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Abstract

Background: Glycolysis is a central metabolic pathway for tumor cells. However, the potential roles of glycolysis-
related genes in renal cell carcinoma (RCC) have not been investigated.

Methods: Seven glycolysis-related gene sets were selected from MSigDB and were analyzed through GSEA. Using
TCGA database, the glycolysis-related gene signature was constructed. Prognostic analyses were based on the
Kaplan–Meier method. The cBioPortal database was employed to perform the mutation analyses. The CIBERSORT
algorithm and TIMER database were used to determine the immunological effect of glycolytic gene signature. The
expressions in protein level of eight glycolytic risk genes were determined by HPA database. Finally, qPCR, MTT and
Transwell invasion assays were conducted to validate the roles of core glycolytic risk genes (CD44, PLOD1 and
PLOD2) in RCC.

Results: Four glycolysis-related gene sets were significantly enriched in RCC samples. The glycolytic risk signature
was constructed (including CD44, PLOD2, KIF20A, IDUA, PLOD1, HMMR, DEPDC1 and ANKZF1) and identified as an
independent RCC prognostic factor (HR = 1.204). Moreover, genetic alterations of glycolytic risk genes were
uncommon in RCC (10.5%) and glycolytic risk signature can partially affect immune microenvironment of RCC. Six
glycolytic risk genes (except for IDUA and HMMR) were over-expression in A498 and 786-O renal cancer cells
through qPCR test. MTT and Transwell assays revealed that silencing of CD44, PLOD1 and PLOD2 suppressed the
proliferation and invasion of renal cancer cells.

Conclusions: The glycolysis-related risk signature is closely associated with RCC prognosis, progression and
immune microenvironment. CD44, PLOD1 and PLOD2 may serve as RCC oncogenes.
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Background
Renal cell carcinoma (RCC) is the third most common
genitourinary cancer, accounting for approximatively
2.2% of new cancer cases worldwide [1]. It has a high
mortality rate, which results in almost 200,000 deaths/
year, accounting for 1.8% of all cancer-related deaths [2].
Radical nephrectomy is the main treatment for early
stage RCC patients, with a 72% 5-year overall survival
rate (OSR) [3]. Unfortunately, approximatively 20–30%
of patients have metastatic symptoms at the time of
diagnosis, with only a 12% 5-year OSR [4]. In addition,
20–30% of patients diagnosed with T1–2 stages suffered
from metastasis within 1 to 2 years after surgery [5]. Al-
though molecular-targeted drugs improve survival time
of metastatic patients, the median survival time is still
less than 3 years [6]. Therefore, it is still urgent and
challenging to explore RCC molecular mechanisms and
find potential therapeutic targets and prognostic
biomarkers.
With the last decade progress in oncology, the repro-

gramming of energy metabolism has been considered as
a new hallmark of cancers [7]. Particularly, the tumor
cells’ carbohydrate metabolism pattern was found to be
extremely different from that of normal cells. Even in
the presence of abundant oxygen, cancer cells still
largely switch their metabolism to glycolysis, a metabolic
process called Warburg effect [7]. Glycolysis is an en-
zymatic reaction, that is collectively regulated by 3 limit-
ing enzymes (including HK,PFK and PKM2) and some
equilibrium enzymes of fructose-bisphosphatase (includ-
ing ALDO, ENO, GAPDH) [8]. Glycolysis-related genes,
which encode these regulatory enzymes, were shown to
be closely related to malignant progression and progno-
sis of many cancers, and therefore, are considered as po-
tential therapeutic targets [9]. Hexokinase (HK) is
overexpressed in rectum [10], breast [11] and gastric
cancers [12] and is associated with poor prognosis. Phos-
phofructokinase 1(PFK1), a key enzyme in glycolysis flux
control [13], is also up-regulated in breast cancer and
can promote malignant proliferation and invasion
through p-AKT [14] activation. However, the potential
effect of glycolytic genes on RCC prognosis and progres-
sion has not been investigated. Besides, the role of gly-
colysis in RCC is also not fully elucidated.
With the continuous development of bioinformatics

and high-throughput technology, several biomarkers
have been found to be closely associated with RCC prog-
nosis and malignant progression [15]. However, the pre-
dictive ability of single-gene biomarkers is limited in
RCC prognosis analysis and multiple-genes signature
maybe a better strategy [16]. So far, only four studies
have established the glycolytic risk signature in lung
adenocarcinoma [17], endometrial cancer [16], hepato-
cellular carcinoma [18] and bladder cancer [19].

Therefore, to explore the potential roles of glycolytic
metabolism and glycolysis-related genes in RCC, a series
of bioinformatic analyses were performed through
TCGA database (609 samples). We found that glycolysis
is significantly enriched in RCC and constructed a
glycolysis-related risk signature. The novel risk signature
was closely associated with RCC prognosis, progression
and immune microenvironment. Moreover, its hub
genes (CD44, PLOD1 and PLOD2) were proven to pos-
sess pro-cancer abilities through MTT and Transwell in-
vasion assays. Our research provides a new method for
RCC prognostic analysis and a new insight into the
mechanisms of glycolytic genes in RCC progression.

Methods
Date source
The gene expression data and corresponding clinical in-
formation were obtained from the Cancer Genome Atlas
(TCGA) public database. A total of 609 samples were
analyzed, including 537 RCC and 72 normal or paracan-
cerous samples. The clinical features of RCC patients
were shown in Table 1. The data type of gene expression
was transcriptome profiling and Gene Expression Quan-
tification, and the type of clinical data was BCR-XML.
The selected sample types were adenomas and
adenocarcinomas.

