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Abstract

abdomen, and pelvic region).

Background: As the number of PET/CT scanners increases and FDG PET/CT becomes a common imaging modality
for oncology, the demands for automated detection systems on artificial intelligence (Al) to prevent human
oversight and misdiagnosis are rapidly growing. We aimed to develop a convolutional neural network (CNN)-based
system that can classify whole-body FDG PET as 1) benign, 2) malignant or 3) equivocal.

Methods: This retrospective study investigated 3485 sequential patients with malignant or suspected malignant
disease, who underwent whole-body FDG PET/CT at our institute. All the cases were classified into the 3 categories
by a nuclear medicine physician. A residual network (ResNet)-based CNN architecture was built for classifying
patients into the 3 categories. In addition, we performed a region-based analysis of CNN (head-and-neck, chest,

Results: There were 1280 (37%), 1450 (42%), and 755 (22%) patients classified as benign, malignant and equivocal,
respectively. In the patient-based analysis, CNN predicted benign, malignant and equivocal images with 99.4, 99.4,
and 87.5% accuracy, respectively. In region-based analysis, the prediction was correct with the probability of 97.3%
(head-and-neck), 96.6% (chest), 92.8% (abdomen) and 99.6% (pelvic region), respectively.

Conclusion: The CNN-based system reliably classified FDG PET images into 3 categories, indicating that it could be

helpful for physicians as a double-checking system to prevent oversight and misdiagnosis.
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Background

FDG PET/CT is widely used to detect metabolically active
lesions, especially in oncology [1, 2]. PET/CT scanners are
becoming widespread because of their usefulness, whereas
the number of FDG PET/CT examinations has also in-
creased. In Japan, the number of institutes that have in-
stalled a PET/CT scanner has increased by 177 (212 to
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389) from 2007 to 2017, with examinations increasing
72% from 414,300 to 711,800 [3]. In the current clinical
practice, FDG PET/CT images require interpretation by
specialists in nuclear medicine. As the physicians’ burden
of interpreting images increases, the risk of oversight or
misdiagnosis also increases. Therefore, there is a demand
for an automated system that can prevent such incidents.
Image analysis using a convolutional neural network
(CNN), a machine learning method, has attracted a great
deal of attention as a method of artificial intelligence
(AI) in the medical field [4—7]. CNN is a branch of deep
neural network (so-called deep learning) techniques and
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is known to be feasible for image analysis because of its
high performance at image recognition [8]. In a previous
study using a CNN, tuberculosis was automatically de-
tected on chest radiographs [9]. The use of a CNN also
enabled brain tumor segmentation and prediction of
genotype from magnetic resonance images [10]. Another
study showed high diagnostic performance in the differ-
entiation of liver masses by dynamic contrast agent-
enhanced computed tomography [11]. CNN methods
have also been applied to PET/CT, with successful re-
sults [12—14].

We hypothesized that introducing an automated sys-
tem to detect malignant findings would prevent human
oversight/misdiagnosis. In addition, the system would be
useful to select patients who need urgent interpretation
by radiologists. Physicians who are inexperienced in nu-
clear medicine would particularly benefit from such a
system.

In this research, we aimed to develop a CNN-based
diagnosis system that classifies whole-body FDG PET
images into 3 categories: 1) benign, 2) malignant and 3)
equivocal; such a system would allow physicians per-
forming radiology-based diagnosis to double-check their
opinions. In addition, we examined region-based predic-
tions in the head and neck, chest, abdomen, and pelvis
regions.

Methods

Subjects

This retrospective study included 3485 sequential patients
(mean age + SD, 63.9 + 13.6 y; range, 24—95 y) who under-
went whole-body FDG PET/CT (Table 1). All patients
were scanned on either Scanner 1 (N = 2864, a Biograph 64
PET/CT scanner, Asahi-Siemens Medical Technologies
Ltd., Tokyo) or Scanner 2 (N = 621, a GEMINI TF64 PET/
CT scanner, Philips Japan, Ltd., Tokyo) at our institute be-
tween January 2016 and December 2017.

The institutional review board of Hokkaido University
Hospital approved the study (#017-0365) and waived
the need for written informed consent from each patient
because the study was conducted retrospectively.

