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LINC00649 underexpression is an adverse
prognostic marker in acute myeloid
leukemia
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Abstract

Background: Long noncoding RNAs (lncRNA) play a role in leukemogenesis, maintenance, development, and
therapeutic resistance of AML. While few studies have focused on the prognostic significance of LINC00649 in AML,
which we aim to investigate in this present study.

Methods: We compared the expression level of LINC00649 between AML patients and healthy controls. The
Kaplan-Meier curves of AML patients expressing high versus low level of LINC00649 was performed. The LINC00649
correlated genes/miRNAs/lncRNAs and methylation CpG sites were screened by Pearson correlation analysis with R
(version 3.6.0), using TCGA-LAML database. The LINC00649 associated ceRNA network was established using lncBase
2.0 and miRWalk 2.0 online tools, combining results from correlation analysis. Finally, a prediction model was
constructed using LASSO-Cox regression.

Results: LINC00649 was underexpressed in bone marrow of AML group than that in healthy control group. The
patients of LINC00649-low group have significantly inferior PFS and OS. A total of 154 mRNAs, 31 miRNAs, 28
lncRNAs and 1590 methylated CpG sites were identified to be significantly correlated with LINC00649. Furthermore,
the network of ceRNA was established with 6 miRNAs and 122 mRNAs. The Lasso-Cox model fitted OS/PFS to novel
prediction models, which integrated clinical factors, ELN risk stratification, mRNA/miRNA expression and methylation
profiles. The analysis of time-dependent ROC for our model showed a superior AUC (AUC = 0.916 at 1 year, AUC =
0.916 at 3 years, and AUC = 0.891 at 5 years).

Conclusions: Low expression of LINC00649 is a potential unfavorable prognostic marker for AML patients, which
requires the further validation. The analysis by LASSO-COX regression identified a novel comprehensive model with
a superior diagnostic utility, which integrated clinical and genetic variables.
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Background
AML is one of most common hematological malignan-
cies, which is characterized by unlimited proliferation of
clonal myeloid progenitors and impaired production of
normal hematopoietic cells [1]. The prognosis of AML is
still heterogenous and unsatisfying: the rate of 5-year
survival for AML patients is less than 50% [2], 2-year
survival rate of elderly patients is only 20% [3]. Several
prediction models have been constructed, among which
the updated ELN risk stratification is the most widely
used in clinical practice [4], recognizing 3 subgroups of
patients according to pretreatment molecular mutations
and cytogenetics. Whereas the advances in high-
throughput methodology produced multidimensional in-
formation on genomes, such as noncoding RNA expres-
sion, methylation profile etc.
The size of long noncoding RNAs are generally longer

than two hundred nucleotides, and do not have the po-
tential of protein-coding. The interactions of lncRNAs
and protein-coding genes are diverse and complex,
among which the regulatory mechanism of HOTAIR
was well studied in AML. HOTAIR exerts a pro-
oncogenic effect in AML, which suppresses p15 expres-
sion by methylation of p15 promoter mediated by PRC2,
and increases of HOXA5 methylation by directly recruit-
ing DNMT3B [5, 6]. The HOTAIRM1 is another well-
studied lncRNA in AML, which played a potential onco-
genic role by enhancing expression of HOXA1–4 genes
[7]. These results suggest HOXA family genes are im-
portant targets of AML-related lncRNAs. HOXA family
included 11 genes (HOXA1–7, HOXA9–11 and
HOXA13), encoding conserve transcription factors in re-
lation with normal hematopoiesis [8–10]. While dysreg-
ulated expression of HOXA family genes is associated
with oncogenesis [11].
LINC00649, which we focused in the research, was

identified as a prognostic marker in prostate and colorec-
tal cancers by previous bioinformatic analysis [12, 13].
Few studies have investigated the prognostic value of
LINC00649 in AML [14]. Notably, the expression of
LINC00649 was significantly correlated with HOXA fam-
ily genes, indicated by the results derived from GEPIA
[15] 2.0 online tools (http://gepia2.cancer-pku.cn/) and
our own analysis. These results suggest that LINC00649
may be associated with AML survival through regulating
HOXA genes.
LncRNA regulated the expression of target genes mainly

by the following mechanisms: epigenetic regulation, directly
transcription regulation by lncRNA binding proteins, splicing
regulation, sponging target miRNAs to form competing en-
dogenous RNA, post-translation regulation [16]. Differen-
tially methylated positions (DMPs) and differentially
methylated regions (DMRs) were identified between
LINC00649-high and -low expression groups, to reveal the

