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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is associated with an increased risk for lung cancer, but the
underlying mechanisms driving malignant transformation remain largely unknown. This study aimed to identify
differentially expressed genes (DEGs) distinguishing IPF and lung cancer from healthy individuals and common
genes driving the transformation from healthy to IPF and lung cancer.

Methods: The gene expression data for IPF and non-small cell lung cancer (NSCLC) were retrieved from the Gene
Expression Omnibus (GEO) database. The DEG signatures were identified via unsupervised two-way clustering (TWC)
analysis, supervised support vector machine analysis, dimensional reduction, and mutual exclusivity analysis. Gene
enrichment and pathway analyses were performed to identify common signaling pathways. The most significant
signature genes in common among IPF and lung cancer were further verified by immunohistochemistry.

Results: The gene expression data from GSE24206 and GSE18842 were merged into a super array dataset
comprising 86 patients with lung disorders (17 IPF and 46 NSCLC) and 51 healthy controls and measuring 23,494
unique genes. Seventy-nine signature DEGs were found among IPF and NSCLC. The peroxisome proliferator-
activated receptor (PPAR) signaling pathway was the most enriched pathway associated with lung disorders, and
matrix metalloproteinase-1 (MMP-1) in this pathway was mutually exclusive with several genes in IPF and NSCLC.
Subsequent immunohistochemical analysis verified enhanced MMP1 expression in NSCLC associated with IPF.

Conclusions: For the first time, we defined common signature genes for IPF and NSCLC. The mutually exclusive
sets of genes were potential drivers for IPF and NSCLC.
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Background
Idiopathic pulmonary fibrosis (IPF) is a chronic, progres-
sive, and usually fatal interstitial lung disease that is
characterized by dysfunction and damage of lung epithe-
lial cells and aberrant pulmonary remodeling. After
diagnosis, patients usually have a median survival of 3–5

years, and the main cause of death is respiratory failure
[1, 2]. Although the exact mechanisms remain largely
unknown, it is widely accepted that genetic and environ-
mental factors leading to alveolar epithelial cell injury
trigger the repair process and induce the formation of
fibroblast foci, ultimately causing pulmonary fibrosis [3].
IPF is considered as a precancerous lung disorder be-
cause occasionally patients with IPF have concomitant
lung cancer, and patients with IPF have a 3.34-fold
greater risk of developing primary lung cancer than the
general population [4, 5].
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Lung cancer is the most common malignant tumor
and the leading cause of cancer deaths worldwide [6].
Non-small cell lung cancer (NSCLC) is the most com-
mon type of lung cancer, accounting for about 85% of
lung cancer cases, followed by small cell lung cancer
(SCLC) with about 13% of cases [6–8]. From a genetic
point of view, lung cancer is a highly heterogenous
disease with numerous somatic mutations. These driver
alterations are capable of abnormally activating down-
stream signaling pathways and driving tumorigenesis by
suppressing apoptosis and promoting cell proliferation,
angiogenesis, invasion, and migration [9]. Although lung
cancer is considered as a late complication of IPF, the
histological types of lung cancer associated with IPF re-
main uncertain, with controversial results described in
the literature [5, 10, 11]. A recent genomic sequencing
study demonstrated that IPF and lung cancer have some
somatic mutations in common [12], but the genes driv-
ing the transformation from IPF to lung cancer are still
unknown.
In this context, we aimed to identify common genes

involved in both IPF and lung cancer by screening the
gene expression omnibus (GEO) database for gene ex-
pression profile data of lung tissue samples from healthy
controls as well as from patients with IPF and NSCLC.
A multistep strategy (Fig. 1) was applied to identify dif-
ferentially expressed genes (DEGs) that distinguish
healthy controls from patients with lung disorders, in-
cluding IPF and NSCLC. In addition, significant gene
pairs with mutually exclusive alterations among the lung
disorders were screened as potential cancer driver genes.
In this research, we identified common signature genes
associated with lung disorder development and provided
novel pathogenic targets that are relevant for the trans-
formation from IPF to lung cancer.

Methods
Gene expression datasets and data preprocessing
The gene expression profile datasets on IPF and NSCLC
were searched and downloaded from the GEO repository
(http://www.ncbi.nlm.nih.gov/projects/geo/) [13]. The
key words for searching were “idiopathic pulmonary fi-
brosis” and “non-small cell lung carcinoma.” The data-
sets were filtered to include only the organism of Homo
sapiens. In this study, the gene expression datasets ob-
tained from the Affymetrix Human Genome U133 Plus
2.0 Array were used as the discovery cohort for data
modeling, and the expression datasets obtained from
other assays served as the validation cohort. After recog-
nizing the raw data from the IPF and NSCLC patients as
well as the healthy controls, probes of the array data
were replaced with the corresponding official gene sym-
bols using the GPL570 platform. Duplicates were col-
lapsed using probe medians, as described previously [14,
15]. Log2 transformation was applied to all estimates to
make the data more symmetric and plotting easier.
CONOR and preprocessCore in the R software package
were used to combine the gene expression estimates
from different studies [15, 16]. During the data-
merging process, the Log2-transformed raw intensity
estimates were transformed by iterative clustering
until convergence to a minimum sum of the Euclid-
ean distance, which has been proven to be an effect-
ive means to remove systematic differences between
studies while preserving the completeness of the bio-
logical information [17, 18].

