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Abstract

Background: It is generally believed that DNA methylation, as one of the most important epigenetic modifications,
participates in the regulation of gene expression and plays an important role in the development of cancer, and
there exits epigenetic heterogeneity among cancers. Therefore, this study tried to screen for reliable prognostic
markers for different cancers, providing further explanation for the heterogeneity of cancers, and more targets for
clinical transformation studies of cancer from epigenetic perspective.

Methods: This article discusses the epigenetic heterogeneity of cancer in detail. Firstly, DNA methylation data of seven
cancer types were obtained from Illumina Infinium HumanMethylation 450 K platform of TCGA database. Then,
differential methylation analysis was performed in the promotor region. Secondly, pivotal gene markers were obtained
by constructing the DNA methylation correlation network and the gene interaction network in the KEGG pathway, and
317 marker genes obtained from two networks were integrated as candidate markers for the prognosis model. Finally,
we used the univariate and multivariate COX regression models to select specific independent prognostic markers for
each cancer, and studied the risk factor of these genes by doing survival analysis.

Results: First, the cancer type-specific gene markers were obtained by differential methylation analysis and they were
found to be involved in different biological functions by enrichment analysis. Moreover, specific and common
diagnostic markers for each type of cancer was sorted out and Kaplan-Meier survival analysis showed that there was
significant difference in survival between the two risk groups.

Conclusions: This study screened out reliable prognostic markers for different cancers, providing a further explanation
for the heterogeneity of cancer at the DNA methylation level and more targets for clinical conversion studies of cancer.
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Background
Recently, cancers are found to have become serious
threats to human health. Through epidemiological study,
experiments and clinical observations, researchers found
that environment and behavior have significant effects
on the occurrence of human malignant tumors. All
kinds of environmental and hereditary carcinogenic fac-
tor can work in a synergistic or orderly manner in the
induction of non-lethal DNA damage in cells, which

leads to the activation of oncogenes and/or the inactiva-
tion of tumor suppressing genes. Moreover, substantial
omics heterogeneity has been revealed for histologically
homogeneous tumors in terms of genomics [1, 2], epige-
nomics [3], transcriptomics [4–6] and proteomics [7].
Actually, epigenetic modification plays an important role
in the development of cancers.
Previous study has proved that epigenetic modification

stands for the intersections of genes and environment
[8–10]. Epigenetic modification can regulate the expres-
sion of genes without altering basic DNA sequence [8].
Despite increasing evidence which shows that epigenetic
modifications are sensitive to environmental exposure
(such as nutritional factors), the influence on epigenetic
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markers cast by genetic mutation has been spotted [11].
One of the most common epigenetic modifications is
DNA methylation. It occurs when methyl is added to
specific DNA base pairs, primarily in the background of
cytosine dinucleotide (CpG). DNA methylation has been
well explored and demonstrated to play essential roles in
cellular processes such as regulation of gene expression
[12]. According to the place where methylation takes
place (such as genome and CpG islands) [13] and the
level of DNA methylation, two classes are created, hypo-
methylation and hypermethylation. There are several
most common used ways to analyze the patterns of
DNA methylation: global, epigenetic genome range and
candidate gene DNA methylation analysis.
Cancer is a type of disease with great genetic and epi-

genetic heterogeneity. So far, there have been lots of
studies that confirm the feasibility of analyzing the epi-
genetic heterogeneity of cancers using DNA methylation
patterns. For instance, it has been proved that DNA
methylation heterogeneity is related to Prostatic Carcin-
oma [14], Low-stage Glioma [15], Esophageal Squamous
Cell Carcinoma [16], and the clone of Hepatocellular
Carcinoma [17]. In addition, new indicators of DNA
methylation heterogeneity, such as epiallele load, Incon-
sistent Methylated Read Ratio and DNA Methylation In-
ference Regulatory Activity, are related to the clinical
variables of Acute Myeloid Leukemia [18], Chronic
Lymphoblastic Leukemia [19] and Sarcoma [20]. However,
these researches are all based on the heterogeneity analysis
of a single type of cancer, it is also required for a pan-
cancer heterogeneity analysis from the global perspective.
This study analyzes the heterogeneity of seven TCGA

cancers based on DNA methylation level. We first define
specific differentially methylated genes in these cancers.
Then, we build methylation-correlation network and
KEGG pathway network to sort out pivotal genes and find
out cancer-specific methylation markers and prognostic
markers. This research can provide clinicians and re-
searchers with more therapeutic and experimental targets,
and deeper understandings on cancer heterogeneity.