epigenetic changes related to HOXA gene family. Then the
possibly binding protein of LINC00649 was uncovered, and
its relationship with HOXA genes were conducted. More-
over, we established ceRNA network using overlapped re-
sults of prediction by online databases and correlation
analysis regarding LINC00649. We did not only aim to re-
veal the regulating effect of LINC00649 on HOXA genes,
but to uncover the association of AML survival with
LINC00649 related epigenetic and genetic changes. There-
fore, the LASSO regression analysis was employed to fit the
survival data of AML patients into the prediction model. An
overall flowchart was shown in Fig. 1. Our study presented
the rationality to use the expression level of LINC00649 as a
prognostic biomarker and established the novel risk model
to predict survival of AML cases.

Methods
Data source
The RNAseq data was downloaded from BeatAML [17]
(http://www.vizome.org/aml) and TCGA database (https://
portal.gdc.cancer.gov/), as well as the corresponding clinical
and genetic information. The transcriptome dataset in the
format of RPKM was obtained from BeatAML database.
While the raw count dataset of mRNA and lncRNA was
originally obtained from TCGA database, and then trans-
formed to TPM format. The last access to the two database
is on 2019.12.25. The GEPIA 2.0 online tool [15] (http://
gepia2.cancer-pku.cn) was used to compare expression level
of LINC00649 between diverse cancers and corresponding
normal tissues to explore the expression signature in AML.
The cohorts from BeatAML database were employed to re-
veal the different expression level of LINC00649 between
AML (n = 474) and healthy controls (n = 33).

Kaplan-Meier analysis of LINC00649 on AML survival
The AML cohorts from TCGA/BeatAML database were
classified as LINC00649-high and LINC00649-low groups
respectively, using mean TPM/RPKM of LINC00649. The
survival data of AML patients, including OS and PFS, was
obtain for TCGA and BeatAML database. Kaplan-Meier
analysis were conducted using survival data and log rank
test was performed, using p value < 0.05 as the cutoff value.

Identification of LINC00649 binding proteins
The catRAPID is an algorithm predicting RNA-protein
paring, by combining hydrogen bond, secondary struc-
ture and other inter-molecular factors [18, 19]. The se-
quence of LINC00649 was downloaded from nucleotide
database of PubMed, which was then input into catRA-
PID omics tools (http://service.tartaglialab.com/). The
results were downloaded with predicted protein name
and binding sites of protein/RNA.
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Identification of LINC00649 associated protein coding
genes/miRNA and lncRNA
The miRNA expression dataset was downloaded from
TCGA database, in the format of RPM value. We con-
ducted a correlation analysis between LINC00649 and
other protein-coding genes/miRNA/lncRNA by Pear-
son’s method, using R (version 3.6.0) and cor.test func-
tion in stats package. The variables with |Pearson’s
coefficient| > 0.4 and p value < 0.05 are defined as
LINC00649 associated genes. Then to access the enrich-
ment on signaling pathways, we conducted the GSEA
based on MSigDB database (http://software.broadinsti-
tute.org/gsea/msigdb) [20–22] using LINC00649 associ-
ated gene set and corresponding Pearson’s coefficients.
Meanwhile, the ORA was performed based on GO data-
base and KEGG database. The KEGG analysis was con-
ducted by the ClueGO plugin of Cytoscape software
(version 3.7.2) and GO analysis by the “topGO” and
“REVIGO” package and R (version 3.6.0).

Identification of LINC00649 associated methylation prolife
To investigate the methylation signature in relation to
LINC00649 expression, we obtained normalized beta
value matrix for AML cohort from TCGA database (146
AML patients, Illumina Infinium HumanMethylation450
platform). The correlation analysis was performed

between LINC00649 expression and methylation status
(beta value) of individual methylation position and
methylation regions.

Establishment of LINC00649-centric competitive
endogenous RNA (ceRNA) network
The predicted target miRNA set of LINC00649 was
obtained by prediction module of lncBase v2 database,
which is based on the microRNA/lncRNA target pre-
dicting algorithm [23] (http://carolina.imis.athena-
innovation.gr/diana_tools/web). The target mRNAs,
the 3′ UTR of which were predicted to bind the
identified miRNAs, were screened by miRWalk 2.0
online tools [22, 24] (http://zmf.umm.uni-heidelberg.
de/). We defined the LINC00649-centric ceRNAs as
intersection between predicted target miRNA set and
LINC00649-associated miRNA set generated from
previous correlation analysis.