Unsupervised clustering and supervised classification
analysis
The unpaired Student’s t-test and two-way clustering
(TWC) analysis were used to identify genes that were

Fig. 1 Flow chart of the multistep strategy for the identification of signature genes in this study
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expressed differentially between disease (IPF and NSCL
C) and control samples; genes with P < 0.05 were consid-
ered as DEGs. During the TWC process, hierarchical
clustering algorithms based on the Euclidean distance as
a similarity metric and a complete linkage clustering ap-
proach were implemented. The hierarchical clustering
analysis and visualization were performed using Cluster
3.0 and Java Treeview software. The normalized gene ex-
pression data were matched with the DEGs identified by
the Student’s t-test to generate the filtered gene expres-
sion data with the DEGs, which were subjected to super-
vised classification via support vector machine (SVM)
analysis using multtest and kernlab in the R software
package [19] and validated in leave-one-out cross valid-
ation (LOOCV) in Python via Anaconda 3.0 software
[20]. The SVM analysis uses historical data to predict fu-
ture events and generates a decision boundary for classi-
fication (also known as a hyperplane) that is defined as
wx + b = 0, where w is the weight coefficient, x is the in-
put feature vector, and b is the bias. DEGs with a weight
coefficient > 1.0 were selected for subsequent analysis.
For binary classifications, samples were labeled with un-
paired markers and were chosen for model training in
each comparison. SVM analysis with a radial basis
function kernel was employed to select the optimal sep-
arating hyperplane for gene expression classification, in
which the variance (σ) and degree of fitting (cross) pa-
rameters were set to 0.1 and 5, respectively [21]. The
LOOCV procedure used only one sample for each valid-
ation, and the rest of the samples were used for training
sets in each evaluation to ensure that each sample was
validated and to avoid overfitting. The sample size used
for each analysis was not too large so that there was not
a significant computational burden.

Dimensionality reduction and signature gene
identification
Microarray data possess high-dimensional properties.
Each gene may have interactions with others, and any
potential interactive relationship is within the data.
Principal component analysis (PCA) was utilized to ex-
tract key components from the high-dimensional gene
expression data. The filtered data with DEGs that were
identified by supervised classification analysis (weight
coefficient > 1.0) were analyzed with PCA for dimension-
ality reduction using the prcomp function in the R soft-
ware. Briefly, the principal components of each DEG
were extracted, and the loading coefficients of each gene
were calculated, which can be used to assess the ability
of the gene to promote or inhibit a disorder (IPF/
NSCLC). The standard deviation, proportion of variance,
and cumulative proportion are shown in detail in the
supplementary data (Summary of principal components).
The total number of principal components is equal to

the sample number in the data. Those principal compo-
nents with a cumulative proportion ≥ 85% were analyzed
by Bayesian probit regression using the R arm package
to evaluate the significance of each principal component.
Principal components with P < 0.05 were defined as sig-
nificantly altered. Each principal component in each
gene has a corresponding loading coefficient. Genes with
a loading coefficient with an absolute value > 0.6 were
selected as signature genes.

Model validation
To validate the models independently, the GSE10667
dataset [22], which was based on the Agilent-014850
Whole Human Genome Microarray 4 × 44 K platform
and contained 31 IPF samples and 15 healthy lung sam-
ples, was assigned as the validation cohort for gene ex-
pression comparison between IPF patients and healthy
controls. GSE118370 [23], which was based on the Affy-
metrix Human Genome U133 Plus 2.0 Array platform
and contained 6 pairs of lung adenocarcinoma and nor-
mal lung tissue samples, served as the validation cohort
for the comparison between NSCLC patients and
healthy controls. The IPF/Healthy validation cohort and
the NSCLC/Healthy validation cohort were merged with
the original IPF/Healthy and NSCLC/Healthy training
cohorts, respectively, and clustering analysis was per-
formed on the validation cohorts by TWC. The prob-
abilities of the samples containing IPF or NSCLC were
predicted by SVM, based on the original data models.
The predictive values were evaluated using receiver op-
erator characteristic (ROC) curves.

Gene annotation and enrichment analysis
The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID, v6.8, https://david.ncifcrf.gov/)
[24, 25] and the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) online database (https://www.kegg.jp/)
were used to annotate the functions and pathways as well
as gene enrichments of the signature genes that were dif-
ferentially expressed between IPF/NSCLC patients and
healthy controls.