Glycolysis-related gene sets and GSEA
Well-annotated gene sets, representing the universe of
the biological processes, are critical for meaningful and
insightful interpretation of large-scale genomic data [20].
The Molecular Signatures Database (MSigDB) is a col-
lection of annotated gene sets for GSEA software use
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
[21]. Combination with the selecting strategies of previ-
ous glycolysis-related studies [22–24], we used ‘glycoly-
sis’ and ‘glycolytic’ as the searching terms in the MSigDB
database and furtherly screened out seven priori
glycolysis-related gene sets. These gene sets included
Hallmark Glycolysis, Go Glycolytic Process, KEGG Gly-
colysis Gluconeogenesis, Reactome Glycolysis, BioCarta
Feeder Pathway and Module 306. The descriptions of
these gene sets were shown in Supplementary Table 1.
GSEA is a computational method that determines

whether an a priori defined set of genes shows statisti-
cally significant and concordant differences between two
biological phenotypes [25]. Enrichment statistics was
based on weighted method. Phenotype labels were set as
tumor versus normal samples. Permutation Type was
phenotype. The number of permutations was set as 1000
and the gene sets were considered to significantly
enriched in RCC samples, when the normalized enrich-
ment score (NES) ≥1, nominal (NOM) p-value ≤0.05
and false discovery rate (FDR) q-value ≤0.25 were
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simultaneously satisfied. The detailed parameter settings
of GSEA were presented in Supplementary Table 2.

Identification and functional analyses of glycolysis-related
DEGs
TCGA data extraction and arrangement were performed
by Perl (Practical Extraction and Report Language) ver-
sion 5.28. The differential expression of glycolysis-
related genes between tumor and normal samples was
analyzed via the ‘Limma’ package in R software Ver3.6.2,
in order to select differentially expressed genes (DEGs).
When p-value < 0.05 and Log2FC absolute value ≥1, the
gene was regarded as differentially expressive in tumor
samples. Protein-protein interaction (PPI) networks of
glycolysis-related genes were constructed using the
String database [26] and Cytoscape software Ver3.4.0
[27].
To explore the biological function of glycolysis-related

DEGs in RCC, we performed Gene Ontology (Go) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) en-
richment analyses through David database [28]. The fig-
ures were drawn by the ggplot2 package (R software).
The bioinformatics analysis of Go consisted in three cat-
egories, namely molecular function (MF), biological
process (BP) and cellular components (CC). The path-
ways and biological functions with top ten enriched gene
counts were selected for graphing.

Construction of the risk signature
Cox univariate analysis was used to preliminarily screen
out the glycolysis-related genes which could affect RCC
prognosis. Subsequently, the risk signature based on
glycolysis-related genes was established through multi-
variate regression analysis. Since the expression levels of
glycolysis-related genes, in the risk signature, were all
high, Log2 transformation was used to normalize the ex-
pression profiles of these genes, which can prevent the
generation of diminutive coefficients. The risk plot and
the corresponding heatmap were drawn using the
‘pheatmap’ package in R software.

Prognosis analyses
According to the glycolytic risk signature, the risk score
of each RCC samples was further calculated. Subse-
quently, RCC samples were divided into high- and low-

Table 1 Clinical characteristics of 537 RCC patients included in
present study from TCGA database

Variables Number (percentage)

Vital status

Alive 367 (68.3%)

Dead 170 (31.7%)

Age

<65 336 (62.6%)

≥ 65 201 (37.4%)

Gender

Male 346 (64.4%)

Female 191 (35.6%)

Tumor Grade

G1 14 (2.6%)

G2 230 (42.8%)

G3 207 (38.5%)

G4 78 (14.5%)

Gx 5 (1.0%)

Unknow 3 (0.6%)

Clinical Stage

Stage I 269 (50.1%)

Stage II 57 (10.6%)

Stage III 125 (23.3%)

Stage IV 83 (15.4%)

Unknow 3 (0.6%)

T stage

T1 275 (51.2%)

T2 69 (12.8%)

T3 182 (33.9%)

T4 11 (2.1%)

M stage

M0 426 (79.3%)

M1 79 (14.7%)

Mx 30 (5.6%)

Unknow 2 (0.4%)

N stage

N0 240 (44.7%)

N1 17 (3.2%)

Nx 280 (52.1%)

Survival time (day) (170 dead samples)

≤ 365 52 (30.6%)

365<ST≤ 730 33 (19.4%)

730<ST≤ 1095 28 (16.5%)

≥ 1095 57 (33.5%)

Follow up (day) (367 alive samples)

≤ 365 66 (18.0%)

Table 1 Clinical characteristics of 537 RCC patients included in
present study from TCGA database (Continued)

Variables Number (percentage)

365<FT≤ 730 59 (16.1%)

730<FT≤ 1095 33 (9%)

≥ 1095 209 (56.9%)

ST survival time, FT follow up time
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risk groups, according to the median of risk score. The
prognostic difference between high- and low-risk groups
was evaluated via the ‘survival’ package in R software.
Moreover, cox univariate and multivariate analyses were
successively performed to identify whether risk score
was an RCC independent prognostic factor. To assess
the applicative scope of glycolytic risk signature in RCC
prognosis analysis, the prognostic difference was de-
tected among RCC patients between different risk
groups under the same clinical subgroup.
Receiver operating characteristic curve (ROC) was

employed to assess predicting accuracy of glycolytic risk
signature in RCC prognosis analysis. Decision curve ana-
lysis (DCA) was used to evaluate the clinical net benefit
(NB) brought by the novel signature [29].

Mutation analyses of glycolysis-related genes
To better comprehend the genomics profiles of
glycolysis-related genes, we performed mutation analyses
using the cBioPortal online database [30]. The Onco-
Print tab summarizes genomic alterations in all queried
genes across a sample set [31]. The cancer types sum-
mary tab reveals mutation types and frequency informa-
tion of queried genes.