Establishment of prediction model for AML survival
In above analysis, we identified the LINC00649-centric
ceRNA network and methylation changes in relevance of
LINC00649, which were supposed to be key elements
linking to prognosis of AML. Moreover, to improve the
prognostic model, we constructed a multidimensional
survival analysis, integrating clinical features, expression

Fig. 1 The flow chart of the overall study design. AML, acute myeloid leukemia; TCGA, the Cancer Genome Atlas; OS, overall survival; PFS,
progression free survival; LASSO, least absolute shrinkage and selection operator
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level of LINC00649 and related mRNAs/miRNAs in
ceRNA network, and methylation status of correlated
CpG sites. We downloaded expression dataset (RNA-seq
data and miRNAseq data), methylation dataset (beta
value), from TCGA database (https://portal.gdc.cancer.
gov/). Because the APL patients, also known as M3 type
in FAB classification, received the quite different treat-
ment and have more superior survival than other types
of AML, we excluded such patients from AML cohort.
The traditional clinical variables were taken into ana-
lysis, including age, race, gender, risk stratification based
on molecular/cytogenetic signature, and counts of white
blood cells. According to ELN2017 recommendations
[4], AML patients were classified as ‘good’, ‘intermediate’
and ‘poor’ groups, based on the karyotype and gene vari-
ation. Finally, 124 AML patients with the intact data were
included in our survival analysis. The PFS and OS were
fitted to LASSO-Cox model, establishing a completely
novel prognostic model for AML patients. The glmnet
package were implemented for LASSO regression analysis,
which penalized the variables to eliminate less informative
predictors, resulting in more interpretable and simpler
models. The final coefficient for each variable included in
the model, was the average value of the coefficient esti-
mates obtained for the set of cross-validation evaluations.
To compare continuous variables between groups, we
conducted the Wilcoxon rank-sum test. The Fisher exact
test was employed for testing the correlation between cat-
egorical variables between groups.

Results
LINC00649 is under-expressed in bone marrow of AML
Using GEPIA 2.0 database [15], the comparison of
LINC00649 expression levels (TPM) between the tumors
and normal tissues across multi-cancer types, derived
from TCGA and GTEx database, was shown in Fig. 2.
The expression of LINC00649 in normal hematopoietic
cells is the highest among all included cancers and tis-
sues (TPM value = 12.83). Moreover, the expression of
LINC00649 is much lower in AML cells in comparison
with normal hematopoietic cells (TPM value 2.96 vs
12.83), which is converse in most of other cancer types.
While in BeatAML database, AML patients also have a
trend of lower expression of LINC00649 than that of
healthy controls (p = 0.0567, Fig. 3a).

Expression of LINC00649 is correlated with survival of
AML patients
The clinical/genetic features of LINC00649-low and
LINC00649-high group were described in Table 1.
LINC00649-low patients were associated more unfavor-
able cytogenetic and molecular risk profiles (p = 0.001)
and higher WBC counts (p = 0.001).

The PFS and OS were significantly inferior for
LINC00649-low group in comparison with LINC00649-
high group (Fig. 3c & d). The median OS of
LINC00649-high and LINC00649-low groups are 45.797
versus 12.197 months, and p value of log rank test is
0.0202 (Fig. 3c). The median PFS of LINC00649- low
and LINC00649- high groups are 26.202 versus 13.808
months respectively, and p value of log rank test is 0.119
(Fig. 3d). These results are consistent with OS analysis
using BeatAML database (Fig. 3b).