Methods
Acquisition and preprocessing of DNA methylation data
DNA methylation data of seven cancer types, including
337 COAD (colon adenocarcinoma) samples, 492 LUAD
(lung adenocarcinoma) samples, 415 LUSC (lung squa-
mous cell carcinoma) samples, 195 PAAD (pancreatic
cancer) samples, 202 ESCA (esophageal cancer) samples,
888 BRCA (Breast invasive carcinoma) samples, 478
UCEC (Uterine Corpus Endometrial Carcinoma) sam-
ples, were downloaded from the TCGA (The Cancer
Genome Atlas) database, Illumina Infinium Human-
Methylation450 BeadChip platform. Specific sample in-
formation for each cancer type was shown in Table 1.

Some pre-processing is conducted on the DNA methy-
lation data. We have removed samples with multiple
missing values and recalculated missing values of
remaining samples with the function impute. Knn (), R
package. We also removed the unstable loci in genome,
including CpG loci on sex chromosome, single nucleo-
tide polymorphisms, and CpG loci corresponding to
multiple genes. Since the methylation of CpG loci on the
promotor region has a strong regulatory effect on gene ex-
pression, we only select the CpG loci in the promoter region
of genes for further analysis. Here, the promoter region of
the gene is defined as the upstream 2 kb region of the tran-
scription initiation site to the downstream 0.5 kb region.
The chip HM450K checks the methylation level of over

480,000 CpG loci in the whole genome. Therefore, chances
are that multiple CpG loci are tested in a single gene.
Sometimes, differences are huge among those CpG loci
which correspond to the same gene, so it’s not reasonable
for all the genes we study, to use the average methylation
level of those CpG loci to represent the methylation level of
the gene. Zhang et al. propose that most of the CpG loci
are hypermethylated or hypomethylated (β > 0.5 or β < 0.5)
[21], hence in a single sample, we believe that the CpG loci
on a gene (gene A) are of the same pattern if all of their β
values are greater than or equal to (or less than) 0.5. It is
reasonable for us to use the average methylation level of all
the CpG loci on gene A to represent the methylation level
of this gene if the ratio of samples of the same pattern reach
a specific threshold. For genes don’t meet the condition, we
remove them from the subsequent analysis. Finally, we use
the average methylation level of all the CpG loci on a gene
to represent the methylation level of it.

Differentially methylated genes identification per cancer
DNA methylation is the most extensively documented
epigenetic modification that can influence cell fate and
gene expression [22], which finally leads to the inhibition
of gene expression through formation of heterochroma-
tin in the gene regulatory region [23]. In this study, iden-
tification of differentially methylated genes in cancer
samples and adjacent control samples for all seven types
of cancer are our first task.
We use user-defined R script, the bilateral t-test, to

recognize the differentially methylated genes among
sample pairs. Benjamini-Hochberg method is used in
multiple tests to adjust the P value. The gene whose ad-
justed P value is less than 0.05 and the difference of the
average of β is more than 10% is considered distinctly
differentially methylated gene among sample pairs.

Biological functions and pathways enrichment analysis of
differentially methylated genes
In this study, using DAVID [24, 25], we conduct a GO
(Gene Ontology) biological functions enrichment analysis
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and a KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways enrichment analysis towards the list of differen-
tially methylated genes from the seven cancer types
(hypermethylated and differentially hypomethylated genes
are also included), with p controlled within 0.05, which
could find out the biological characteristics and senses
related.

Construction of correlation network of differentially
methylated genes
In this study, Pearson correlation coefficient is used to
measure the correlation of DNA methylation level of dif-
ferentially methylated genes of each cancer type quanti-
tatively. The formula is as follows:

r ¼ 1
n−1

Xn
i¼1

Xi−X
δX

� �
Y i−Y
δY

� �

T test is used to perform a hypothesis test towards
correlation coefficient. In addition to that, we also use
permutation test to examine the correlation between
DNA methylation levels in each pair of genes. Script of
python and R are used to complete the process, and we
use the function cor.test() in R for calculation and test of
correlation coefficient. We build a methylation correl-
ation net. This net is built, analyzed and visualized using
Cytoscape 2.8.2 [17] (http://www.cytoscape.org/). The
statistical and functional significance of the network, is
proposed to be measured using various statistical param-
eters, namely in the proposed case, degree (the number
of edges per node) and average clustering co-efficient
C(k), the ratio of the number of edges E of the node hav-
ing a k degree with neighbors to the total possible num-
ber of such edges.
In the DNA methylation correlation network, different

nodes are of different importance, for those whose de-
grees are large, they often are pivots of the network with
lots of genes related to them. If they go abnormal, ver-
texes adjacent to them will be affected, leading to dys-
function of the pathway and causing cancer. We assume
that those key nodes may be associated with the progno-
sis of cancer patients, thus we pick the top 20% nodes in

the network as candidate genes for further analysis. It is
also necessary to analyze the interaction information in
the pathways of these differentially methylated genes from
a functional perspective. DAVID online bioinformatics
tools are used in the enrichment analysis of the pathways
and functions involved those genes. The result is visual-
ized using EnrichmentMap function in Cytoscape.