Immune analyses of glycolysis-related genes
To determine the effect of glycolysis-related risk signa-
ture on immune microenvironment of RCC, immune in-
filtration analyses were performed through the
CIBERSORT algorithm and TIMER database. The im-
mune abundances of 22 leukocyte subtypes in each RCC
samples were obtained by using the CIBERSORT algo-
rithm. The landscape of immune distributions of each
RCC samples were presented by ‘barplot’ package. The
differential infiltration levels of 22 immune cells between
high- and low-risk groups were visualized via the ‘vio-
plot’ package in R software.
The public database, Tumor Immune Estimation Re-

source (TIMER) (https://cistrome.shinyapps.io/timer/),
was employed to assess the relationships between the
somatic copy number alteration (SCNA) of eight risk
signature genes and the infiltration levels of six immune
cells (including B cells, CD4 + T cells, CD8 + T cells,
neurphils, macrophases and dendritic cells).

Protein levels of glycolytic risk genes in the HPA database
The Human Protein Atlas (HPA) is a database with the
aim to map all the human proteins in cells, tissues and
organs using integration of various omics technologies
(https://www.proteinatlas.org/) [32]. The HPA database
consists of six separate parts. Among that, the Tissue
and the Pathology Atlas provide information regarding
the expression profiles of specified genes in normal and

tumor tissues on protein levels. All images of tissues in
HPA database are stained by immunohistochemistry.

Cell culture
Two renal cancer cell lines (786-O and A498) and one
normal human renal tubular epithelial cell line (HK-2)
were purchased from the Institute of Biochemistry and
Cell Biology at the Chinese Academy of Sciences
(Shanghai, China). Cancer cells were cultured in RPMI-
1640 medium (GIBCO-BRL, Invitrogen, Carlsbad, CA,
USA) with 10% fetal bovine serum (FBS, Hyclone, Lo-
gan, Utah, USA). HK-2 cells were cultured in keratino-
cyte medium (KM, ScienCell, San Diego, California,
USA) plus 1% keratinocyte growth supplement (KGS,
Scien-Cell, San Diego, California, USA). All mediums
were treated with 100 U/ml penicillin and 100μg/ml
streptomycinm, and all cells were incubated at 37 °C
with 5% CO 2.

Quantitative real-time PCR (qRT-PCR)
Total RNA was extracted using TRIzol reagent (G-
Clone, Beijing, China). The cDNA was synthesized with
the PrimeScript RT reagent Kit with gDNA Eraser
(Takara, Japan). qRT-PCR was performed using the TB
Green Premix Ex Taq II (Takara, Japan) in ABI 7500
Real-Time PCR instrument. The primers were listed in
Supplementary Table 3. GAPDH was used as an internal
control. The relative mRNA levels were calculated based
on 2−ΔΔCt method.

Cell transfection
The expression in mRNA level of CD44, PLOD1 and
PLOD2 were silenced by specific small interfering RNAs
(siRNAs). Si-CD44, si-PLOD1, si-PLOD2 and si-NC
(negative control) were synthesized by GenePharma Bio-
technology (Shanghai, China). 786-O and A498 cells
were transfected by these siRNAs through the Lipofecta-
mine 2000 (Invitrogen, Thermo Fisher, Waltham, MA,
USA) Further experiments were performed 48 h after
transfection.

MTT assay
Transfected cells were seeded into 96-well plate (5 × 103

cells per well) and incubated for 24, 48 and 72 h. Every
detecting point (24 h/each time), 10 μL MTT reagent
(Life science, NY, USA) was added to each well and in-
cubated for 4 h. After removing the medium and wash-
ing each well by PBS, 100 μL DMSO was added into
each well and the absorbance at 490 nm was measured
by a microplate reader (ThermoFisher, Waltham, MA,
USA).
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Transwell invasion assay
The polycarbonate membrane was coated with the
matrigel (200 ng/mL; BD Biosciences, Franklin Lakes,
NJ, USA). Then transfected cancer cells were seeded
with serum-free RPMI-1640 medium into the upper
chambers (1 × 104 cells/well). The RPMI-1640 medium
with 10% FBS was added into the bottom chambers.
After 24 h incubation at 37 °C, the invasive cells adhering
to the lower surface of the membrane were fixed by 4%
paraformaldehyde and stained with 0.1% crystal violet.
The invasive cells were photographed by a microscope.

Statistical analysis
All statistical analyses and graphing were performed by
the R software (version 3.6.2) or GraphPad Prism (ver-
sion 8.0.1). The Student’s t test was used to compare the
expressive difference of glycolysis-related genes. The
Kolmogorov–Smirnov test was used to evaluate the rela-
tionships between glycolytic risk score and RCC clinico-
pathological characteristics. Additionally, the survival
analysis was based on the Kaplan–Meier method. A p-
value < 0.05 was considered significant.

Results
Glycolytic metabolism is significantly enriched in RCC
samples
Five hundred thirty-seven RCC samples from TCGA
database were included in our bioinformatic analyses
(Table 1). Seven glycolysis-related gene sets were se-
lected from the MSigDB for GSEA and the analytical re-
sults were shown in Fig. 1. Four gene sets were
significantly enriched in RCC samples, namely Biocarta
feeder pathway, Biocarta glycolysis pathway, Reactome
glycolysis and Hallmark glycolysis (Table 2). Glycolysis-
related gene sets (44.4%, 4/9) and glycolysis-related
genes (77.0%, 261/339) were greatly enriched in RCC,
suggesting that the glycolytic metabolism was prevalent
in RCC, which is consistent with the general metabolic
hallmark of cancers. After the GSEA preliminary screen-
ing, a total of 261 glycolysis-related genes from the 4
enriched gene sets were speculated to play important
roles in RCC and were therefore selected for further
analyses.