Prediction of LINC00649 binding proteins
The predicted proteins were listed in Supplemen-
tary Table 1. A total of 120 binding sites involving
9 proteins were identified (ELAVL2/TIAL1/PTBP1/
CELF1/SRSF9/SRSF2/SRSF3/ESRP2/RBFOX2). Then
correlation analysis of predicted proteins and
HOXA genes was conducted using RNA-seq data of
TCGA database (Table 2), where the significantly
correlated gene pairs were colored in red. The
TIAL1, SRSF9, SRSF2, SRSF3 and RBFOX2 were

Fig. 2 The comparison of expression level for LINC00649 between
TCGA-AML cohort (N = 173) and GTEx normal bone marrow samples
(n = 70) using GraphPad Prism (version 7.0)
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significantly correlated with the expression of
HOXA genes (p < 0.05)

Identification of LINC00649 associated protein coding
genes/miRNAs and lncRNAs
In total, 154 protein-coding genes, 28 lncRNAs and 31
miRNAs were identified to be significantly correlated
with LINC00649 expression level (Supplementary
Table 2). The expression of 9 HOXA family members
(HOXA1/2/3/4/5/6/7/9/10) was negatively correlated
with LINC00649 significantly (Fig. 4), indicating that
LINC00649 involves in downregulation of HOXA genes.

The results of GESA indicated that under-expression
of LINC00649 was associated with activation of 19
pathways and suppression of 6 pathways (Fig. 5). The ac-
tivated pathways included oxidative phosphorylation,
IL6-JAK-STAT3 signaling, PI3K-Akt-mTOR signaling
(Fig. 6), angiogenesis, etc. while the suppressed pathways
included P53 pathway, Hedgehog signaling, epithelial
mesenchymal transition, etc. (Fig. 6).
For the results of ORA (Fig. 7), the following biological

processes were identified by GO enrichment analysis: nega-
tive regulation of hematopoiesis, DNA-templated transcrip-
tion, myeloid cell differentiation, etc. The cell components of
LINC00649 associated genes were enriched in protein

Fig. 3 relevance of LINC00649 to AML, expression data of LINC00649 in bone marrow of AML patients versus healthy controls in BeatAML
database (a). From TCGA and BeatAML database, the Kaplan-Meier curves of AML patients whose bone marrow cells express high versus low
level of LINC00649, for OS (b & c) and PFS (d). The prognosis of LINC00649-low group is more unfavorable than that of LINC00649-high group.
These results were generated using R software (version 3.6.0)

Guo et al. BMC Cancer          (2020) 20:841 Page 5 of 20



complex involved in cell adhesion, cell periphery, plasma
membrane, etc. The molecular function enriched by
LINC00649-associated genes were double-stranded DNA
binding, transcription regulatory region DNA binding,
sequence-specific DNA binding, etc. Based on the KEGG
database, LINC00649 associated genes were enriched in
PI3K-Akt signaling pathway, Ras signaling pathway, etc. The
analysis based on Reactome database indicated that these
genes were enriched in Signaling by ERBB2, Signaling by Re-
ceptor Tyrosine Kinases, Signaling by VEGF, etc.

Identification of LINC00649 associated methylation prolife
One thousand five hundred ninety methylated CpG sites
were identified to be significantly correlated with
LINC00649 expression (p < 0.05, |r| > 0.4), listed in Sup-
plementary Table 3), among which 7 methylation posi-
tions involving with HOXA6/HOXA9/HOXA10
(cg21172377, cg07483304, cg05490659, cg02000808,
cg19816811, cg16880946, cg18931036) have prognos-
tic significance for OS, based on TCGA database
using MethSurv online tools [25] (https://biit.cs.ut.ee/
methsurv/). Therefore, we inferred that the similar
methylation modulation of HOTAIR on HOXA5, may
be related to regulation of HOXA genes by
LINC00649 [6]. In the following construction of pre-
diction model, the methylation level of 1590 positions
were included in initial LASSO analysis.

The competitive endogenous RNA network of LINC00649
Six miRNAs and 122 mRNAs were included in
LINC00649 centric ceRNA network (Supplementary
Table 4). The miR-10a-3p, miR-500a-5p, miR-500b-5p,
miR-532-3p, miR-502-3p and miR-362-5p were both pre-
dicted as sponging miRNAs and statistically significantly
correlated with LINC00649 expression (Fig. 8). Notably,
these miRNAs are predicted to negatively inhibit the ex-
pression of HOX family genes, suggesting LINC00649
may exert biological effect through sponging miRNAs.

Establishment of the prediction model
A LASSO-COX regression analysis was conducted to
identify the prediction models fitting AML OS/PFS,
which initially included age, ELN2017 risk stratification,
expression level of elements in the LINC00649-centric
ceRNA network, and methylation status of LINC00649-
associated CpG sites. After 1000 times of iteration, the
developing process of model screened the optimal risk
scores using summation of selected variables weighted
by coefficients (Table 3). The ‘cutoffROC’ package was
employed to determine the cut-off value for OS and PFS
model respectively, based on the time-dependent ROC
curves. Then AML cohort from TCGA database, was di-
vided into high-risk group and low risk group, by the
cutoff value.