Mutual exclusivity analysis
Synthetic lethality is a type of genetic interaction in
which the simultaneous functional loss of two or more
genes through mutations, amplifications, or deletions
leads to cell death. This genetic phenomenon is vital for
cell viability and is emerging as a novel therapeutic tar-
get for cancer treatment [26]. Pairs of genes that are al-
tered in a mutually exclusive pattern (i.e., in the opposite
direction of gene expression: one upregulated and the
other downregulated) in cancers and are often observed
in the same pathway are likely to be synthetically lethal.
A Markov chain Monte Carlo (MCMC) approach was
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applied for mutual exclusivity analysis, and the results
were visualized via CoMEt, with the marginal probability
labeled at the edge of each module [27]. Briefly, a binary
alteration matrix was created based on the gene expres-
sion profiles (downregulated or upregulated), and mutu-
ally exclusive gene modules were produced using the
MCMC sampling method. The optimal k (number of
genes in a mutually exclusive module) and t (number of
modules) values were determined using the criteria out-
lined previously [27]; and as a result, t = 2 and k = 2 were
selected for marginal probability modeling (t = 3 and k =
2 cannot produce perfectly mutually exclusive modules,
data not shown). Gene pairs within the mutually exclu-
sive module likely drive disease progression and thus
were defined as putative cancer genes [27]. Common pu-
tative cancer genes identified in both IPF and lung can-
cers were predicted to be the driver cancer genes in the
transformation from healthy to IPF and lung cancer.

Patient samples
To validate the signature genes identified by gene ex-
pression modeling, the expression pattern of the sig-
nature genes showing mutual exclusivity was analyzed
in patients diagnosed with IPF or lung cancer. The
Ethics Committee of Beijing Chao-Yang Hospital ap-
proved the study and waived informed consent (2017-
Science-10). Paraffin-embedded lung tissue specimens
were obtained from the archives in our hospital from
patients with IPF, NSCLC without IPF, and NSCLC
associated with IPF for immunohistochemical (IHC)
analysis. In addition, tissue specimens obtained from
healthy donor or adjacent normal tissue of NSCLC
were used as the reference. Table 1 lists the basic
clinicopathological features of the patients included in
the analysis. The diagnosis was reviewed and con-
firmed by an independent pathologist.

IHC staining
After deparaffinization with methanol and ethanol and
placement in ethylenediaminetetraacetic acid (pH 8.0)
for antigen retrieval, the retrieved paraffin-embedded tis-
sue sections were incubated with the polyclonal primary
antibody against matrix metalloproteinase-1 (MMP-1)
(Ab137332, Abcam, Shanghai, China, dilution 1:500) at
4 °C overnight, and then incubated with the secondary
antibody for 20 min at room temperature. Finally, diami-
nobenzidine (DAB: ZSGB-BIO ZLI-9017) staining was
performed.

Results
Gene expression profile datasets
Three gene expression datasets were identified by the
searching criteria as the training cohorts (Table 2). The
GSE24206 dataset (USA) [28] contained 17 IPF samples
and 6 healthy control samples; IPF diagnosis was based
on the multidisciplinary diagnostic criteria described in
the American Thoracic Society/European Respiratory
Society consensus statement. GSE18842 (Spain) [29]
contained 46 NSCLC samples and 45 healthy control
samples. GSE43346 (Japan) [30] contained 23 SCLC
samples, 42 normal tissue samples from different organ-
isms, and 3 SCLC cell lines. All these training datasets
were processed on the Affymetrix Human Genome
U133 Plus 2.0 Array platform, which has 54,675 probes
representing 23,494 unique genes. As there is an ethnic
difference for lung cancer but not for IPF, the GSE24206
(USA) and GSE18842 (Spain) datasets from Caucasians
were compared to the GSE43346 (Japan) dataset from
Asians; there was no appropriate dataset for SCLC. In
this study, we performed genetic analysis only on the
datasets GSE24206 and GSE18842, which consist of sub-
jects with the same ethnicity. The genetic analysis was
assessed only between IPF and NSCLC.