Glycolysis-related genes are differential expressed in RCC
samples and regulate some cancer-related biofunction
To further screen out the hub genes that contribute to
RCC malignant progression, we assessed the differential
expression of glycolysis-related genes between RCC and
normal samples. A total of 75 out of 261 glycolytic genes
were significantly differentially expressed in RCC. The
PPI network of 75 glycolysis-related DEGs was con-
structed via the String database and Cytoscape software
(Fig. 2a). Among three kinds of glycolysis limiting

enzymes, HK3 was up-regulated in RCC, while the ex-
pression of PKM family members were bidirectional reg-
ulated (PFKP and PFKFB4 were up-regulated; PFKFB1–
3 were down-regulated). However, there was no expres-
sive difference of PKM between RCC and normal
samples.
GO enrichment analysis revealed that the subcellular

functional localization of glycolytic genes was cytoplasm,
and these genes may regulate glycolytic metabolism
through the exosome pathway (Fig. 2b). Meanwhile,
these glycolytic genes also engaged in cell proliferation
and apoptosis. KEGG enrichment analysis showed that
glycolysis-related genes not only involved in glycolysis,
pentose phosphate and fructose metabolism pathways,
but also were closely related to some cancer-related sig-
nal pathways, such as HIF-1, renal cell carcinoma and
AMPK pathways (Fig. 2c).

Eight glycolytic DEGs constitute the glycolysis-related risk
signature in RCC
A single gene generally cannot accurately predict cancer
prognosis; however, a gene signature, consisting of mul-
tiple genes, could improve the accuracy of prognosis
analysis. Through univariate regression analysis, 23 out
of the 75 glycolysis-related DEGs were found to greatly
affect RCC prognosis (Table 3). Subsequently, the glyco-
lytic risk signature was constructed via multivariate re-
gression analysis (Table 3). Risk score = 0.239 × CD44 +
0.203 × PLOD2 + 0.695 × KIF20A + 0.527 × IDU4–
0.265 × PLOD1–0.998 × HMMR + 0.886 × DEPDC1 +
0.199 × ANKZF1 (the gene expression was normalized
with log2 transformation). Eight risk signature genes
were all over-expressed in RCC samples (Supplementary
Figure 1) and their overexpression all led worse survival
outcomes (Fig. 3c-j), which indicated that they may serve
as oncogenes.
The risk score of each RCC patient was calculated

using the risk formula and the patients were divided into
high-and low-risk groups according to median of risk
score (Fig. 3a). The proportion of death events in high-
risk group was significantly higher than that in low-risk
group (Fig. 3b). Moreover, patients in high-risk group
were often associated with undesirable clinicopathologi-
cal features (Fig. 3k-o). These results indicate that the
risk signature based on glycolytic genes not only affect
RCC prognosis but also is closely associated with RCC
malignant progression. Besides, glycolytic risk signature
also possessed a good predictive accuracy in prognosis
analysis (AUC = 0.729) (Fig. 3p).

Glycolysis-related risk signature is valuable for RCC
prognostic analyses
Comparing with the low-risk group, the high-risk group
led to worse 3-year (62.9% vs 86.2%) and 5-year overall
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survival rates (42.4% vs 78.2%) (Fig. 4a). Moreover, the
DCA curve indicated that taking glycolysis risk signature
into the RCC prognostic analysis can bring significant
clinical benefit when making clinical decision (Fig. 4b).
Through univariate and multivariate regression ana-

lyses, glycolytic risk score (HR = 1.204, p < 0.001) was
identified as an independent RCC prognostic factor
(Fig. 4cd). To further determine the applicable scope of
glycolytic risk signature in RCC prognostic analysis, the
prognostic difference between different risk groups
under the same clinical subgroup, was compared
(Fig. 4g-r). Glycolytic risk signature could sensitively dis-
tinguish the prognostic differences in patients with age ≥
65, age < 65, Grade 2–3, M0–1 stages, N0 stage, clinical
stage I-IV and T1–3 stages. Due to lack of samples,

glycolytic risk signature did not detect the prognostic
difference of RCC patients with Grade1/4, N1 and T4
stages (Supplementary Figure 2A-D). Therefore, there is
ample evidence reiterates that glycolytic risk signature is
a beneficial and universally applicable method for RCC
prognostic analysis.

Genetic alteration of glycolytic risk signature is
uncommon in RCC
To better understand the genomic characteristics of
glycolytic genes in RCC, the cBioPortal database was
used for mutation analysis. A summary of the genetic al-
terations in eight risk signature genes is shown in Fig. 5a.
Although these glycolysis-related genes were signifi-
cantly differentially expressed in RCC samples, their mu-
tation frequency was not high. Based on TCGA
database, glycolytic genes were only mutated in 37 out
of the 354 RCC samples (10.5%).
HMMR and KIF20A possessed the highest mutation

frequency (7%), while IDUA, PLOD1 and DEPDCA did
not generate any mutations (Fig. 5a). Moreover, we also
analyzed mutational type. Different glycolytic risk genes
were provided with different mutational types (Fig. 5b-
g). For example, deep deletion only occurred in the gen-
etic alterations of ANKZF1 (Fig. 5g) and CD44 harbored
only one kind of alteration pattern, namely mutation
(Fig. 5b). Overall, amplification was the most common
mutational form (Fig. 5h) and the rarest form was deep
deletion (3%). All these results revealed that the

Fig. 1 Enrichment plots of seven gene sets by performing GSEA. a-g The analytical results of GSEA. h Pie Graph of enriched glycolysis-related
genes. GSEA, Gene-set enrichment analysis

Table 2 The GSEA results of glycolysis-related Gene sets in RCC
(611 samples)

Name of GS Size NES NOM p-val FDR q-val

Biocarta feeder pathway 9 1.59 0.037 0.037

Biocarta glycolysis pathway 3 1.62 0.031 0.031

Reactome glycolysis 72 1.44 0.047 0.047

GO glycolytic process 106 1.46 0.084 0.084

Hallmark glycolysis 200 1.67 0.038 0.038

KEGG glycolysis gluconeogenesis 62 −1.42 0.146 0.146

Module 306 26 0.99 0.458 0.458

GS gene set, NES normalized enrichment score, NOM p-val nominal p-value,
FDR q-val false discovery rate q-value
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Fig. 2 (See legend on next page.)
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glycolytic risk signature was relatively conserved in RCC
and may not reflect genetic predisposition of RCC.