Table 1 The comparison of clinical and genetic features between LINC00649-high and LINC00649-low groups. A total of 145
patients from TCGA and 451 patients form BeatAML database were included. The molecular and cytogenetic risk of LINC00649-low
group is more adverse than that of LINC00649-high group (p < 0.001)

TCGA beatAML

LINC00649-low group (n = 72) LINC00649-high group (n = 73) p value LINC00649-low group
(n = 225)

LINC00649-high group
(n = 226)

p value

Age (year) 55.21 ± 2.011 54.47 ± 2.137 0.81 59.81 ± 1.055 53.62 ± 1.356 0.049

Gender 0.589 0.775

Female 27 31 95 98

Male 35 31 130 127

Race 0.838 0.801

White 47 45 39 37

Other races 15 17 186 188

Mutation count 9.82 ± 0.624 9.77 ± 0.803 0.962 NA NA

Risk stratification of cytogenetics 0.001 NA

Good 0 15 NA NA

Intermediate 48 28 NA NA

Poor 14 19 NA NA

Risk stratification of molecular mutation 0.001 0.002

Good 0 15 99 70

Intermediate 45 28 44 73

Poor 17 19 82 82

WBC 47.498 ± 5.091 22.705 ± 5.040 0.001 34.807 ± 2.979 27.615 ± 3.465 0.112
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Table 2 The results of Pearson’s correlation analysis between predicted LINC00649 binding proteins and HOXA genes. The
significant correlated pairs were colored in red
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The AUC at 1/3/5-year AUC of the prediction model
are 0.916/0.916/0.891 respectively for OS (Fig. 9), and
0.818/0.881/0.89 for PFS (Fig. 10). The distribution of
risk scores, survival-events plots and the heatmap of
variables for individual patients were shown in Figs. 11
& 12 for OS and PFS, respectively. Then Kaplan-
Meier plot was employed to elucidate the difference of
survival between high risk and low risk group (Figs. 13
& 14). The median OS and PFS of low-risk group
were not reached, which were much better than the
high-risk group. The results of Kaplan-Meier plots
implicated that the novel prediction model was

efficient for selecting AML patients with superior
prognosis. The performance of our model is encour-
aging, while further prospective research is needed to
evaluate the diagnostic value of this model more
precisely.

Discussion
The long noncoding RNAs have been uncovered to exert
an pivotal influence on cell proliferation and apoptosis
of AML, the mechanisms of which include altering
methylation status of gene promoters [5, 6], recruiting
epigenetic complex on gene promoters [26], reshaping

Fig. 4 The Pearson correlation and linear regression for LINC00649 and HOXA family genes by R software (version 3.6.0)
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chromatin [27, 28], sponging miRNAs to regulate gene
expression [29–32], etc. HOTAIR is one of the most
studied lncRNAs in AML, which is upregulated in de
novo AML patients and predicts an adverse prognosis
[33]. HOTAIR locates in HOXC gene cluster on
chromosome 12 and exerts biological effect through
modulating HOXA family genes. Intriguingly, through
analysis of TCGA expression data, we found LINC00649
was also correlated with most of HOXA family genes,
which encoded crucial transcription factors in normal
hematopoiesis, pathogenesis of AML and resistance to
chemotherapy [34–36]. In comparison with healthy con-
trols, AML patients have aberrantly lower LINC00649
expression in our results. Meanwhile, for most of can-
cers other than AML, expression level of LINC00649 in
cancer cells is higher than that of corresponding normal
tissues. Furthermore, the survival (OS and PFS), of
LINC00649-low group, was significantly worse than that
of LINC00649-high group. The unusual expression

signature and prognostic value of LINC00649 drove us
to explore the possible molecular mechanisms and un-
cover its biological function.
According to catRAPID algorithm, 9 proteins contain-

ing 120 sites were identified to be potentially binding to
LINC00649. TIAL1, SRSF9, SRSF2, SRSF3 and RBFOX2
were identified to be associated with HOXA gene ex-
pression. TIAL1 is the RNA binding protein, which
binds to target sites and splice the pre-mRNA alterna-
tively [37, 38]. SRSF9 involves in constitutive mRNA
splicing and can modulate the target of alternative spli-
cing [39]. SRSF9 was reported to be involved in the cell
proliferation and apoptosis in bladder and cervical can-
cer [40, 41], and related to prognostic alternative splicing
events of renal clear cell carcinoma [42]. SRSF2 and
SRSF3 are also splicing factors, which belong to serine/
arginine-rich protein family. Functional mutations of
SRSF2 drive the cancer genesis of hematopoietic cells
[43]. SRSF3 is a multiple cancer related splicing factor,