Construction of KEGG pathway network of differentially
methylated genes
In this study, XML format files of pathways enriched by
differentially methylated genes in each cancer type are
obtained from KEGG database. User-defined Perl script
is used, <relation></relation> block is used to find the
molecular interaction pairs within each pathway, <
entry></entry> block is used to obtain information
about the specific genes or compounds of each pair.
Among all those interaction pairs, the interactions of
real proteins are our only concern, therefore only
‘PPreal’ type of interaction pairs in relation remain unde-
leted. Then, the resulting interaction id is then con-
verted into a gene symbol to facilitate visualization and
analysis. The network of KEGG pathway is also built by
Cytoscape 2.8.2 [26] (http://www.cytoscape.org/) to
analyze and visualize the network.
We also pick the top 20% nodes whose degrees are the

biggest as candidate genes for further analysis and have
a discussion on the functions of those genes. DAVID on-
line bioinformatics tools are used to conduct an enrich-
ment analysis on the pathways and functions in which
those genes are involve, the results are visualized using
EnrichmentMap [27] in Cytoscape.

The construction of prognostic model and survival
analysis
In order to be accurate, all cancer patients in each can-
cer type were divided into two data sets on average in
this study, a training set and a test set. The training set
is used for establishment of models and screening of
prognostic markers while the test set is for follow-up
validation of screened prognostic markers. The division
of two sets should meet the following criteria: (1) All

Table 1 The sample size for each cancer type

Cancer Type Normal sample size Cancer sample size Stage (I / II / III / IV)

BRCA 98 790 138 / 452 / 211 / 22

COAD 38 299 56 / 128 / 98 / 53

ESCA 16 186 42 / 102 / 79 / 32

LUAD 32 460 255 / 117 / 78 / 25

LUSC 43 372 177 / 140 / 61 / 9

PAAD 10 185 23 / 153 / 7 / 8

UCEC 46 432 264 / 43 / 101 / 24
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samples are divided into training set and test set ran-
domly. (2) There were no significant differences in age
distribution, staging, follow-up time and mortality be-
tween the two sets (Use Fisher’s exact test or t test).
That is to say, patients of all types were randomly
assigned to the training and test sets, including patients
with missing clinical information. Then, we use the sam-
ples of each cancer in the training set and the differen-
tially methylated candidate prognostic markers in each
type of cancer obtained from correlation network and
the KEGG pathway network to construct a model to
screen for specific prognostic markers in cancers.
In the first step, we find out DNA methylation

spectrum of candidate markers for each cancer type, as
well as clinical phenotype information and follow-up in-
formation of the samples and establish a univariate COX
proportional risk regression model, so as to assess the
association between patient survival and DNA methyla-
tion levels. Additionally, we also construct univariate
COX proportional risk regression models to determine
the clinical factors that significantly affect patient sur-
vival. In the next step, significant genes in each cancer
type and the clinical factors that significantly affect sur-
vival in this cancer type are introduced into the multi-
variate COX proportional risk regression model to find
independent prognostic factors (genes). For each gene i,
the formulas of univariate and multivariate COX propor-
tional risk regression models are defined as follows:

h t; xð Þi ¼ h0 tð Þ exp βmethymethyi
� �

h t; xð Þi ¼ h0 tð Þ exp βmethymethyi þ
X

βclinicalclinical
� �

In the formula, methyi is the DNA methylation level vector
of Gene i in all Samples, clinical represents clinical attribute
information, βmethy, βclinical are the coefficients of the regres-
sion model. The positive regression coefficient indicates that
the increase of methylation level is related to the increase of
death risk (risk gene), while the negative regression coeffi-
cient indicates that the increase of methylation level is related
to the decrease of death risk (protective gene). Univariate
and multivariate COX proportional risk regression models
are constructed using function coxph() in survival R package.
After univariate and multivariate COX proportional

risk regression analysis, independent prognostic markers
that are still significant are used to calculate risk scores
in the training set. Risk score is a linear combination of
DNA methylation level and regression coefficient of
these markers, representing different risk levels of pa-
tients. The formula is as follows:

Risk Score ¼
Xn

i¼1
βiXi

In the formula, βi is the COX regression coefficient of
Gene i in the training set, Xi is the methylation level of

Gene i, n is the number of genes that have a significant im-
pact on survival. Next, taking the median risk score as the
threshold, the patients in the training set are divided into
high-risk group and low-risk group. The survival difference
between the two groups is analyzed, the overall survival sta-
tus of patients is estimated by Kaplan-Meier method and
the statistical significance of the difference is determined by
log-rank test. Functions survfit() and survdiff() in survival R
package are used in the process.
Then, the regression coefficients and the threshold of

risk score from the training set are directly applied to
the test set, and the patients in the test set are also di-
vided into high-risk group and low-risk group. The
prognostic differences between the two risk groups were
assessed using the same method as in the training set.

