries; however, what contributing roles these dietary carcinogenic
mycotoxins play in the etiology of ESCC are largely unknown.

Methods: A mycotoxin biomarker-incorporated, population-based case-control study was performed in Huaian
area, Jiangsu Province, one of the two high-risk areas in China. Exposure biomarkers of aflatoxins (AF) and
fumonisins (FN) were quantitatively analyzed using HPLC-fluorescence techniques.

Results: Among the cases (n = 190), the median levels of AF biomarker, serum AFB1-lysine adduct, and FN
biomarker, urinary FB1, were 1.77 pg/mg albumin and 176.13 pg/mg creatinine, respectively. Among the controls
(n = 380), the median levels of AFB1-lysine adduct and urinary FB1 were 1.49 pg/mg albumin and 56.92 pg/mg
creatinine, respectively. These mycotoxin exposure biomarker levels were significantly higher in cases as compared
to controls (p < 0.05 and 0.01, respectively). An increased risk to ESCC was associated with exposure to both AFB1
and FB1 (p < 0.001 for both).

Conclusions: Mycotoxin exposure, especially to AFB1 and FB1, was associated with the risk of ESCC, and a greater-
than-additive interaction between co-exposures to these two mycotoxins may contribute to the increased risk of
ESCC in Huaian area, China.
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Background
Esophageal cancer is one of the most common cancers
worldwide, ranked 7th in incidence in males, 6th and
9th in cancer-related death in males and females world-
wide, respectively [1], and considerably higher in both
incidence and cancer-related death in many developing
countries [1–3]. The highest incidences of esophageal
cancer were found in East and Southern Africa,
Northern France, and Central Asia, with the notorious
“Central Asia esophageal cancer belt” extending from
northeastern China westward to northern Iran along the
Silk Road, spanning several countries including China,
Turkmenistan, Uzbekistan, Karakalpakstan, Kazakhstan,

and Iran [2–4]. There are two main types of esophageal
cancers, namely, the squamous cell carcinoma
(ESCC), and adenocarcinoma (EAC). ESCC constitutes
of majority of esophageal cancer cases, and was more
prevalent with high incidences in developing nations
such as China, with the primary risk factor being
dietary patterns and environmental factors, as well as
individual genetic predispositions [1, 5]. Whereas for
EAC, the rates are increasing in the US and other de-
veloped nations in past decades, and the risks were
postulated to be linked to obesity, as well as various
preexisting conditions, such as Barrett’s esophagus
and reflux symptoms [6].
Consumption of moldy and mycotoxin-contaminated

food has previously been identified as a risk factor for
ESCC in high-risk countries [5, 7, 8]; however, what con-
tributing roles thesedietary carcinogenic mycotoxins play
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in the etiology of ESCC are largely unknown. Aflatoxin
B1 (AFB1) and fumonisin B1 (FB1) are among the most
well-known mycotoxins found in commonly consumed
foods and feed products [9]. AFB1, a Group 1 human
carcinogen and a representative of the aflatoxin family,
is produced by fungal contaminants, Aspergillus flavus
and A. parasiticus [10]. It is considered to be a major
food contaminant worldwide, affecting food and prod-
ucts of, including but not limited to, corn, peanuts, milo,
sorghum, copra, and rice [11]. FB1, on the other hand, is
a Group 2B carcinogen and a representative of fumoni-
sin family, produced primarily by maize pathogens,
Fusarium verticillioides and F. proliferatum, which con-
taminates maize and maize-based products ubiquitously
[12, 13]. As both Aspergillus and Fusarium can contam-
inate and often co-exist on maize and some other cereal
grains, concerns for human co-exposure to these two
mycotoxins, and its consequences, have been raised [14,
15]. Co-existence of AFB1 and FB1 in food items has
already been reported in several studies worldwide, par-
ticularly from Asia, South and Central America, and
Africa [16–21]. Consequently, efforts must now be made
to assess the extent of human co-exposure to these my-
cotoxins, as well as the adverse health effects they may
have, in order to more accurately assess the risk posed
by the nature of co-contamination and co-exposure [22].
Dietary FB1 exposure has been proposed as one of the