Table 1 Details of the paraffin-embedded lung tissue samples used in this study

Patient Age at diagnosis Sex Diagnosis Histological type Clinical Stage Tissue type Tissue section
identification

1 60 M NSCLC without IPF Adenocarcinoma IIIA Adjacent normal tissue a1

2 68 F NSCLC without IPF Adenocarcinoma IA Adjacent normal tissue a2

3 Unknown Unknown Heathy donor Normal lung tissue a3

4 61 M IPF Abnormal lung tissue b1

5 56 M IPF Abnormal lung tissue b2

6 66 M IPF Abnormal lung tissue b3

7 68 F NSCLC without IPF Adenocarcinoma IA Lung tumor tissue c1

8 49 M NSCLC without IPF Squamous carcinoma IIIA Lung tumor tissue c2

9 60 M NSCLC without IPF Adenocarcinoma IIIA Lung tumor tissue c3

10 55 M NSCLC with IPF Adenocarcinoma IA Lung tumor tissue and
adjacent tissue with IPF

d and e
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Raw data reprocessing and super array data
After duplicated measurement collapse and Log2 trans-
formation, gene array data from the three studies con-
taining 23,494 unique genes were obtained. These gene
array datasets were normalized and combined to gener-
ate a super array dataset, which contained 63 lung dis-
order (17 IPF and 46 NSCLC) and 51 healthy control
lung tissue samples.

DEGs and gene expression patterns
The gene expression profiles of patients with lung disor-
ders were distinct from those of the healthy controls,
and 11,926 genes were significantly differentially
expressed with P < 0.05 (Fig. 2). The heat map of cluster-
ing analysis revealed three subgroups corresponding to
the healthy control, IPF, and NSCLC groups, in se-
quence, while there were several outliers. Subsequent

analysis comparing these subgroups identified 4740 and
10,169 DEGs at P < 0.05 from the comparisons of the
healthy controls with IPF and NSCLC, respectively.
These DEGs identified by unsupervised clustering
analysis were trained with SVM analysis to further
characterize the gene expression. Sample outliers were
picked out by LOOCV (Fig. 3A1 and B1). The SVM
model achieved good predictive powers for comparison
between patients with lung disorders and healthy con-
trols (91.23%, 104/114), between IPF patients and
healthy controls (92.65%, 63/68), and between NSCLC
patients and healthy controls (96.91%, 94/97). Figure 3
shows the clustering heat maps of DEGs with weight co-
efficients > 1.0 after SVM validation; 11,926, 253, and
1021 DEGs with weight coefficients > 1.0 were identified
in the comparisons of healthy controls with patients
with lung disorders, IPF, and NSCLC, respectively.

Table 2 Gene expression datasets used as the training cohort

GEO accession No. Number of samples Platform Probes Genes

GSE24206 IPF patients (n = 17)/healthy controls (n = 6) Affymetrix Human Genome U133 Plus 2.0 Array 54,675 23,494

GSE18842 NSCLC patients (n = 46)/healthy controls (n = 45) Affymetrix Human Genome U133 Plus 2.0 Array 54,675 23,494

Fig. 2 Heat maps of an unsupervised two-way clustering analysis of genes that are differentially expressed between (a) patients with lung
disorders and healthy controls; (b) patients with IPF and healthy controls, and (c) patients with NSCLC and healthy controls. The red color
indicates upregulation, the green color indicates downregulation, while the black color indicates unchanged expression
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PCA and signature genes
PCA was conducted to identify the most significant
genes that distinguish healthy subjects from patients
with lung disorders. The first principal component
(PC1) was found to be the most significant in all
comparisons of healthy controls with patients with
IPF and NSCLC (the output files of PCA summaries
and Bayesian probit regression are shown in the

supplementary data). Table 3 shows the significant
principal components (P < 0.05) and the number of
signature genes, which were defined as an absolute
loading coefficient > 0.6, for all comparisons. As illus-
trated in Fig. 4, the top three significant principal
components tended to separate healthy controls from
patients with lung disorders in all comparisons, and
the signature genes successfully distinguished healthy

Fig. 3 Cross validations and two-way clustering (TWC) analysis of significantly expressed gene data. (A1) Prediction of samples by modeling
patients with a lung disorder vs. healthy controls. (A2) Heatmap of TWC analysis of significantly expressed gene data from patients with a lung
disorder vs. healthy controls. (B1) Prediction of samples by modeling IPF patients vs. healthy controls. (B2) Heatmap of TWC analysis of
significantly expressed gene data from IPF patients vs. healthy controls. (C1) Prediction of samples by modeling NSCLC patients vs. healthy
controls. (C2) Heatmap of TWC analysis of significantly expressed gene data from NSCLC patients vs. healthy controls. In panels A1, B1, and C1,
the x-axis represents the sample numbers and the y-axis represents the probability of samples expected for each model
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controls from patients with lung disorders. The PCA
summaries and Bayesian probit regression results are
shown in the supplementary information. We com-
pared the signature genes in all comparisons and
identified 79 common signature genes shared by IPF
and NSCLC. These common signature genes had the
same expression profiles, that is, they were upregu-
lated or downregulated across IPF and NSCLC.
Independent validations showed a good classification

ability for the signature genes and a good prediction
capability of the gene models (Fig. 5). The validation co-
hort of IPF/Healthy from GSE10667 had 75 common
signature genes and a predictive power of 93.48% (43/
46) (Fig. 5 A1). The validation cohort of NSCLC/Healthy
from GSE118370 had the same 79 common signature
genes and a predictive power of 91.67% (11/12) (Fig. 5
B1). The gene expression models produced by SVM also
provided good predictive abilities for both the IPF/
Healthy and the NSCLC/Healthy cohorts (Fig. 5 A2 and
B2). For model validation, the IPF/Healthy training and
validation cohorts had 3843 common genes, and the
NSCLC/Healthy training and validation cohorts had 10,
169 common genes. According to the given information
of the true phenotype and the predicted probabilities of
a disorder, ROC curves for a disorder of the gene ex-
pression models were constructed (Fig. 5 A3 and B3).