Results
Heterogeneity of differentially methylated genes per
cancer
In this study, we have compared the number of the
genes obtained and the proportion of the rest of the
genes at different ratio threshold (Fig. 1). We hope that
we could find a ratio threshold which retains as many
genes as possible meanwhile improves the accuracy of
calculation of gene methylation level. Eventually, we se-
lect 70% as the ratio threshold, which guarantees that
about 50% of the original genes remain. At last, we use
the average methylation of the CpG loci as the methyla-
tion level of the gene in further analysis.
Through the process mentioned above, we identified

2214 differentially methylated genes in the total seven
cancer types. The numbers of hypomethylated and
hypermethylated genes are shown in Table 2. The differ-
entially methylated genes are shown in the volcano plot
(Fig. 2), which is drawn using ggplot2 R package.
All those differentially methylated genes are shown in

Additional file 1: Figure S1, which indicates the great
heterogeneity of differential methylation markers among
the cancer types. Besides, we also use heat map to dis-
play the methylation level of differentially methylated
genes in cancer samples and adjacent control samples
(Fig. 3). We utilize the function pheatmap() in pheatmap
package of R to create these graphs. It is from those
graphs that we can see that each and every one of the
differentially methylated genes of all the cancer types is
able to separate cancer samples and adjacent control
samples clearly.

Heterogeneity of pathways and biological functions
differentially methylated genes involved
From the result of enrichment, we can see that differentially
methylated genes in every cancer type are involved in vari-
ous biological pathways and functions (Additional file 2:
Figure S2, Additional file 3: Figure S3, Additional file 4:
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Figure S4, Additional file 5: Figure S5, Additional file 6: Fig-
ure S6, Additional file 7: Figure S7, Additional file 8: Figure
S8). It was found that the most enriched gene ontology and
KEGG pathways of these seven cancers are olfactory recep-
tor activity, G-protein coupled receptor activity, odorant
binding and Olfactory transduction, which have been

reported to have association with cancers in previous stud-
ies [28–30]. At the same time, the distribution shown in
Additional file 9: Figure S9 shows that the heterogeneity of
biological pathways and functions enriched from differen-
tially methylated genes among various cancer types are
great. Specifically, 28 GO functions and 1 KEGG pathways

Fig. 1 Comparison of the number of genes and the proportion of remaining genes obtained at different ratio thresholds. a. Comparison of the
number of genes obtained at different ratio thresholds. b. Comparison of the proportion of remaining genes when different ratio thresholds are used

Table 2 The numbers of differential methylated genes in 7 cancer types

Cancer types Number of genes Number of differentially hypermethylated genes Number of differentially hypomethylated genes

BRCA 7981 223 605

COAD 7643 159 547

ESCA 7423 177 396

LUAD 8133 181 542

LUSC 8153 170 901

PAAD 8430 183 159

UCEC 8170 233 813
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are enriched from differentially methylated genes in two
cancer types, 10 GO functions and 2 KEGG pathways are
enriched from differentially methylated genes in three can-
cer types, 5 GO functions are enriched from differentially
methylated genes in four cancer types, 2 GO functions are
enriched from differentially methylated genes in five cancer

types, 6 GO functions are enriched from differentially
methylated genes in 6 cancer types, only 8 GO functions
and 1 KEGG pathway are enriched from differentially
methylated genes in all seven cancer types. The other 93
GO functions and 8 KEGG pathways are cancer specific,
which shows that the heterogeneity of biological pathways

Fig. 2 Volcano plot of differentially methylated genes in seven cancers. a Volcano plot of differentially methylated genes in BRCA. b Volcano plot
of differentially methylated genes in COAD. c Volcano plot of differentially methylated genes in ESCA. d Volcano plot of differentially methylated
genes in LUAD. e Volcano plot of differentially methylated genes in LUSC. f Volcano plot of differentially methylated genes in PAAD. g Volcano
plot of differentially methylated genes in UCEC
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and functions enriched from differentially methylated genes
among various cancer types are great. Even within the same
cancer type, differentially hypomethylated genes and hyper-
methylated could be involved in different pathways and
functions. Enrichment pathways and top GO functions are
shown in the graph (Fig. 4, Attached Additional file 10: Fig-
ure S10, Additional file 11: Figure S11, Additional file 12:
Figure S12, Additional file 13: Figure S13, Additional file 14:
Figure S14, Additional file 15: Figure S15).