major environmental factors associated with increased
risk of ESCC in developing countries [23]. The first
association between FB1 and human esophageal cancer
was proposed by Sydenham el al., who reported FB1

contamination in the Transkei region, a high incidence
area of esophageal cancer in Africa [7, 23]. In Huaian,
China, another high-risk area for ESCC, FB1 was
detected in 95.7% (112/117) of corn samples, with an
average of 2.84 mg/kg (range: 0.1–25.5 mg/kg) [24]. Co-
contamination of FB1 with other mycotoxins, particu-
larly AFB1, has also been reported in this high ESCC risk
area. In Huaian area, the mean level of AFB1 in food was
estimated to be 13.5 μg/kg, with estimated daily intake
of 1.723 μg (range 0.224–49.772 μg) [19]. Similarly, in
high risk areas of Cixian and Linxian counties, China,
co-contamination of AFB1 and FB1 were detected at
mean levels of 8.61 μg/kg (range: 1–38.4 μg/kg) and 35.3
mg/kg (range: 20–60mg/kg), respectively [8].
The use of molecular biomarkers, facilitated by

understanding of toxicokinetics and toxicodynamics of
environmental toxicants, has improved the assessment
of individual exposure beyond the levels detected in ex-
ternal media, such as in food, as well as estimations
based on questionnaires [25]. For AFB1, the most widely
acceptable exposure biomarker is serum AFB1-lysine ad-
ducts, formed by covalently binding of AFB1-diol with
lysine residue on serum albumin [11]. It is reasonably

stable in blood until albumin turnover, thus making the
levels of this adduct highly reflective of chronic exposure
[11]. This adduct has been validated and utilized as a re-
liable indicator of chronic exposure in both animal and
human epidemiological studies [11, 26]. For FB1, the or-
ally dosed toxin is poorly absorbed and rapidly elimi-
nated with no major metabolites produced in humans;
nonetheless, the parent compound can be measured dir-
ectly in biological fluids, such as urine, as a biomarker of
FB1 exposure, which has also been validated in human
population studies [27–31].
Dietary exposure to mycotoxins has been linked to the

etiology of several gastrointestinal cancer sites and
chronic diseases in many developing countries [7, 9, 32,
33]. The co-contamination of AFs and FNs in human
diets has been widely reported, and epidemiological
studies have indicated the potential contributory effect
of the two mycotoxins in etiologies of human liver and
esophageal cancer [19, 20, 34, 35]. Combinative exposure
to the two mycotoxins often showed greater toxic ef-
fects, and potentially synergistic effects on tumorigen-
esis, in animal and human cell models, when compared
to either AFB1 or FB1 alone [36–38]. To better under-
stand the contributing roles and mechanisms these ex-
posures have in human esophageal carcinogenesis, we
used biomarker approach to evaluate their contributing
risk of ESCC, specifically, serum AFB1-lysine and urinary
FB1. Furthermore, we examined potential interactions,
including additive effects, between mycotoxin exposures
and increased risk of ESCC in Huaian, China.

Methods
Chemicals and reagents
AFB1-lysine adduct standard was synthesized and
purified as previously described by Sabbioni et al. [39].
Albumin determination reagent (bromocreosol purple),
and normal human serum were purchased from Sigma
Aldrich Chemical Co. (St. Louis, MO). Pronase (25 kU,
Nuclease-free) was purchased from Calbiochem (La Jolla,
CA). Protein assay dye reagent concentrate and protein
standards were purchased from Bio-Rad Laboratories Inc.
(Hercules, CA). Boric acid, o-phthaldialdehyde (OPA), 2-
mercaptoethanol, FB1 from F. verticilioides (~ 98% purity,
TLC), 10× phosphate buffered saline (PBS), ammonium
hydroxide, ammonium acetate, sodium chloride, sodium
phosphate monobasic, hydrochloric acid, and formic acid
were purchased from Sigma-Aldrich (St. Louis, MO,
USA). OPA reagents were prepared by dissolving 10mg of
OPA and 30 μl of 2-mercaptoethanol in 250 μl of metha-
nol and mixing with 4.75ml of 3% boric acid buffer (pH
10.5) and stored at 4 °C avoiding light before use. Mixed
mode solid phase extraction (SPE) cartridges, as well as
Sep-Pak reversed phase C18 cartridges were purchased
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from the Waters Corp. (Milford, MA). All other chemicals
and solvents were of highest grade and purity available.