Glycolytic risk signature could affect immune
microenvironment of RCC to some extent
We further analyzed the effect of eight glycolytic risk
genes on RCC immune microenvironment. The immune
abundances of 22 leukocyte subtypes in each RCC sam-
ples were exhibited in Supplementary Figure 3. The im-
mune proportions of each sample were diverse.
Moreover, the difference of immune abundance between
high- and low-risk groups was determined (Fig. 6a).
High risk groups brought increased infiltration levels of
T cells follicular helper (p<0.001) and T cells regulatory
(Tregs) (p<0.001) in RCC; Inversely, it could decrease

the immune abundance of Macrophages M2 (p = 0.049),
Dendritic cells resting (p = 0.022) and Mast cells resting
(p<0.001) (Fig. 6a). However, the risk signature cannot
bring any change on immune infiltration levels of CD4
and CD8 T cells. Combination with some immuno-
logical studies [33–37], the basic biofunction in immune
response of these affected lymphocytes and the final ef-
fect of their alterations against antitumor immunological
process were shown in Table 4. Alterations of immune
abundance caused by high glycolytic risk did not always
hinder antitumor immune process (Table 4).
Moreover, the relationships between SCNA of eight

risk signature genes and the infiltration levels of six im-
mune cells were explored through TIMER database
(Fig. 6b-i). The arm-level gain in copy number of

(See figure on previous page.)
Fig. 2 Identification and functional analyses of glycolytic-related DEGs. a The PPI network of 75 glycolysis-related DEGs. When absolute value of
log2FC≥ 1 and adjusted p < 0.05 were simultaneously obtained, the expression of glycolysis-related genes was considered as significantly
differential in tumor samples. Up-regulated and down-regulated genes are red and green, respectively. b Go enrichment analysis of 75 glycolysis-
related DEGs. c KEGG enrichment analysis of 75 glycolysis-related DEGs. PPI, protein-protein interaction; DEGs, differential expression genes; MF,
molecular function; BP, biological process; CC, cellular components

Table 3 Univariable and multivariable analyses of glycolysis-related DEGs

Gene Univariate analysis Multivariable analysis

HR UI of 95%CI LI of 95%CI p-value Coef HR

CD44 1.462 1.254 1.705 1.24E-06 0.239 1.270

PLOD2 1.357 1.165 1.582 9.16E-05 0.203 1.225

KIF20A 1.946 1.634 2.316 7.19E-14 0.695 2.003

IDUA 2.061 1.643 2.586 4.2E-10 0.527 1.695

PLOD1 1.306 1.044 1.633 0.019442 −0.265 0.767

HMMR 1.878 1.486 2.373 1.27E-07 −0.998 0.369

DEPDC1 2.284 1.740 2.997 2.7E-09 0.886 2.426

ANKZF1 1.452 1.189 1.772 0.000248 0.199 1.220

RBCK1 1.925 1.571 2.358 2.65E-10 – –

CAPN5 0.710 0.548 0.918 0.009126 – –

COL5A1 1.332 1.179 1.505 4.25E-06 – –

ISG20 1.695 1.328 2.162 2.17E-05 – –

GAPDH 1.462 1.129 1.892 0.003945 – –

TGFBI 1.127 1.052 1.206 0.000614 – –

AK3 0.578 0.428 0.779 0.000325 – –

ENO2 1.276 1.084 1.502 0.003391 – –

GOT1 0.636 0.525 0.769 3.11E-06 – –

CENPA 2.449 1.956 3.065 5.47E-15 – –

EFNA3 1.391 1.104 1.752 0.005062 – –

HK3 1.763 1.417 2.193 3.63E-07 – –

ALDOB 0.859 0.801 0.921 2.2E-05 – –

MIOX 0.866 0.807 0.929 5.86E-05 – –

TREH 0.687 0.539 0.875 0.00231 – –

DEGs differentially expressed genes, HR hazard ratio, CI confidence interval, UI upper limit, LI lower limit, Coef coefficient
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Fig. 3 (See legend on next page.)
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ANZKF1, CD44 and PLOD2 could lead an increment on
infiltration levels of CD4 T cells (Fig. 6bci). However, as
the most common mutational type (Fig. 5h), the amplifi-
cation of these genes could not affect the infiltration
levels of CD4 and CD8 T cells. Besides, the amplified al-
teration of other risk genes did not contribute to the in-
creasing infiltration levels of macrophages, CD4 and
CD8 T cells. In a word, the effect of glycolytic risk signa-
ture on immune microenvironment was limit and
complex.

Glycolytic risk genes differentially express in protein
levels
The histological expressions of glycolysis-related risk
genes in normal and tumor tissues were exhibited in
Fig. 7. There was significantly expressive difference of
these genes in protein levels between normal and renal
cancer tissues. Among that, the protein expression of
PLOD1, PLOD2, KIF20A, IDUA and DEPDC1 were ob-
viously up-regulated; However, discernable expressive
difference was not found in CD44, HMMR and
ANKZF1. The protein expression of CD44 and ANKZF1
were low in both normal and tumor tissues. And that of
HMMR were even not detected.