Identification and functional analysis of key genes in
correlation network
We get 48,816 pairs of gene pairs whose DNA methylation
levels are of strong correlation evidently, there are 7345
pairs in BRCA, 5477 in COAD, 5074 in ESCA, 24818 in
LUAD, 4587 in LUSC, 9538 in PAAD, 1488 in UCEC.
The net contains a total number of 48,816 edges (Fig. 5).

To assess biological significance of the pathway network,
topological properties of the network is studied, the aver-
age degree of the nodes is 70.953 and the average cluster-
ing coefficient is 0.597, and above all, the degree of the
network obeys power law distribution (Additional file 16:
Figure S16), which indicates that this network conforms
to the characteristics of scale-free biomolecular networks,
that is, most of the nodes in the net have small degrees,
only a small number of nodes have large degrees.

According to the degree ranking of the nodes, the first
274 genes are selected, with a maximal degree of 342
and a minimal degree of 137.Then, we discuss the func-
tion of those 274 genes, DAVID online bioinformatics
tools are used in the enrichment analysis of the path-
ways and functions involved those genes. The result is
visualized using EnrichmentMap function in Cytoscape
(Additional file 17: Figure S17A). We can learn from the
graph that these genes are significantly enriched in the
biological processes related to G-protein-coupled recep-
tor activity and signal pathway, ion channel-related bio-
logical processes and the regulation of cell proliferation
and differentiation.

Identification and analysis of key genes in KEGG pathway
network
We obtain 6120 pairs of gene interactions in BRCA,
6934 in COAD, 4550 in ESCA, 5329 in LUAD, 6968 in
LUSC, 2934 in PAAD, 7996 in UCEC.
The network of KEGG pathway is built (Fig. 6, Cytos-

cape 2.8.2 [17] (http://www.cytoscape.org/). The nodes
in the network represent the genes in the pathways
enriched by the differentially methylated genes in each
type of cancer, and the edges represent the interaction
between the two genes in the pathways. The colored
nodes represent the gene is differentially methylated for

Fig. 3 Heat map of differentially methylated genes in seven cancers. a Heat map of differentially methylated genes in BRCA. b Heat map of
differentially methylated genes in COAD. c Heat map of differentially methylated genes in ESCA. d Heat map of differentially methylated genes in
LUAD. e Heat map of differentially methylated genes in LUSC. f Heat map of differentially methylated genes in PAAD. g Heat map of differentially
methylated genes in UCEC
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this type of cancer, the gray nodes represent the non-
differentially methylated genes extracted from the path-
ways but the genes that interact with differentially methyl-
ated genes. The size of the nodes is marked by the degree
of the node, but the colored nodes are larger because dif-
ferent colors are required to be displayed. There are 1628
nodes and 12,765 edges in the network (Fig. 6). To assess
biological significance of the pathway network, topological
properties of the network is studied, the average degree of
the nodes is 15.682 and the average clustering coefficient
is 0.131, and above all, the degree of the network obeys
power law distribution (Additional file 18: Figure S18),
which indicates that this network conforms to the charac-
teristics of scale-free biomolecular networks, that is, most
of the nodes in the net have small degrees, only a small
number of nodes have large degrees.

325 genes are selected with a maximal degree of 510
and a minimal degree of 18. Among those genes, 44 are
genes differentially methylated in cancers, 281 are ac-
quired from expansion of the pathways.
We also have a discussion on the functions of those

genes. DAVID online bioinformatics tools are used to
conduct an enrichment analysis on the pathways and
functions in which those genes are involve, the results
are visualized using EnrichmentMap in Cytoscape
(Additional file 17: Figure S17B). Only the most signifi-
cant enrichment (FDR < 1E-30) entries are shown in the
figure, nodes in the graph represent biological functions
or pathways where genes are significantly enriched, and
the thickness of edge represents the correlation between
these functions and pathways, which are measured by
the number of shared genes. We can learn from the

Fig. 4 The enrichment analysis of differential methylated genes in BRCA. a The enrichment analysis of hypermethylated genes in BRCA. b The
enrichment analysis of hypomethylated genes in BRCA
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graph that those genes are significantly enriched in can-
cer and multiple signaling pathways, as well as metabolic
and biosynthetic pathways.