Study site and populations
Huaian area, located in the northern area of Jiangsu
Province of China, is one of the two endemic areas for
esophageal cancers in China (the other being the south-
ern Taihang Mountain area, including Linzhou of Henan
Province and Cixian of Hebei Province), with incidence
over 80 per 100,000, six times greater than the national
average rate [5]. The study followed a population-based
case-control design, with the participants recruited from
five rural farming communities (townships) belonging to
the Huaian District. The location of the study site is
shown in Fig. 1. Cases consist of ESCC diagnosed in
2006–2007 from the malignant tumor registration rec-
ord, and healthy controls were matched by age, gender,
and residency. After signed written consent, a face-to-

face interview was conducted, and a total of 190 cases
and 380 controls were recruited. Questionnaire on
demographics [5, 40], disease history and dietary pattern,
blood sample (5 mL), and the morning urine sample (50
mL) were collected. Personnel conducting laboratory
analyses were blinded to case and control status. The
study protocols including ethics guideline and consent
form were approved by the Institutional Review Boards
for human subjects at Southeast University School of
Public Health and Texas Tech University (human sub-
ject assurance number: 00001568) and was compliant
with human research guidelines of the respective
institutions.

HPLC-FLD analysis of serum AFB1-lysine adduct
Overall sample processing used a method previously re-
ported in Qian et al. 2013 [41]. Briefly, thawed human
serum samples underwent pathogen deactivation via

Fig. 1 Map of Huaian area, Jiangsu Province, China. Circled with arrow indicate the townships where the study participants were recruited for this
case-control study. Map of Huaian was traced using Adobe Photoshop CS2 (https://www.adobe.com/), with texts and indicators added with
Microsoft PowerPoint (https://www.microsoft.com/en-us/). No copyright issue present
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submerging sample tubes in 56 °C water bath for 30 min.
Serum albumin and total protein were analyzed with re-
spective reagents, as described previously. An aliquot of
150 μl serum was then digested via pronase (1:4 pronase:
total protein, w:w), in 37 °C water bath for 3 h to
optimize the conditions of enzyme digestion in order to
release lysine adducts. The contents were then purified
via solid phase extraction, using Waters MAX SPE car-
tridges over vacuum chamber manifold. Samples were
eluted with 2% formic acid in methanol, vacuum-dried
with a Labconco Centrivap concentrator, and reconsti-
tuted with 150 μl of 25% methanol prior to injection.
AFB1-lysine adduct was quantified using Agilent

1100 HPLC-fluorescence detection system (Agilent
Technologies, Wilmington, DE, USA), at excitation/
emission of 405/470 nm. Chromatographic separations
were achieved using Zorbax Eclipse XDB-C18 reverse
phase column (5 μm, 4.6 × 250 mm), with a gradient
of 20 mM NH4H2PO4, pH 7.2 (Buffer A), and 100%
methanol (Buffer B), to achieve separation within 25
min at flow rate of 1.0 ml/min. For each injection,
100 μl of processed samples were used. Final concen-
trations were obtained via manual integration and cal-
culation using a standard curve, then adjusted by
albumin content of corresponding samples, to obtain
the exposure parameters in units of pg/mg albumin.
The limit of detection for the method used is 0.4 pg
AFB1-lysine /mg albumin.

Measurement of urinary Creatinine
Creatinine concentration in urine samples was analyzed
using the 96-well Creatinine Assay Kit from Cayman
Chemical (Ann Arbor, MI, USA). The analysis is based
on a modified Jaffe colorimetric method that measures
the difference in absorbance (495 nm) of the creatinine-
picrate complex before and after acidification. The assay
was carried out according to manufacturer’s instructions,
and absorbance was measured using an ELx808 Absorb-
ance Microplate Reader from BioTek Instruments, Inc.
(Winooski, VT, USA).