Gene enrichment and pathway analysis
The 79 common signature genes were uploaded to
DAVID and KEGG for gene enrichment and pathway
analysis. Table 4 summarizes the top 10 remarkable
biological terms related to these common signature
genes. The most enriched term was “signal,” which
accounted for 26 of 79 common signature genes (P <
0.001). KEGG pathway analysis showed that the
common signature genes were closely related to the
peroxisome proliferator-activated receptor (PPAR) sig-
naling pathway and metabolic pathways (Table 5). The
PPAR signaling pathway is activated by fatty acids and
their derivatives, and it is involved in lipid oxidation and
cell proliferation. The metabolic pathways control
enzyme-catalyzed reactions within cells, by which living
organisms maintain their biological activities. Acyl-CoA
dehydrogenase long chain (ACADL), CD36, lipoprotein
lipase (LPL), and MMP1 were the four common

signature genes in the PPAR signaling pathway; and
ACADL, amine oxidase, copper containing 3 (AOC3),
hydroxysteroid 17-beta dehydrogenase 6 (HSD17B6),
and ribonucleotide reductase family member 2 (RRM2)
were in the metabolic pathways. In addition, three com-
mon signature genes in the pathways concerning cancer
were endothelin receptor B (EDNRB), hedgehog-
interacting protein (HHIP), and MMP1.

Mutually exclusive gene modules
The MCMC method was used to identify mutually ex-
clusive modules in the comparison of healthy controls
with IPF and NSCLC. When the edge weight was set to
δ = 0.2, three different types of cliques were generated
for these comparisons; while when δ = 0.1, more
mutually exclusive modules were obtained for each com-
parison (data not shown). Seven cliques involving 33
genes and 11 cliques involving 39 genes were generated
in the comparisons of healthy controls with IPF and
NSCLC, respectively. Among these genes, MMP1,
PPAP2C, SFTA1P, and LPL were found to be shared be-
tween IPF and NSCLC. MMP1 was mutually exclusive
in the two comparisons and had a high coverage power
(Fig. 6). MMP1 was mutually exclusive with FCN3 in
IPF, and with FAM150B and CA2 in NSCLC. SFTA1P
had a relatively low coverage power (9.89%, 4/45) in the
comparison between NSCLC and healthy controls.

IHC analysis of MMP1
The gene expression of MMP1 was further validated in
lung tissue samples from IPF patients, NSCLC patients
without IPF, and NSCLC patients with IPF by IHC stain-
ing. Positive IHC staining of MMP1 was observed in all
of the tested samples, but the staining intensities were
different. A slightly increased expression of MMP1 was
observed in the NSCLC-without-IPF tumor tissue and
the IPF tissue compared with the adjacent normal lung
tissue sections or with the healthy donor lung tissue.
MMP1 expression was mostly observed in the alveolar
epithelium in the IPF tissue; whereas in the NSCLC-
without-IPF tumor tissue, MMP1 presented predomin-
antly in the glandular epithelium. The NSCLC-with-IPF
tumor tissue displayed a distinctly stronger expression of
MMP1 compared with the other tissue samples, and the
staining was mainly localized to the glandular epithelium

Table 3 Principal components significantly related to disease status of the lung and signature genes

Disease vs. Control IPF vs. Control NSCLC vs. Control

Significant principal components PC1 (P < 0.01) PC1 (P < 0.001) PC1 (P < 0.01)

PC2 (P < 0.05)

PC6 (P < 0.01)

PC10 (P < 0.05)