Integration and functional analysis of cancer-specific
prognostic candidate marker sets
In this study, we first obtained the key candidate genes
in various cancer types at the epigenetic modification
level by DNA methylation correlation between genes,
and further obtained more candidate genes from the
perspective of functional interaction by pathway
enrichment analysis.. The candidate gene obtained by
these two methods has only one intersection gene
(ADCYAP1R1), which is a common differential methyla-
tion gene among three cancers, COAD, PAAD and
ESCA. The screening of these two complementary
modes avoids the omission of the marker gene, and the
candidate marker genes obtained by the two methods
are integrated together as a basis for screening and ana-
lysis of the next specific cancer type prognostic marker.
This study only performed a prognostic efficacy analysis
of differentially methylated genes in each cancer type,
thus removing 281 genes from the pathway that inter-
acted with the differential genes. Finally, 317 differen-
tially methylated genes in these cancers were obtained as
prognostic marker candidate gene set.

Functional analysis of these candidate gene sets re-
vealed significant enrichment of genes in sensory organ-
related biological processes, many drug metabolisms,
and biological processes and pathways for multiple en-
zyme synthesis (Additional file 17: Figure S17C). There-
fore, it is speculated that abnormalities in these genes
may lead to dysregulation of related biological processes
and pathways, thus inducing cancer.

Identification and analysis of specific prognostic markers
per cancer
After the process mentioned above, we described sample
information from two datasets for each cancer type in de-
tail in Table 3, and we identify, from the univariate COX
regression model, 4 prognostic risk markers for BRCA, 14
for COAD, 10 for ESCA, 7 for LUAD, 5 for LUSC, 16 for
PAAD and 31 for UCEC, clinical factors are included as
well as gene methylation. You can find information in de-
tail in the attached table below. In the further analysis of
multivariate COX regression, in all seven types of cancer,
3 risk genes that independently affecting prognosis of pa-
tients are found in BRCA, 6 in CPAD, 5 in ESCA, 2 in
LUAD, 3 in LUSC, 11 in PAAD and 19 in UCEC. You can
find information in detail in Table 4.
Survival analysis of the two groups of patients of each

type of cancer shows that there are significant differ-
ences in survival between the two risk groups in all types

Fig. 5. DNA methylation correlation network of differentially methylated genes. The nodes in network represent genes, and the edges represent
a strong correlation between the two genes. The nodes marked as colors in the legend represent differential methylation of the gene in the
cancer type, and a node with multiple color annotations indicates that the gene is differentially methylated in various cancers
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of cancer (Fig. 7, attached Additional file 19: Figure S19).
Further validation based on the reserved test set using
the method stated above shows that there are significant
differences in survival between the two groups in all the
seven types of cancer except ESCA whose p value of sig-
nificance is 0.0563 (higher than 0.05) (Fig. 7 attached
Additional file 19: Figure S19). Although the significance
of ESCA does not reach below 0.05, as we can tell from
the figure, the two groups of patients can be separated
using the prognostic marker genes sifted out. This sug-
gests that the prognostic markers screened out in this
study are reliable and can be used to distinguish the high
and low risk of patients. And it’s also worth noting that,
prognostic markers, in most types of cancer, are specific
to this type of cancer. A few exceptions are the one
common prognostic marker in BRCA and UCEC
(SNORD114.16), SULT1E1 in BRCA and PAAD,
SNORD113.5 in COAD and UCEC. SULT1E1 is a

protective factor in both BRCA and PAAD, however,
The other two markers play opposite roles in the two
types of cancer (risk factor and protective factor).
After looking through papers, only 4 genes of these

prognostic markers have been verified to be relavant
with according cancers, including CCL4 [31, 32] in
COAD, CACNA2D3 [33, 34] and SMO [35–37] in
ESCA, and IL23R [38] in LUAD. Other genes have not
been tested to be efficient in treating cancer, which may
be potential targets for scientists and doctors to further
research on them.

Discussion
The heterogeneity of cancers is one of the reasons why
cancers are so hard to be cured clinically, therefore, mo-
lecular analysis of the mechanism of cancer heterogen-
eity and screening of cancer-specific diagnostic and
prognostic molecular markers are of great importance

Fig. 6. The KEGG pathway network. The nodes in network represent genes, and the edges represent the interaction of the two genes in the
pathways. The nodes marked as colors in the legend represent differential methylation of the gene in the cancer type or a non-differentiated
methylation gene obtained from the pathway. C. Enrichment analysis of prognostic marker candidate gene sets
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for clinical treatment. In addition to genetic mutations,
DNA methylation is an important epigenetic alteration
that can modify gene expression and is commonly per-
turbed in cancers [39]. So far, DNA methylation is pro-
posed as a molecular biomarker for cancer detection
[40] but also as a biomarker for prediction and stratifica-
tion of patients with risk of distinct clinical outcome and
response to therapies [41], which are found abnormal in
the early stage of cancer generation which is a stable
marker in cancers. It is a severer change in that it affects
the transcriptional regulation of genes, which makes it a
potentially important marker for early detection, precise
treatment and prognosis assessment of cancer. In cancer
detection, DNA methylation also has several advantages
over somatic mutation analysis, such as high clinical sen-
sitivity and dynamic range. Moreover, the change of
DNA methylation pattern is one of the first detectable
tumor-specific changes associated with tumorigenesis.
Therefore, it is an important research direction to inter-
pret the heterogeneity of cancer from the perspective of
epigenetic abnormality.
Yang et al. provides a comprehensive investigation and