HPLC-FLD analysis of urinary FB1
Urinary FB1 was analyzed based on previous studies
[42]. Briefly, 10 ml aliquot of urine samples were cen-
trifuged to remove pellets. The supernatant was
passed through FumoniTest column by gravity. After
washing with 10 mL 1x PBS, FB1 was eluted three
times with 0.5 mL of 20% methanol in 10 mM hydro-
chloric acid directly onto pre-conditioned Waters
Oasis HLB cartridge and sequentially washed with
HPLC grade water and 25% methanol, three times
each. The contents were then eluted with 2% formic
acid in methanol and dried under a gentle stream of
nitrogen gas while incubated in 35 °C water bath.

Dried residues were then reconstituted with 200 μl
50% methanol, and 150 μl were transferred to injec-
tion vial for analysis.
HPLC analysis was performed with Agilent 1100

HPLC-fluorescence detection system. On-line derivati-
zation of analytes with OPA reagent was performed
via injection program, which mixes 10 μl of reagent
with sample for 1 min prior to injection. The injection
volume was 100 ul. Chromatographic separation
achieved Zorbax Eclipse XDB-C18 reverse phase col-
umn (5 μm, 4.6 × 250 mm) maintained at 35 °C. The
mobile phases consist of 0.1 M sodium phosphate
monobasic (pH 3.4) (Buffer A) and methanol (Buffer
B). The flow rate of mobile phase was 1.0 mL/min,
consisting of linear gradient starting from Buffer A:
Buffer B (35:65, v/v) to Buffer A: Buffer B (20:80, v/v)
over 13 min. OPA derivatives of FB1 were monitored
at excitation/emission of 300/ 440 nm. The limit of
quantitation was 20 pg per injection. The measured
urinary FB1 levels were adjusted by creatinine concen-
tration of corresponding urine samples to obtain the
exposure parameters in units of pg/mg creatinine.

Statistical analysis
Descriptive statistics, including mean ± SD, median,
and range (or distribution quadrants), were calculated
for each exposure parameter. Detailed epidemiological
questionnaire data, including tobacco, alcohol con-
sumption, dietary pattern, etc., were assessed as well.
The association between exposure parameters with
the risk of ESCC was estimated by conditional logistic
regression model. Odds ratios (ORs) and their 95%
confidence interval (CI) for ESCC risk were calcu-
lated. The interaction of mycotoxins was estimated by
using crossover analysis. Interaction parameters, in-
cluding relative excess risk due to interaction, propor-
tion attributable to interaction, and synergy index,
were calculated using methods described by Anders-
son et al. [43]. All statistical tests were two-sided,
with p-value of < 0.05 considered statistically signifi-
cant. All analyses were conducted in SAS 9.4 (SAS
Institute, Cary, NC, USA).

Results
Population characteristics
Demographic information is summarized in Table 1.
There were no significant differences between cases and
controls in cumulative alcohol and tobacco uses. Signifi-
cant differences were found between cases and controls
in education attainment, as well as individual income
per month at the time of recruitment and 10 years be-
fore the recruitment.
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Mycotoxins exposure and ESCC risks
Urinary free FB1 was detectable in 95.8% (181/189)
of the ESCC cases and 84.2% (319/379) of the con-
trols, and serum AFB1-lysine was detectable in 90.7%
(146/161) of the cases and 69.3% (142/205) of the
controls. The mean, median, standard deviation, and
quartiles for AFB1-lysine as well as urinary FB1 for
both cases and controls are summarized in Table 2
and Fig. 2. Both urinary free FB1 (Fig. 2a) and serum
AFB1-lysine (Fig. 2b) levels were significantly higher in
cases than in controls (p < 0.01 and < 0.05, respectively).
Table 3 shows the ESCC risks associated with expos-

ure to FB1 and AFB1. Continuous variables were con-
verted into binary categorical variables based on the
population median for urinary FB1 and serum AFB1 in

Table 1 Demographic and socioeconomic characteristics of cases and matched controls

Characteristic Cases (n = 190)
No. (%)c

Controls (n = 380) pa OR (95% CI)b

Gender

Male 111 (58.4) 222 (58.4) 1.00 1.0

Female 79 (41.6) 158 (41.6) 1.00 (0.70–1.43)