Signature genes 666 127 396
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Fig. 4 Principal component analysis (PCA) and heat maps of a two-way clustering analysis of signature genes. (A1) PCA separates healthy controls
from patients with lung disorders by PC1 (P = 0.00217), PC2 (P = 0.24174), and PC3 (P = 0.76089). (A2) Heat map of signature genes between
patients with lung disorders and healthy controls. (B1) PCA separates healthy controls from IPF patients by PC1 (P = 0.000282), PC2 (P = 0.030919),
and PC6 (P = 0.002256). (B2) Heat map of 127 signature genes between IPF patients and healthy controls. (C1) PCA separates healthy controls
from NSCLC patients by PC1 (P = 0.00219), PC5 (P = 0.60574), and PC10 (P = 0.61893). (C2) Heat map of 396 signature genes between NSCLC
patients and healthy controls. In A1, green dots indicate healthy controls, red dots indicate IPF patients, and black dots indicate NSCLC patients.
In B1 and C1, green dots indicate healthy controls, and red dots indicate disease samples. In panels A1, B1, and C2, the numbers on each
coordinate axis reflect the loading coefficients for genes
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Fig. 5 Independent model validation. (A1) Heatmap of TWC analysis of the GSE10667 validation cohort of 31 IPF and 15 healthy control lung
tissues by 75 common signature genes. (B1) Heatmap of TWC analysis of the GSE118370 validation cohort of 6 NSCLC and 6 normal control lung
tissues by 79 common signature genes. (A2) All validation samples of GSE10667 were assigned by IPF probabilities; the true phenotype of the
samples is indicated by the color: 15 blue normal samples and 31 red IPF samples. (B2) All validation samples of GSE118370 were assigned by
NSCLC probabilities; the true phenotype of the samples is indicated by the color: 6 blue normal samples and 6 red NSCLC samples. (A3) The ROC
curve for the predicted IPF of GSE10667 lung samples by the prior IPF model; the area under the curve was 0.934. (B3) The ROC curve for the
predicted NSCLC of GSE118370 lung samples by the prior NSCLC model; the area under the curve was 1.000
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and extracellular stroma. Specifically, MMP1 staining
was more intense in the tumor section of NSCLC
with IPF compared with the paired IPF section, and
compared with the tumor section of NSCLC without
IPF. Particularly, there was no association between
MMP1 expression and tumor staging, but MMP1 ex-
pression was probably correlated with the severity of
IPF (Fig. 7).

Discussion
Previous studies have indicated that patients with IPF
are at high risk for lung cancer [10, 31, 32], and the sur-
vival of patients with IPF is clearly related to the devel-
opment of lung cancer [33, 34]. The association between
IPF and lung cancer also has been demonstrated by the
clinicopathological and imaging characteristics of lung
cancer associated with IPF [35, 36]. These findings sug-
gest the need for more research to elucidate the under-
lying mechanisms related to malignant transformation
from IPF to lung cancer, which will provide insight into
lung tumorigenesis and unveil therapeutic targets for
lung disorders. Previous genetic studies have reported

genetic alterations associated with IPF, lung cancer, and
lung cancer associated with IPF using gene expression
microarray or targeted next-generation sequencing as-
says [12, 28–30]. Specific gene signatures for both IPF
and lung cancer were observed in the corresponding
lung tissues, and the findings of germline mutations in
lung cancer associated with IPF revealed the existence of
a genetic predisposition to lung cancer in patients with
IPF, which is different from the well-accepted mechan-
ism of lung tumorigenesis induced by chronic pulmon-
ary damage triggered by environmental stimuli, such as
cigarette smoking [12]. Cigarette smoking is a well-
recognized risk factor for the development of IPF and
lung cancer. However, due to the lack of smoking data
in the gene expression profile datasets, we were unable
to control for its confounding effects. Further studies are
necessary to validate the findings of our study after con-
trolling for potential confounders. Yet, the exact molecu-
lar mechanism of malignant transformation from IPF to
lung cancer is still unclear. Our results showed for the
first time that IPF shares genetic alterations, especially
signature cancer genes, in common with NSCLC.
In this study, we examined the gene expression profile

data of IPF and NSCLC from the GEO repository using
bioinformatic analysis. MMP1 was identified as a prom-
ising cancer driver gene related to the transformation
from healthy cells to IPF, and from healthy cells to
NSCLC. MMP1 expression was further validated in IPF
and NSCLC tissues by IHC, and the results could partly
confirm the enhanced expression of MMP1 in NSCLC
associated with IPF. Studies with more tissue samples
are needed to quantitatively confirm these findings.
Interestingly, there were no differentially expressed
genes between IPF and NSCLC samples (data not
shown). This result partially confirms the well-
recognized opinion that from the perspective of genetic
alteration, IPF shares common hallmarks in response to
fundamental pathogenic events like cell proliferation,
myofibroblast origin, etc. [4, 37]. To identify gene

Table 4 The top ten remarkable biological annotations from the common signature genes

Category Term Count Fold Enrichment P value

UP_KEYWORDS Signal 26 2.29 4.57E-05

UP_KEYWORDS Disulfide bond 12 2.75 0.0034

KEGG_PATHWAY ptr03320: PPAR signaling pathway 4 12.20 0.0038

GOTERM_CC_DIRECT GO:0005615 ~ extracellular space 11 2.89 0.0038

GOTERM_BP_DIRECT GO:0070062 ~ extracellular exosome 19 1.91 0.0060

GOTERM_BP_DIRECT GO:0002803 ~ positive regulation of antibacterial 2 141.37 0.014