CD44, PLOD1 and PLOD2 can promote the proliferation
and invasion of renal cancer cells
The PPI network of eight glycolytic risk genes was con-
structed through the String database. As shown in
Fig. 8a, CD44, PLOD1 and PLOD2 were in the central
of the network suggesting these genes maybe the core
genes among glycolysis-related risk signature. Therefore,
we validated the biofunctions of CD44, PLOD1 and
PLOD2 in renal cancer cells through further vitro
experiments.
Except for IDUA and HMMR, other six risk genes

were all up-regulated in renal cancer cells (Fig. 8b-d and
supplementary Figure 4). To investigate the biofunctions
of CD44, PLOD1 and PLOD2 in RCC, we synthesized
siRNAs of these genes to decrease their expression. The
qPCR tests confirmed that their expressions were signifi-
cantly down-regulated in transfected renal cancer cells
(Fig. 8e-g). MTT and Transwell invasion assays were
employed to evaluate the proliferative and invasive abil-
ities of cells. As expected, empty vector transfection (NC
group) did not affect cell viability. However, silencing of
CD44, PLOD1 and PLOD2 inhibited the proliferative

abilities of A498 and 789-O cells (Fig. 8h-m). Moreover,
knockdown of CD44, PLOD1 and PLOD2 can suppress
the invasion of A498 and 789-O cells, compared with
those transfected with si-NC (Fig. 9). As a result, we
ascertained that CD44, PLOD1 and PLOD2 played a
pro-cancer role in RCC through vitro experiments, re-
iterating that glycolytic risk signature was closely associ-
ated with RCC progression.

Discussion
Since Otto Warburg first discovered in 1924 that tumor
cells preferred to engage in aerobic glycolysis, this cellu-
lar process has gradually been confirmed as one of the
cancer hallmarks, that is also known as the Warburg ef-
fect [7]. In the present study, four glycolysis-related gene
sets from the MSigDB were significantly enriched in
RCC samples, suggesting that aerobic glycolysis is also
prevalent in RCC. However, the reasons that tumor cells
preferred to utilize glycolysis, an inefficient metabolic
pattern, rather than oxidative phosphorylation for their
proliferation, remain entirely unclear. Based on previous
studies, we speculated there are three reasons for this tu-
moral metabolic preference.
First of all, proliferating cells have important metabolic

requirements beyond ATP [38]. Cell proliferation re-
quires a large number of nucleotides, amino acids, and
lipids. A molecule of glucose provides a maximum of 36
molecules of ATP, but only 2 molecules of NADPH and
6 molecules of carbon [39]. During cell proliferation,
massive glucose consumption is not a prerequisite for
ATP production, but is essential for the synthesis of bio-
logical products that are needed for proliferation. For in-
stance, during synthesizing the palmitate, an important
component of cellular membranes, a molecule of glucose
provides five times ATP as much as needed, but less
than 20% carbon and NADPH as required [38]. More-
over, the pentose phosphate pathway, a branch from gly-
colysis, is the main source of nucleotides and NADPH
during proliferation process [40]. Similarly, our KEGG
analysis also indicated glycolytic genes significantly
enriched in the pentose phosphate pathway. Meanwhile,
NADPH supplied by the pentose phosphate pathway can
protect cancer cells from oxidative stress [41]. Thus, the
glycolytic metabolism is inefficient for ATP production
but efficient for cell proliferation. Secondly, aerobic gly-
colysis can induce tumor cells’ therapeutic resistance.
Classic chemotherapy treatments generally target rapidly

(See figure on previous page.)
Fig. 3 Construction of glycolysis-related gene signature. a Risk plot. The curve shows the risk score distribution of 539 RCC samples. The X-axis represents
the ranking of 539 RCC patients from low to high according to their own risk score. The y-axis represents the risk score of each RCC patient. The dotted
line represents median of risk score. (b) Survival status. The dotted line and X-axis in this graph have the same meaning as the risk plot. The y-axis
represents the survival time of RCC patients. The different colors of dot represent different survival status. c-j Survival analyses of eight signature genes. k-o
The relationships between risk score and RCC clinicopathological features. RCC, renal cell carcinoma. p The ROC of glycolytic risk signature
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dividing cells; however, quiescent tumor cell populations
evade therapeutic destruction. It has been demonstrated
that proliferating tumor cells can induce the accumulation
of lactic acid through prompting glycolysis metabolism,
which leads to cellular acidosis and quiescence [42, 43].
When external treatments are terminated, quiescent cells

can reenter proliferative state and complete their thera-
peutic evasion [44]. Thirdly, glycolysis can maintain a high
ratio of ATP/ADP, which leads to the continuous activa-
tion of cell proliferation [45, 46]. Although glycolysis is
not a highly efficient ATP producer, it can regulate the ac-
tivity of adenylate kinases to buffer the declining ATP

Fig. 4 Glycolysis-related risk signature has important clinical applicable value. a Survival analysis between high- and low-risk groups. b The DCA
curve of glycolytic risk signature. ma-d means four kinds of RCC prognostic models (based on multivariate Logistic regression analysis) composed
of different indexes. Model a represents the prognostic model composed of age, grade and clinical stage. Model b represents the prognostic
model composed age, grade and TNM stages. Model c represents the model a that added glycolytic risk score. Model d represents the model b
that added glycolytic risk score. c The result of cox univariate analysis. d The result of cox multivariate analysis. e-r The verification for predictive
ability of glycolytic risk signature in RCC prognostic analyses. RCC, renal cell carcinoma
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production [38, 47]. In summary, the glycolytic metabol-
ism can provide stimulating signals and a sufficient bio-
mass for cell proliferation, and assist in tumor cells
therapeutic resistance. The GSEA results also revealed
that glycolysis is prevalent in RCC, which is consistent
with previous studies [48].
After screening, we found that eight glycolytic risk