Educational attainment

Illiterate 113 (59.5) 185 (48.8) < 0.001 1.00

Primary school 55 (29.0) 106 (28.0) 0.74 (0.47–1.15)

Middle school 17 (9.0) 64 (16.9) 0.30 (0.15–0.60)

High school and above 5 (2.6) 24 (6.3) 0.25 (0.09–0.72)

P for trend < 0.001

Marital Status

Married 146 (76.8) 314 (82.9) 0.07 1.0

Not Married (divorced, widowed, single) 44 (23.2) 65 (17.2) 1.54 (0.96–2.47)

Ten-years-ago income, yuan/month

< 50 52 (27.4) 108 (28.4) 0.01 1.0

50–100 43 (22.6) 127 (33.4) 0.73 (0.46–1.18)

≥ 100 95 (50.0) 145 (38.2) 1.44 (0.92–2.26)

P for trend 0.07

Current income, yuan/month

< 100 56 (29.5) 75 (19.7) 0.02 1.0

100–300 82 (43.2) 175 (46.1) 0.63 (0.41–0.97)

≥ 300 52 (27.4) 130 (34.2) 0.50 (0.30–0.83)

P for trend 0.008

Mean ± SD

Age, years 62.0 ± 7.9 61.9 ± 7.8 0.85 1.00 (0.98–1.03)

Cumulative alcohol intake (kg-year) 2.6 ± 2.4 2.9 ± 3.3 0.36 0.96 (0.87–1.05)

Cumulative tobacco use (pack-year) 39.6 ± 47.4 47.0 ± 66.5 0.25 1.00 (0.99–1.00)
aweighted t test of mean difference between cases and controls or conditional logistic regression of difference between cases and controls, as appropriate
bodds ratio (OR) and 95% confidence interval (CI) were calculated using conditional logistic regression or unconditional logistic regression with adjustment of age
and gender, as appropriate
cpercentage may not add to 100 because of rounding

Table 2 Serum AFB1-lysine and Urinary FB1 levels of Huaian
Esophageal Cancer Case and Control samples

AFB1-lysine
(pg/mg albumin)

Urinary FB1
(pg/mg creatinine)

Case Median 1.77 176.13

mean ± SD 6.03 ± 13.36 470.41 ± 1215.95

Quartile (25 & 75%) (1.04, 4.7) (70.77, 388.67)

Control Median 1.49 56.92

mean ± SD 3.67 ± 11.12 213.56 ± 437.75

Quartile (25 & 75%) (0.67, 2.35) (19.78, 202.27)

P value < 0.05 < 0.01
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control groups, thereby dividing the populations into
low- and high- exposure groups. For both urinary FB1

and AFB1, high exposure groups have significantly
higher odds ratios for ESCC (p < 0.001 for all), with
greater percentage of cases categorized as high exposure
for both FB1 and AFB1 (Table 4).

Interaction between two mycotoxins exposures
Evaluation of interaction between FB1 and AFB1 ex-
posure on ESCC risks is summarized in Table 4.
The risk for high levels of exposure to both FB1 and
AFB1 is significantly higher than that of either high
FB1 or high AFB1 alone. The combination of high

Fig. 2 Comparison of biomarker levels between cases and controls. Plots depict overall levels of a urinary FB1 and b serum AFB1-lysine adducts in
esophageal cancer case and control samples. Boxes in the plot represent 25 and 75 percentiles, with the medians as the middle lines. Bars
represent 5 and 95 percentiles of data

Table 3 ESCC risk and urinary free FB1 and serum AFB1-lysine levels

Rangea Cases (%) Controls (%) OR (95%CI) P

Urinary FB1 (pg/mg creatinine)

Low < 56.92 40 (21.05) 190 (50.0) 1

High ≥ 56.92 150 (78.95) 190 (50.0) 3.689 (2.438–5.582) < 0.001

AFB1-Lysine (pg/mg albumine)

Low < 1.49 64 (33.68) 194 (51.05) 1

High ≥1.49 126 (66.32) 186 (48.95) 2.629 (1.711–4.041) < 0.001
aRange of low and high levels for urinary FB1 and serum AFB1-lysine are determined by median level of control samples

Xue et al. BMC Cancer         (2019) 19:1218 Page 6 of 10



exposure to both FB1 and AFB1 resulted in positive
interaction, indicating a potentially greater-than-
additive risk with co-exposure of FB1 and AFB1 in
affecting ESCC risks.