Fig. 5 The dotplot of GESA results for LINC00649 correlated genes by R software (version 3.6.0). The size of dots stands for gene counts in the
specific pathway, and the color represents correlated with adjusted p value. Nineteen activated and 6 suppressed pathways were identified
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Fig. 7 The dotplot of ORA (GO/KEGG/Reactome analysis) results for LINC00649 correlated genes by R software (version 3.6.0). The size of dots
stands for gene counts in the specific pathway, and the color represents correlated with adjusted p value

Fig. 6 The running enrichment score curve for oxidative phosphorylation, p53 signaling, IL-6/JAK/STAT3, PI3K/Akt/mTOR generated by R software
(version 3.6.0)
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namely glioblastoma [44], colon cancer [45], oral squa-
mous carcinoma [46], etc. Moreover, the expression of
SRSF2/3 is significantly decreased in de novo AML pa-
tients in comparison with that of healthy controls.
RBFOX2 can bind to 5′- UGCAUGU-3′ element of tar-
get RNA, exerting alternative splicing. RBFOX2 can
modulate erythropoiesis, by promoting alternative selec-
tion of exon 16 in protein 4.1R, the product of which is
essential for erythrocyte membrane stability [47, 48].
Notably, the expression of RBFOX2 is significantly cor-
related with all members of HOXA family genes (Sup-
plementary Figure 1), suggesting potential interaction
between them. Furthermore, the pancancer-TCGA ex-
pression data was download from UCSC database
(https://xenabrowser.net/hub/), the correlation of
RBFOX2 and HOXA genes was analyzed by Pearson’s
method (Supplementary Figure 2-1/2/3). Notably, the
significant association of RBFOX2 and HOXA is a com-
mon feature among cancers generated from different tis-
sues. The expression dataset of normal tissue was
downloaded from GTEx database (https://www.gtexpor-
tal.org/home/), similar analysis showed that the correl-
ation is insignificant in normal bone marrow
(Supplementary Figure 3-1/2/3), which indicated the

relationship was a disease-specific feature for AML in-
stead of normal hematopoiesis. All 5 splicing factors and
LINC00649 are potential co-regulators for HOXA genes
in AML, which has not been explored before.
Based on the results of GESA, the upregulation of

PI3K-Akt-mTOR signaling, IL6-JAK-STAT3 signaling,
oxidative phosphorylation was identified in LINC00649-
low group. The activation of PI3K-Akt-mTOR signaling
were found in 50% of AML patients [49, 50]. The PI3K-
Akt signaling controls leukemic blast cells proliferation
and clonogenicity [51, 52]. Aberrantly functional recep-
tor tyrosine kinases drive the activation of PI3K-Akt-
mTOR pathway, including IGF1/IGF1R [53, 54],
activated FLT3 [55] and DEK-NUP14 fusion protein
[56]. The inhibitors of PI3K-Akt-mTOR axis have shown
preliminary anti-leukemia effects against AML both
in vivo and in vitro [57–63]. The IL6-JAK-STAT3 path-
way plays a crucial role in oncogenesis of diverse cancers
[64]. Constitutive phosphorylation of STAT3 by auto-
crine secretion of IL6 is revealed in AML cells [65]. Acti-
vation of STAT3 is also uncovered in pediatric AML
samples, and the small-molecule inhibitor of STAT3 can
induce apoptosis and inhibit formation of blast colonies
in vitro [66]. The maintenance of leukemia stem cells