genes were differentially expressed in RCC; however,
their mutation frequency is not high (37/354, 10.5%).
This suggests that the aberrant expression of these genes
may be a result of post-transcriptional regulations or
translation modifications. For example, over-expressed
DEPDC1 is negatively regulated by miR-26b, which facil-
itates cell proliferation in triple negative breast cancer
(TNBC) [49]. Moreover, the loss of the von Hippel-
Lindau (VHL) gene is the most prominent genetic alter-
ation in RCC, that is associated with over 80% of RCC
cases [50]. Downregulated VHL elevated the

accumulation of HIF-1 and led to the activation of
hypoxia-inducible genes, such as PLOD1 and PLOD2,
which is a key metabolic step for the transition into aer-
obic glycolysis [51–53]. Similarly, KEGG analysis also in-
dicated that glycolytic genes are involved in the HIF-1
signaling pathway (Fig. 2d), suggesting that the screened
genes may play a crucial role in glycolytic metabolic
switch. Mutation analysis is valuable for the identifica-
tion of tumorous susceptible genes, which can be used
as favorable markers for early diagnosis and therapeutic
target prediction [54]. In the present study, the highest
mutational frequency among glycolytic risk genes was
only 7%, which demonstrates that the glycolytic risk sig-
nature may not serve as RCC susceptibility genes.
With the development of high-throughput genomics,

many genes have been identified as potential biomarkers
of tumor prognosis and progression, and as therapeutic
targets. In the present study, we constructed a

Fig. 5 Mutation analyses of glycolysis-related risk signature. a The summary of genomic alterations in eight glycolysis-related genes. Each row
represents a gene, and each column represents a tumor sample. Different color bars indicate different mutation types. b-g The mutation types of
each genes. The y-axis represents the alteration frequency in all RCC samples. c Pie Graph of different mutation types. The percentage followed
the mutation symbol represents the alteration frequency of the same mutational type in all RCC samples. The percentage in the pie chart
represents the proportion of the same mutational type in all mutated samples. RCC, renal cell carcinoma
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Fig. 6 Immune infiltration analyses of glycolysis-related risk signature. a The differential proportion of 22 immune cells between high- and low-
risk groups. High-risk group is red and low-risk group is green. b-i The relationships between SCNA of eight risk signature genes and the
infiltration levels of six kinds of immune cells. RCC, renal cell carcinoma; SCNA, somatic copy number alteration; .means p<0.1; * means p<0.05; * *
means p<0.01; * * * means p<0.001
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glycolysis-related risk signature and validated the bio-
functions of its hub genes (CD44, PLOD1 and PLOD2)
in RCC. CD44, a non-kinase transmembrane glycopro-
tein, is regard as a marker of cancer stem cell (CSC) and
can regulate the properties of CSCs, including cellular
plasticity, self-renewal, invasiveness and treatment resist-
ance [55]. Meanwhile, Gan Yu et al. demonstrated that
miRNA-34a suppressed the proliferation and metastasis
of renal cancer cells by inhibiting CD44 [56]. In the
current research, silencing CD44 also can weaken prolif-
erative and invasive abilities of renal cancer cells, which
coincided with previous research [56]. PLOD1 and
PLOD2 are the key enzymes of collagen synthesis and
extracellular matrix formation, therefore can drive tumori-
genesis and angiogenesis in many cancers [57]. Although
PLOD1 was proven to promote aggressiveness of bladder
cancer cells [58], the potential roles of PLOD1 and
PLOD2 in RCC were not elucidated. Through MTT and
Transwell invasion assays, we confirmed the pro-cancer
abilities of PLOD1 and PLOD2, which provided new basis
for the molecular mechanism of RCC tumorigenesis.
The glycolysis-related gene signature was confirmed as

an independent prognostic factor of RCC and can distin-
guish the prognostic difference of the patients under the
same clinical subgroup (Fig. 4). Therefore, we believed
that the novel risk signature was valuable for RCC clin-
ical assessment. Firstly, glycolytic risk signature is an im-
portant supplement to RCC prognosis analysis. Single
TNM staging system cannot accurately predict RCC
prognosis. Correa et al. have found that the predictive
ability of TNM model was significant variable over time
and its predictive accuracy was not satisfactory (C-
index = 0.60) [59]. Nevertheless, as DCA curve displayed
(Fig. 4b), taking glycolysis risk signature into the RCC
prognostic analysis can add net benefit when making
clinical decision. Secondly, dividing RCC patients into

different risk groups drives individualized treatment
strategies. When patients are classified into high-risk
group, their follow-up time could be shortened and
some adjuvant therapy could be attempted.
Tumor immune microenvironment commonly reflects

the immune status of cancer, which could give support
to formulate therapeutic strategy. CD8 T cells could dif-
ferentiate into cytotoxic T cells, which exhibit cytotox-
icity against tumor cells [60]. CD4 T cells could assist
antitumor immunity and deficient CD4 T cells reduce
the response of cytotoxic T lymphocytes (CTLs) [61].
Therefore, these two types of lymphocytes are the core
ingredients for tumor cellular immunity. However, the
glycolytic gene signature cannot affect infiltration levels
of CD4 and CD8 T cells, which reveals that the impact
of risk signature on immune microenvironment of RCC
is limit. Besides, alterations of immune abundance
caused an intricate effect on antitumor immune process
(Table 4). For example, Mast cells are bidirectional to
tumor progression [37]. On one hand, Mast cells pro-
mote cancer growth, stimulate neoangiogenesis and re-
model tissue through releasing potent proangiogenic
factors such as vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF) [37].
On the other hand, they can suppress cell proliferation,
inhibit immunologic stimulation and cell mobility by se-
creting chymase, tryptase, TNF-α, IL-1 and IL-6 [37].
Hence, we difficultly determine the final effect of de-
creasing mast cells (in high risk group) on antitumor
immunity.
It’s believed that our findings could bring some ad-

vance to RCC field. Firstly, potential therapeutic targets.
The role of Warburg’s effect in RCC has been widely
confirmed and blocking the VHL-HIF-Glycolysis axis
has been considered as a potential therapeutic strategy
for renal cancer [62, 63]. For example, 2-deoxy-D-

Table 4 Immune effects of the lymphocytes with altered abundance

Immune cells Alteration in high
risk group

Study Basic function Final effect to
anticancer
immune

T cells follicular helper Increased Vinuesa CG et al. [33]. TFH can develop humoral immunity by assisting the
formation of germinal center.