GOTERM_BP_DIRECT GO: 0050848, regulation of calcium-mediated signaling 2 106.03 0.019

UP_KEYWORDS Protease 5 4.83 0.019

INTERPRO IPR012848: Propeptide, peptidase A1 2 97.79 0.020

GOTERM_CC_DIRECT GO:0044295 ~ axonal growth cone 2 90.28 0.022

Table 5 The top ten enriched biological pathways

Biological pathway Genes

PPAR signaling pathway ACADL, CD36, LPL, MMP1

Metabolic pathways ACADL, AOC3, HSD17B6,
RRM2

Pathways in cancer EDNRB, HHIP, MMP1

Alzheimer’s disease LPL, MME

Proximal tubule bicarbonate
reclamation

CA2, CA4

Cholesterol metabolism CD36, LPL

Phagosome CD36, SFTPD

Relaxin signaling pathway EDNRB, MMP1

Adrenergic signaling in cardiomyocytes SCN7A, TNNC1

Chemokine signaling pathway CXCL14, CXCR2
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signatures for lung disorders, the gene expression pro-
files of IPF and NSCLC were compared with those of
healthy controls individually, and 79 common signature
genes were found to have differential expression shared
by these lung disorders, supporting previous findings
that IPF shares oncogenic pathways in common with
cancer [38, 39].
In this study, the gene expression profile data from

IPF and NSCLC patients as well as healthy controls were
pooled and clustered to visualize the similarities and dif-
ferences in their expression. The gene expression pat-
terns associated with these disorders were gradually
filtered through unsupervised and supervised classifica-
tion and dimensional reduction; distinct expression pat-
terns were observed. The SVM classifier and PCA used
in this study are novel tools for biological data mining
and have been successfully applied previously for lung
disorder classification [40, 41]. The process of SVM
learning is a process of machine learning that can pre-
dict future data from modeling past data. The SVM clas-
sifier can predict the possibility of one sample in each
group. Theoretically, any gene with certain gene expres-
sion estimates will have some ability of classification
from one group to another, and there is no specific
threshold for the weights. The cut-off of 1.0 was a ran-
dom choice for our study. Similarly, PCA extracts princi-
pal components while working out the loading
coefficients for each gene. The cut-off of 0.6 for the
loading coefficient was also a random choice for this
study. Taken together, the gene expression patterns pre-
dicted by SVM classification are believed to have

potential applications for the early diagnosis and prog-
nostic prediction for specific treatment regimens. Al-
though independent validations with quantitative
evaluations have shown good predictive abilities of the
models, it should be noted that the gene expression pat-
terns identified in this study should be optimized by
more samples in further studies.
It is reasonable to hypothesize that the common signa-

ture genes shared by IPF and lung cancer are gene signa-
tures for lung cancer associated with IPF and that
signaling pathways enriched by these genes may be in-
volved in disease progression. In this study, the most
enriched pathway was the PPAR signaling pathway,
which is involved in cell proliferation. Although the
exact mechanism of PPARs in lung fibrosis and lung
cancer is largely unknown, a PPARγ agonist has been
found to exert antitumorigenic effects in both IPF and
lung cancer by inhibiting myofibroblast differentiation
and activating phosphatase and tensin homolog (PTEN)
[42, 43], consistent with our study, highlighting the im-
portance of the PPAR pathway in lung cancer associated
with IPF. ACADL, CD36, LPL, and MMP1 were the sig-
nature genes in the PPAR pathway that were identified
to be shared among IPF and lung cancer. ACADL,
downregulated in this study, has been reported to induce
pulmonary surfactant dysfunction [44] and to be a core
signature gene that differentiates NSCLC from normal
tissue [45]. CD36, which was downregulated in this
study, is a sensor of diacylglycerides, usually acts as a re-
ceptor to bind with a broad range of ligands, and has
been reported to be downregulated in SCLC cell lines

Fig. 6 Mutually exclusive gene module of MMP1 in the comparisons between (a) IPF patients and healthy controls and (b) NSCLC patients and
healthy controls. Each dot represents a gene in a mutually exclusive module, and black lines indicate marginal probabilities (Left). Blue rectangles
indicate perfectly mutually exclusive samples. Orange rectangles indicate non-mutually exclusive samples
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[46]. LPL, which was downregulated in this study, was
found to have decreased expression but increased
activity in lung cancer tissue compared with adjacent
noncancer lung tissue [47]. MMP1 was the most signifi-
cantly altered common signature gene shared across IPF
and lung cancer. It was originally reported to be
overexpressed and associated with the early onset of
lung cancer [48]. In addition, increased MMP1 plasma
concentrations have been observed in patients with IPF
[49]. Notably, MMP1 also was assigned to the “pathways
in cancer” from the KEGG database. EDNRB and HHIP
in this pathway were found to be downregulated in this
study, which is consistent with previous reports regard-
ing patients with lung cancer [50, 51].
In this study, we identified four common cancer genes