Fig. 8 The ceRNA network of LINC00649 related with HOX family genes by Cytoscape (version 3.7.2)
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depends on BCL2 mediated oxidative respiration, instead
of glycolysis as in normal hematopoietic cells [67]. The
metformin, targeting oxidative phosphorylation
(OXPHOS), induces apoptosis of human leukemia cells
in an AMPK-independent way [68]. Cytarabine resistant
leukemia cells are characterized by activated OXPHOS,
with the high level of reactive oxygen species. Addition-
ally, the resistance can be reversed by agents inducing
low OXPHOS status [69]. The p53 signaling and Hedge-
hog signaling were found to be suppressed in GSEA.
Non-mutational p53 dysfunction was common in AML
and implicated in diverse inactivating mechanisms [70].
Dysregulation and activation of PI3K-Akt-mTOR signal-
ing pathway can activate MDM2 and interact with NF-
kappaB signaling pathway, leading to dysfunction of p53
[71]. The activation of PI3K pathway was revealed in
LINC00649-low group, which may cause the suppression
of p53 signaling and inferior survival considering the
central role of p53 in the complex network of AML-
associated signaling pathway.

The KEGG analysis showed that the LINC00649-
associated genes were enriched in AGE-RAGE, PI3K-
Akt, Ras and VEGFR signaling pathways. The AGE and
RAGE signaling has been studied in AML, which indi-
cated AGE activated MAP kinase, PI3K and JAK/STAT
pathway, leading to proliferation of primary AML sam-
ples and AML cell lines [72]. Activation of Ras signaling
can also promote the dysfunction of p53 by similar
mechanism of PI3K-Akt signaling [71]. VEGFR is re-
ported to be overexpressed [73] in AML, which is in ac-
cordance with our results. The activated VEGFR
signaling promoted the proliferation, survival and resist-
ance to chemotherapy of AML blasts [74]. VEGFR tar-
geting therapy has been developing and showing
preliminary benefit for AML in vitro [75–77]. While the
Reactome analysis demonstrated other enriched path-
ways, including signaling by ERBB2 and VEGFR2 medi-
ated cell proliferation. Mudritinib, an ERBB2 inhibitor,
was reported to eliminate AML cell both in vivo and
in vitro [78] VEGFR2 is a ‘hot’ target in AML, and rele-
vant to chemotherapy-sensitivity, pro-survival effect and
angiogenesis in bone marrow [79, 80]. VEGFR2-targeting
therapy is being developed in preclinical stage [80, 81].
The dysregulation of all above pathways contributed to
the difference of survival between LINC00649-high and
low groups.
Furthermore, HOXA family genes methylation status

was shown to be correlated with LINC00649. The methy-
lation status of seven CpG sites involving with HOXA6/
HOXA9/HOXA10 was correlated with expression of
LINC00649. Notably, all involved sites were of significance
for AML overall survival (Supplementary Figure 4). Con-
sidering that lncRNA HOTAIR can modulate the methy-
lation status of HOXA5 by inhibiting DNMT3B [6], our
results suggested similar epigenetic mechanism may im-
plicated in the regulation of HOXA genes.
To improve the diagnostic utility, we brought in

multi-dimension information to establish a prediction
model on AML survival. The traditional prognostic fac-
tors (age, gender, ELN2017 risk stratification, etc) and
the associated expression data (predicted LINC00649
binding proteins, miRNAs/mRNAs in the ceRNA net-
work), and methylation data (altered methylated CpG
sites) were included into the prediction model, by which
the OS and PFS data were fitted into using the LASSO
regression analysis. A few prediction models, including
genetic information of AML patients, have been devel-
oped previously, including Clinseq-G [82] (AUC for 3-
year OS is 0.730), ELN2017 stratification in the
validation cohort [82] (AUC for 3-year OS is 0.65), Li Z
et al. [82] (AUC for 3-year OS is 0.70), Huang R et al.
[83] (AUC for 1 year OS is 0.666, AUC for 5 year OS is
0.707), Ha M et al. [84] (AUC for 5-year OS is 0.613).
The AUC of our prediction models is better than all

Table 3 The variables and coefficients of prediction models for
OS and PFS. The risk score for individual patients was calculated
as summation of each variable and corresponding coefficient