Discussion
In the present study, we assessed the exposure to potent
mycotoxins, AFB1 and FB1, using corresponding expos-
ure biomarkers and evaluated their associations with the
risk for ESCC in Huaian area, China. We evaluated risk
associated with individual factors, as well as binary inter-
action between factors based on logistic regression.
Based on the results, high level exposure to AFB1 and
FB1 were associated with increased risk to ESCC, and
greater-than-additive interaction exists between high
AFB1 and FB1 exposure. The overall dietary patterns and
staple food have not been changed for decades in the
study area and populations [5, 19, 40], despite of possible
periodic variations; therefore, measurement for bio-
marker levels are reflective of both the current and past
exposures, which might be even higher than the cur-
rently measured exposure levels.
Previous studies have confirmed the association be-

tween FN exposure and ESCC risks, with the earliest as-
sociation between ESCC and FN was established in the
Transkei region of southern Africa, an international
esophageal cancer hot spot [7, 44]. Studies have found
significantly higher levels of Fusarium verticillioides in-
fection and FB1 and B2 levels in homegrown corn sam-
ples collected from higher-risk areas compared to those
from lower-risk areas [45–48]. Various populations
within the region were also found to have exposure
levels exceeding the recommended provisional max-
imum tolerable daily intake of 2 μg/kg bw [46, 47, 49].
In China, a survey of 282 corn samples from 6 provinces
found detectable FB1 in 99.6% samples, with 25.2% of
samples having levels higher than 5mg/kg [50]. In high
risk counties of Cixian and Linxian (now Linzhou), FB1

has been detected in all corn samples collected from
local households, where half of the samples, with heavy
mold contamination, have a mean FB1 level of 74 mg/kg
(range: 18–155 mg/kg), while the other half, without

visible mold contamination, showed an average FB1 level
of 35.3 mg/kg (range: 20–60 mg/kg) [8]. However, a
biomarkers-based study found no association of
sphingosine, sphinganine, and sphinganine/sphingosine
ratios with ESCC [51], though later studies suggested
that sphingolipid levels may not be sensitive biomarkers
for exposure in human populations [48, 49]. Although
these studies suggested the potential role of FB1 expos-
ure in esophageal cancer development, confirmations of
FB1 exposure in human disease risks with validated ex-
posure biomarkers have not been studied and published.
While AFs are more commonly associated with risk

for hepatocellular carcinoma (HCC) [9], evidences have
suggested their potential link to the risk of ESCC. Co-
contamination of AFs with FNs has been reported in
high-risk areas of ESCC in China, including Cixian and
Linxian (now Linzhou), as well as Huaian regions [8,
19]. The association between AFs contamination and
risks of esophageal cancer was further demonstrated by
a study in Golestan province of Iran, where the total AFs
levels in wheat flour samples was significantly higher in
high-risk areas compared to low-risk areas [52]. The
current study, which detected exposure to AFB1 via
serum exposure biomarkers, confirms the co-
contamination of AFB1 with FB1 in the high-risk area, as
well as the association of high AFB1 exposure with ESCC
risk. Furthermore, the current study found a greater-
than-additive interaction between AFB1 and FB1 expos-
ure via both binary interaction assay and higher-order
analysis. It should be noted, however, that our study
found marginal significance (p = 0.06) in terms of associ-
ation of ESCC with low FB1-high AFB1 exposures. This
may be due to the lack of sufficient participant numbers
recruited in our study (n) to delineate the higher signifi-
cance. On the other hand, the role of AFB1 exposure in
contributing risks of cancers other than liver, such as
lung, colorectal and esophagus, have been rarely exam-
ined [53, 54]. While the association between food AFB1

contamination and ESCC has been reported, there is a
very high likelihood that co-contaminations of AFB1

with FB1 or other mycotoxins is also present in the study
areas [33, 52]. While the potential mechanisms of AFB1