reveals meaningful cancer common and specific DNA
methylation patterns, contributing to a deeper

understanding of pan-cancer studies [42]. They discov-
ered a potential tumorigenesis mechanism that involved
of three pan-cancer differentially methylated CpG sites
(PDMCs) and 62 PDMCs that are significantly associ-
ated with patient survival. They also found that cancer-
specific DMCs are enriched in known cancer genes and
cell-type-specific super-enhancers.
We also conducted a research on pan-cancer analysis

from epigenetic perspective. Compared to the study con-
ducted by Yang at al, we first performed a differential
methylation analysis of genes (DMGs) and aimed to find
reliable prognostic markers for each cancer from gene
levels, and made a supplementation of their survival ana-
lysis. In this study, the heterogeneity of DNA methyla-
tion markers among cancers is discussed in detail by
using the large sample DNA methylation data of seven
cancers in TCGA database detected by the open avail-
able HM450K chip platform. Differential methylation
analysis identifies specific and common tumor markers
in each type of cancer, which provides more potential
targets for cancer diagnosis and experimental re-
searchers. These cancer type-specific tumor markers are
also involved in different biological functions and path-
ways. In the next step, through using two biological

Table 3 Clinical characteristics of patients in the training set and testing set

Cancer
type

Set Stage Age Follow-up time (month) Survival status

I II III IV Mean ± SD Range Mean ± SD Range Alive Dead

BRCA Trainingset 70 224 105 11 56.98 ± 12.98 26–90 31.46 ± 35.58 0–197 174 369

Testing set 68 228 106 11 57.08 ± 13.26 26–90 31.3 ± 37.32 0–238 168 361

P value 1a 0.93b 0.96b 0.95a

COAD Trainingset 29 67 52 28 64.84 ± 12.77 31–90 33.35 ± 32.72 1–151 40 115

Testing set 27 61 46 25 64.86 ± 13.77 34–90 32.99 ± 27.68 2–143 40 115

P value 1a 0.99b 0.92b 1a

ESCA Trainingset 20 50 40 16 62.52 ± 11.48 42–86 17.81 ± 14.96 1–69 39 54

Testing set 22 52 39 16 62.31 ± 12.32 27–90 17.96 ± 18.07 1–124 39 54

P value 0.99a 0.91b 0.95b 1a

LUAD Trainingset 129 57 41 12 65.1 ± 10.25 40–87 30.1 ± 30.96 1–236 86 151

Testing set 126 60 37 13 65.16 ± 10.04 33–88 30.18 ± 30.13 1–242 86 148

P value 0.96a 0.95b 0.98b 0.92a

LUSC Trainingset 92 70 31 5 67.6 ± 8.87 44–90 33.21 ± 31.36 1–157 83 109

Testing set 85 70 30 4 67.56 ± 8.6 40–85 32.87 ± 32.26 1–177 81 108

P value 0.98a 0.96b 0.92b 1a

PAAD Trainingset 11 77 3 4 64.73 ± 11.37 40–85 19.06 ± 14.41 1–77 50 43

Testing set 12 76 4 4 64.84 ± 10.61 35–88 19.07 ± 16.96 1–92 50 43

P value 1a 0.95b 1b 1a

UCEC Trainingset 131 20 52 13 64.21 ± 11.33 33–90 33.31 ± 28.82 1–229 38 180

Testing set 133 23 49 11 64.22 ± 11.08 31–90 33.2 ± 28.08 1–189 38 178

P value 0.92a 1b 0.97b 1a

aRepresents the p value calculated by Fisher’s exact test
bRepresents the p value calculated by T test
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Table 4 Results of multivariate COX regression analysis