that were shared in common between IPF and NSCLC
and were mutually exclusive, while each of these genes
had their own mutually exclusive partners for each lung
disorder. It is generally accepted that genetic alterations

that drive cancer are often mutually exclusive [52].
Therefore, it is theoretically reasonable to propose that
driver genes in the malignant transformation from IPF
to NSCLC could probably be derived from mutually ex-
clusive genes shared in common by IPF and NSCLC.
Among the four mutually exclusive genes identified in
this study, PPAP2C and LPL were significant in NSCLC,
suggesting their involvement in lung cancer but not in
IPF. On the other hand, MMP1 had its unique mutually
exclusive partners in IPF and NSCLC, respectively, and
had high coverages for all these lung disorder types. In
addition, MMP1 demonstrated the highest fold change
among the 79 common signature genes. Subsequent
IHC analysis revealed that MMP1 expression was stron-
ger in the cancer tissue of the patient with stage IA
NSCLC associated with IPF than that of the patient with
stage IIIA NSCLC without IPF, suggesting a greater con-
tribution of MMP1 to the derivation of IPF than to the
progression of NSCLC. Due to low availability of human

Fig. 7 Immunohistochemical analysis of MMP1 (a) and computed tomography (CT) scanning images of a patient with IPF (b). DAB staining
(brown color) indicates positive MMP1 expression in adjacent normal lung tissue of NSCLC without IPF or healthy normal tissue (a1-a3), IPF tissue
(b1-b3), lung tumor tissue of NSCLC without IPF (c1-c3), IPF tissue of NSCLC with IPF (d), and tumor tissue of NSCLC with IPF (e). The IPF sample
(b1-b3) is more severe than the IPF-progressed NSCLC sample from a patient who had not been diagnosed with lung cancer (d) and is also more
severe than the IPF-progressed NSCLC sample from a patient who was diagnosed with lung cancer (a1-a2)
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lung tissues in the clinic, this observation needs to be
further investigated in more samples and quantitative
experiments. Regardless, this observation is somewhat in
agreement with previous findings that insertion of a
guanine (G) at nucleotide position 1607 (rs11292517) in
the promotor region of MMP1 results in a 2G allele that
is a susceptible factor for IPF and lung cancer [48, 53–
56]. Previous investigations have shown that MMP1
participates in the onset of IPF through extracellular
matrix remodeling, basement-membrane breakdown,
epithelial cell apoptosis, cell migration, and angiogenesis.
MMP1 also has been reported to promote tumor inva-
sion and metastasis via loosening cell adhesion. As such,
MMP1 is likely to be a candidate target gene that drives
malignant transformation from IPF to lung cancer.
The outliers observed during the analysis were prob-

ably due in part to the epigenetic influence of DNA
methylation, histone tail modification, and noncoding
RNAs, as suggested previously, which are influenced by
other diseases, aging, smoking, diet, and other environ-
mental stimuli [57]. Because these factors were not well
defined in the gene expression profile data included in
this study, we were unable to stratify the samples by
these factors. A tendentious pattern of clustering from
healthy controls to IPF and NSCLC in terms of the gene
expression profiles was observed in this study. This
finding is consistent with previous investigations that
supported the transformation from IPF to lung cancer
[58–60]. Unfortunately, the gene expression profile data
of lung cancer associated with IPF were not available to
verify whether the tendentious transformation from nor-
mal healthy tissue to IPF, and then to lung cancer holds.
Because patients with lung cancer combined with IPF
are at high risk for surgery, it was difficult to obtain
resected lung tissue for immunohistochemistry analysis.
Therefore, the current results should be considered as
preliminary. Further studies based on abundant lung tis-
sues would give a more precise expression tendency of
signature genes shared by IPF and NSCLC.

Conclusions
To the best of our knowledge, this is the first study to
compare the gene expression profiles across healthy,
IPF, and NSCLC samples using bioinformatic analysis
based on published gene expression data. We identified
signature genes common to IPF and lung cancer as well
as the common signaling pathways involved in tumor
development. By introducing mutually exclusive expres-
sion analysis, we found potential driving modules for
both IPF and NSCLC. Of these genes, MMP1 appeared
to be the most promising driver gene showing significant
differential expression in the transformation from
healthy to IPF and NSCLC, supporting its potential as a
novel therapeutic target for IPF, lung cancer, and IPF-

progressed lung cancer. Further investigations to verify
the gene expression patterns identified in this study in
more samples with quantitative experiments and to ex-
plore the underlying mechanism in primary cells from
IPF, lung cancer, and IPF-associated lung cancer are
needed to provide new insight into lung tumorigenesis
and targeted therapy.
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