Table 4 Interaction of FB1 and AFB1 exposure on risk of esophageal cancer

FB1 exposure
a AFB1 exposure

b Cases (%) Controls (%) p OR (95% CI)

Low Low 14 (7.36) 100 (26.32) 1

High Low 50 (26.32) 88 (23.16) < 0.001 4.057 (2.101, 7.834)

Low High 25 (13.16) 90 (23.68) 0.060 1.983 (0.972, 4.048)

High High 101 (53.16) 102 (26.84) < 0.001 7.070 (3.791, 13.187)

Relative excess risk due to interaction (RERI) 2.030 (−0.591, 4.651)

Proportion attributable to interaction (AP) 0.287 (−0.029, 0.603)

Synergy index (S) 1.502 (0.864, 2.612)

Exposure levels are indicated by levels of urinary FB1
a and serum AFB1-lysine

b
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in ESCC risk remain to be elucidated, in an in vitro
study, AFG1, a less toxic variant of AFs, is shown to re-
duce the expression of HLA-I, TAP-1, and LMP-2, crit-
ical components in antigen presentation and antigen
processing, in adult esophageal epithelial cells, which
can ultimately lead to defect in antigen presentation to
T-lymphocytes, potentiating tumorigenesis via escaped
immune surveillance, therefore potentially linking AF
exposure to esophageal cancer [55].
Studies have demonstrated that the co-contamination

of AFs and FNs, and the potential interaction of the two,
may play a great role in etiology of many mycotoxin-
related diseases and health outcomes. Epidemiological
studies have pin-pointed the potential contributory effect
of FB1 on HCC linked to AFB1 exposure, with co-
contamination of AFB1 and FB1 detected in several areas
with historically high risks for HCC, including parts of
Guatemala and China [19, 20, 34, 35]. Using molecular
biomarkers of exposure, Shirima et al. found chronical
co-exposure to both AF and FN among young Tanza-
nian children via contaminated diet, and the levels were
negatively associated with growth parameters, implying
contribution to growth impairments [56, 57]. At the
same time, in animal and model organism studies, com-
binations of the two mycotoxins often showed greater
toxic effects when compared to either AFB1 or FB1

alone, with some studies pointing to a clear additive ef-
fect on toxicity, and others showing potentially synergis-
tic effects on tumorigenesis; for example, FB1 was shown
to promote AFB1-initiated liver tumor in rainbow trout
and development of pre-neoplastic liver lesions in F344
rats [36–38]. The mechanisms of toxicity suggest that,
while FB1 does not act as direct carcinogen like AFB1, it
can be a potent promoter of AFB1-induced tumorigen-
esis, as FB1 can significantly alter sphingolipid profile in
both animals and humans by inhibiting ceramide syn-
thase, which can further affect apoptosis and potentially
other signaling pathways [37, 38, 58–61]. Although fur-
ther studies are required to fully elucidate the inter-
action between AFB1 and FB1 in human and animal
carcinogenesis and other adverse health effects, it is clear
that analysis of single mycotoxin may not be sufficient in
assessment of potential cancer risks, and the setting of
regulatory standards, which were established based on
individual toxicant or carcinogen, may not necessarily be
protective enough when considering the combinative ef-
fect of mycotoxins.
As shown in Table 1, we did not find significant asso-

ciation of ESCC cases with alcohol consumption and
smoking status in the current study, which is consistent
with many previously published studies in China, includ-
ing studies for liver cancer, as well as studies conducted
in the same area for esophageal cancer [5, 40, 62, 63].
The major reasons for lack of such association are the

prevalence of alcohol drinking (nearly 100% in the study
participants) and the nature of the matched case-control
design. The same would apply for the lack of association
for smoking status, with almost 100% study participants
are active (males) or secondhand (females) smokers. The
limitation of this study includes the nature of case-
control study design, which can’t reveal a causative cor-
relation, but only show associations.

Conclusions
Mycotoxin exposure, especially to AFB1 and FB1, was as-
sociated with the risk of ESCC, and a greater-than-
additive interaction between co-exposures to these two
mycotoxins may contribute to the increased risk of
ESCC in the studied population in Huaian area, China.
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