Promotion

T cells regulatory Increased Juang CM et al. [34]. Tregs are suppressive T cells and can mediate
immunosuppression and tumor immune evasion.

Suppression

Macrophages M2 Decreasing Italiani P et al. [35]. M2 cells can promote tumor cells proliferation and
repair through shifting the arginine metabolism to
ornithine and polyamines.

Promotion

Dendritic cells resting Decreasing P Brossart et al. [36]. DCs are the most potent antigen-presenting cells with
the ability to stimulate naive resting T cells and to
initiate primary immune responses.

Suppression

Mast cells resting Decreasing Dyduch G et al. [37]. Mast cells play a pro-tumor or anti-tumor role by
secreting different factors (VEGF, bFGF vs TNF-α,
IL-1, IL-6)

Uncertain

TFH T cells follicular helper, Tregs T cells regulatory, DCs Dendritic cells, VEGF vascular endothelial growth factor, bFGF basic fibroblast growth factor, TNF-α Tumor
necrosis factor α, IL interleukin
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glucose, a glycolysis inhibitor, can not only kill various
pathological subtypes of renal cancer cells, including
clear cell RCC (ccRCC), papillary RCC and the rare sub-
type chromophobe RCC, but also enhance susceptibility
of ccRCC to pazopanib treatment [64]. In the present
study, we demonstrated that inhibitions of three core

glycolytic genes suppressed the proliferation and inva-
sion of renal cancer cells, indicating that these genes
may serve as potential therapeutic targets of RCC. Sec-
ondly, assisting in prognostic analysis. Using TCGA
database, we established a novel glycolysis-related prog-
nostic model, which could assess the risk levels of RCC

Fig. 7 The histological expression of glycolysis-related risk genes. The top of the figure indicates the category of tissue specimen. The name of
glycolytic gene, the antibody type used in immunohistochemistry, and the patient ID of tissue specimens are shown at the bottom of
each image
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patients with the same TNM stage and contribute to
make prognostic assessment more accurately. Thirdly,
prompt for genetic regulatory mode. VHL mutations
occur in more than 80% RCC cases [50]. Invalidation of
VHL factor stimulates the expression of glycolytic genes
and increases the glycolytic flux through stabilizing HIF
[48]. However, in mutation analysis, we found that only
10.5% of RCC samples harbored with the mutations of
glycolytic genes, suggesting that the ectopic expression
of glycolytic genes in RCC may be accomplished by epi-
genetic modification rather than mutation. For example,
miR-122-5p can promote proliferation and invasion of
renal cancer cells by targeting PKM2 (a glycolytic

limiting enzyme) [65]. LncARSR-miR-34a-5p-HK1 axis
(HK is another glycolytic limiting enzyme) facilitates the
progression of rectal cancer by promoting glycolysis me-
tabolism [66]. In summary, our discoveries provide new
insights into the roles of glycolytic genes in RCC from
the perspectives of prognosis, molecular mechanism and
regulatory mode.
Naturally, there are some limitations in our study.

Firstly, the biofunctions of glycolysis-related genes in
RCC have not been verified through vivo models and
clinical samples. Secondly, glycolytic prognostic model
should be tested in actual clinical cases. Thirdly, we did
not assess the impact of fasting blood glucose (FBG) and

Fig. 8 CD44, PLOD1 and PLOD2 can promote the proliferation of renal cancer cells. a The PPI network of eight glycolytic risk genes. b-d The
mRNA differential expression of three glycolytic genes in different cell lines. e-g Specific siRNAs inhibit the expression of CD44, PLOD1 and
PLOD2 in mRNA levels. h-j Silencing of CD44, PLOD1 and PLOD2 can suppress the proliferation of A498 cells. k-m Silencing of CD44, PLOD1 and
PLOD2 can suppress the proliferation of 798-O cells. PPI, protein-protein interaction; NC, negative control; * means p<0.05; * * means p<0.01; * * *
means p<0.001
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anti-diabetes drugs on final results. According to some
metabolomic discoveries and oncological researches, we
found that some hypoglycemic drugs and patients’ FBG
certainly regulated the tumor progression, which may
affect the results of this study. For example, Metformin
was proven to possess anti-cancer ability in acute mye-
loid leukemia (AML) [67] and lung cancer [68] by inhi-
biting glycolytic process. Ashton TM et al. suggested
that Metformin may be a potential antitumor drug for
its antagonistic action against oxidative phosphorylation
(OXPHOS) and glycolysis [69]. Regarding FBG, Ayush
Sharma et al. confirmed that high level of FBG was asso-
ciated with large tumor volume and undesirable histo-
logical grade in pancreatic cancer [70]. In gastric cancer,
elevated FBG and high SNHG8 expression resulted in
poor survival outcomes after radical gastrectomy [71].
Unfortunately, TCGA database does not provide infor-
mation on FBG and anti-diabetes drugs, which we be-
lieve is indeed one of the limitations of the present
study.

Conclusions
To the best of our knowledge, we constructed a novel
glycolysis-related risk signature in RCC for the first time.
The glycolytic risk signature played a crucial role in pro-
gression, prognosis and immune microenvironment of
RCC. Moreover, three core glycolytic risk genes, CD44,
PLOD1 and PLOD2, were capable of promoting the pro-
liferation and invasion of renal cancer cells. Our findings
can provide new inspirations for RCC prognostic ana-
lysis and treatment.
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