OS DFS

Variables Coefficients Variables Coefficients

Age 0.01517872 HSDL1 −0.069116277

Risk_moleuclar 0.08487131 KIF26A −0.105321193

KIF26A − 0.06888634 ZNF124 − 0.027336956

SERINC5 −0.34892134 LPAR5 0.183893293

EVPL 0.01905074 PATE2 −0.056221659

SMAGP 0.04229574 hsa-miR-502-3p 0.141651616

CD320 0.07386408 cg07613391 −0.05203838

hsa-miR-502-3p 0.04133291 cg23495279 0.174167913

cg27456487 0.10692372 cg06637001 −0.143845051

cg15440158 −0.20311719 cg02942845 −0.181993998

cg21760402 −0.32770473 cg00081084 5.458822697

cg00081084 1.0182775 cg10520887 −0.129876909

cg14533068 0.13680058 cg13331200 0.568422555

cg18597188 0.1459364 cg00599124 0.082618413

cg22291265 −0.17893264 cg21347874 −0.358914855

cg13475665 −0.05682765 cg14459021 0.079482707

cg06812991 −0.29442296 cg20386404 −0.013977599

cg02057391 −0.38221762 cg27100436 0.563627584

cg14459021 0.35068618 cg21844856 −1.256126321

cg20386404 −0.09889255

cg05140293 0.03990318

cg10152449 −0.73415156

cg16280141 1.19906562

cg15275758 −0.65571266
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Fig. 10 The time-dependent ROC curves of risk score by our prediction model for PFS by R software (version 3.6.0)

Fig. 9 The time-dependent ROC curves of risk score by our prediction model for OS by R software (version 3.6.0)
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Fig. 11 The distribution of risk score (a), patients’ survival events (b), and risk to variable heatmap (c) for OS predicting model by R software
(version 3.6.0), the X-axis stands for individual AML patients ordered by ascending risk score
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Fig. 12 The distribution of risk score (a), patients’ survival events (b), and risk to variable heatmap (c) for PFS predicting model by R software
(version 3.6.0), the X-axis stands for individual AML patients ordered by ascending risk score
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Fig. 13 The Kaplan-Meier OS curves of AML patients for low and high-risk group dichotomized by risk score of our prediction model, which is
generated by GraphPad Prism (version 7.0)

Fig. 14 Kaplan-Meier PFS curves of AML patients for low and high-risk group dichotomized by risk score of our prediction model, which is
generated by GraphPad Prism (version 7.0)
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these models, possibly attributing to the integrated
multi-dimension information. On the other hand, the
Kaplan-Meier plots supported the risk stratification
using our models to divide patients into high-risk and
low-risk group, which well recognized the patients with
much better prognosis (the median OS of low-risk group
has not reached). While due to lack of integrated infor-
mation in one cohort like TCGA database, which in-
cluded clinical/RNAseq (protein-coding and noncoding
RNA)/miRNAseq/methylation datasets, we can hardly
validate this model independently. However, the present
work brings clues and insights to further studies, by pro-
viding potential biomarker and therapeutic targets.
In our OS-prediction model, novel markers were

identified (Table 3). EVPL is a component of the corni-
fied envelope of keratinocytes, the genetic variations of
which are associated with several solid cancer types
[85–89]. While the association of other protein-coding
genes or noncoding RNAswith either hematological or
solid malignancy has not been investigated. Among the
included methylation positions, individual methylation
status of cg27456487 (MPO), cg05140293 (TTLL4),
cg10152449 (CHST12), cg22291265 (SHANK1), cg18
597188 (XRCC3), cg14533068 (SYNJ2), cg00081084
(TBCB) and cg20386404 (PTPN14) were significantly
associated with AML survival, according to MethSurv
online tools (https://biit.cs.ut.ee/methsurv/) (Supple-
mentary Figure 5). A low expression ratio of MPO has
been reported as a deleterious marker for AML, indi-
cating a lower complete remission rate [90] and
shorter PFS [91]. In untreated AML patients, hyper-
methylation status of MPO is detected and correlates
with MPO expression, which can be induced by
demethylating agents [92]. The alteration of MPO is
demonstrated as an indicator for DNA methylation
pattern implicating downregulation of DNMT3B [93],
our results supported its significance in pathogenesis
of AML. Other included methylated sites have not
been reported to implicated in AML. In PFS predic-
tion model (Table 3), no genetic variables were de-
scribed in relation with AML previously. Notably,
KIF26A was included in both OS and PFS model,
which belongs to kinesin superfamily and is reported
as an oncogenic marker for breast cancer [94] and
pancreatic ductal carcinoma [95].

Conclusion
To the best of our knowledge, this is the first research to
demonstrate the under-expression of LINC00649 is a
potential unfavorable prognostic indicator for AML.
Additionally, the novel multi-dimensional prediction
models were established with superior diagnostic utility.
Further studies are needed on the precise molecular
mechanisms and validation of data analysis.
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