Cancer Prognostic marker β P HR Lower 95% CI Upper 95% CI

BRCA AKR1C4 −2.9373 0.0023 0.0530 0.0080 0.3491

SNORD114.16 −2.8802 0.0051 0.0561 0.0075 0.4215

SULT1E1 −3.3983 0.0133 0.0334 0.0023 0.4922

COAD CCL4 −3.2497 0.0211 0.0388 0.0024 0.6143

DEFB116 −5.1774 0.0007 0.0056 0.0003 0.1122

MIR519C −3.9175 0.0310 0.0199 0.0006 0.6989

OR52E8 −3.8451 0.0117 0.0214 0.0011 0.4249

SNORD113.5 −2.6062 0.0125 0.0738 0.0095 0.5708

TRYX3 −2.3241 0.0255 0.0979 0.0127 0.7521

ESCA ADCYAP1R1 3.2791 0.0027 26.5511 3.1161 226.2333

CACNA2D3 2.4678 0.0166 11.7969 1.5667 88.8267

KCNH5 1.8203 0.0361 6.1739 1.1256 33.8644

SMO 2.2041 0.0228 9.0621 1.3597 60.3954

TMEM132E 2.3834 0.0104 10.8415 1.7503 67.1527

LUAD IL23R 2.2732 0.0192 9.7106 1.4478 65.1314

TCP10L2 −2.1018 0.0254 0.1222 0.0194 0.7716

LUSC OR6M1 1.8020 0.0263 6.0618 1.2370 29.7058

REXO1L2P −3.7316 0.0006 0.0240 0.0028 0.2027

ZNF80 −1.8843 0.0148 0.1519 0.0334 0.6916

PAAD ARL14 −3.2526 0.0023 0.0387 0.0048 0.3144

DMRT1 2.9253 0.0109 18.6400 1.9621 177.0821

KCNA1 2.6116 0.0075 13.6202 2.0105 92.2723

KCNA5 3.0587 0.0345 21.3003 1.2494 363.1326

KCNC1 5.1925 0.0095 179.9259 3.5557 9104.5993

LOC641518 2.6193 0.0470 13.7262 1.0353 181.9858

OR56A3 −3.2783 0.0131 0.0377 0.0028 0.5026

PEX5L 3.0803 0.0139 21.7649 1.8721 253.0407

SNORD114.29 −2.6840 0.0073 0.0683 0.0096 0.4860

SOX14 4.1737 0.0112 64.9521 2.5839 1632.7153

SULT1E1 −3.2091 0.0128 0.0404 0.0032 0.5049

UCEC CNTN4 −1.4338 0.0398 0.2384 0.0608 0.9353

IFNA7 2.1181 0.0124 8.3157 1.5815 43.7250

IFNA8 2.0898 0.0085 8.0836 1.7051 38.3225

MIR300 1.6945 0.0362 5.4441 1.1153 26.5741

OR10AG1 −1.2951 0.0392 0.2739 0.0799 0.9382

OR14C36 −1.4089 0.0311 0.2444 0.0679 0.8800

OR1G1 1.7378 0.0397 5.6847 1.0849 29.7864

OR2T10 −1.4348 0.0322 0.2382 0.0641 0.8855

OR2T29 −1.6168 0.0192 0.1985 0.0513 0.7684

OR2T5 −1.7935 0.0138 0.1664 0.0399 0.6933

OR4A47 −1.5634 0.0352 0.2094 0.0489 0.8972

OR5I1 −2.3936 0.0067 0.0913 0.0162 0.5153

OR8H2 −1.9729 0.0141 0.1390 0.0288 0.6714

OR8H3 −2.0804 0.0130 0.1249 0.0242 0.6450
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molecular networks, DNA methylation correlation network
and KEGG pathway network, the marker sets are further
optimized and integrated from the perspective of correlation
and functional interaction. At last, the specific prognostic
markers for each type of cancer are screened out by using
the establishment of prognostic model. These markers can
classify the risk of patients ideally, and are verified in the test
set. The searching of prognostic markers for cancer provides
important reference for clinicians to monitor conditions of
patients and to alter regimens of treatment in time.

Conclusions
In this study, DNA methylation markers of only 7 cancer
types in TCGA are screened out and analyzed, but the
method in this study is also applicable to other cancer
types. Also, though the preliminary verification of these
markers is realized by the compute in this study, which
lays a solid theoretical foundation for the reliability of
these markers, further experimental confirmation is still
a necessity to promote the process in which those mo-
lecular markers are put into clinical use.

Table 4 Results of multivariate COX regression analysis (Continued)

Cancer Prognostic marker β P HR Lower 95% CI Upper 95% CI

OR8K3 −2.1031 0.0008 0.1221 0.0356 0.4190

OR9G4 −1.6672 0.0088 0.1888 0.0542 0.6573

SNORD113.5 1.4484 0.0397 4.2564 1.0705 16.9240

SNORD114.16 1.7309 0.0104 5.6459 1.5029 21.2101

UGT2B15 1.5478 0.0338 4.7012 1.1257 19.6330

Fig. 7. Kaplan-Meier survival curve. a Survival curve of BRCA training set. b Survival curve of BRCA test set. c Survival curve of COAD training set.
d. Survival curve of COAD test set
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