Model training and testing

Experiment 1 (Whole-body): First, input images were
resampled to (224, 224) pixels to match the input size of
the network. After that, we trained CNN using data
from the FDG PET images. CNN was trained and vali-
dated using 70% patients (N =2440; 896 benign, 1015
malignant, and 529 equivocal) which were randomly se-
lected. After the training process, the remaining 30% pa-
tients (N =1045; 384 benign, 435 malignant, and 226
equivocal) were used for testing. A 5-fold cross-
validation scheme was used to validate the model,
followed by testing. In the model-training phase, we

Page 2 of 10

used “early stopping” and “dropout” to prevent overfit-
ting. Early stopping is a method used to monitor the loss
function of training and validation and to stop the learn-
ing before falling into excessive learning [15]. Early stop-
ping and dropout have been widely adopted in various
machine-learning methods [16, 17].

Experiment 2 (Region-based analysis): In this experi-
ment, the neural network having the same architecture
were trained using 4 datasets consisting of differently
cropped images: (A) head and neck, B) chest, C) abdo-
men, and D) pelvic region, respectively. The label was
malignant when the malignancy existed in the corre-
sponding region. The label was equivocal when the
equivocal uptake existed in the corresponding region.
Otherwise, the label was benign. The configuration of
the network was the same as in Experiment 1.

Experiment 3 (Grad-CAM [18]): We carried out add-
itional experiments using the Grad-CAM technique,
which visualizes the part activating the neural network.
In other words, Grad-CAM highlights the part of the
image that the neural network responds to. The same
image as the original image used in Experiment 1 was
used as the input image. To evaluate the results of Grad-
CAM, we extracted 100 malignant patients randomly
from the test cohort. Grad-CAM provided continuous
value for each pixel, and we set 2 different cut-offs (70
and 90% of maximum) to contour the activated area.
The Grad-CAM result was judged correct or incorrect
by a nuclear medicine physician.

Labeling

An experienced nuclear medicine physician classified all
the patients into 3 categories: 1) benign, 2) malignant
and 3) equivocal, based on the FDG PET maximum in-
tensity projection (MIP) images and diagnostic reports.
The criteria of classification were as follows.

1) The patient was labeled as malignant when the
radiology report described any malignant uptake
masses and the labeling physician confirmed that
the masses were visually recognizable.

2) The patient was labeled as benign when the
radiology report described no malignant uptake
masses and the labeling physicians confirmed that
there was no visually recognizable uptake indicating
malignant tumor.

3) The patient was labeled as equivocal when the
radiology report was inconclusive between
malignant vs. benign and the labeling physician
agreed with the radiology report. In case the
labeling physician disagreed with the radiology
report, the physician further investigated the
electric medical record and categorized the patient
into malignant, benign, or equivocal.
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Finally, 1280 (37%) patients were labeled “benign”,
1450 (42%) “malignant” and 755 (22%) “equivocal”. Note
that the number of the malignant label was smaller than
the number of pretest diagnoses in Table 1, mainly be-
cause Table 1 includes patients who were suspected of
cancer recurrence before the examination but showed
no malignant findings on PET.

The location of any malignant uptake was determined
as A) head and neck, B) chest, C) abdomen, or D) pelvic
region. For the classification, the physician was blinded
to the CT images and parameters such as maximum
standardized uptake value (SUVmax). Diagnostic reports
were made based on several factors including SUVmax,
the diameter of tumors, visual contrast between the tu-
mors, location of tumors, and changes over time by 2+

Table 1 Patient characteristics

n (%)
Total patients 3485
Males 1954 (56.1)
Females 1531 (43.9)
Age (in years)
Mean £ SD 639+136
Range 24-95

Cancer-related biomarkers Positive/Total (%)

AFP 16/167 (9.6)
CA19-9 177/591 (29.9)
CEA 282/889 (31.7)
CYFRA 138/402 (34.3)
NSE 381/621 (61.4)
PIVKA-II 24/135 (17.8)
Pro-GRP 95/540 (17.6)
PSA 18/55 (32.7)
SCC 172/784 (21.9)
S-hCG 3/3 (100)
Pretest diagnosis n (%)
Head and neck neoplasms 988 (28.4)
Hematopoietic neoplasms 0 (14.6)
Neoplasms of lung, pleura, or mediastinum 507 (14.5)
Hepatobiliary neoplasms 305 (8.8)
Gastrointestinal neoplasms 258 (74)
Skin neoplasms 8 (4.8)
Urologic neoplasms 5 (3.9)
Gynecological neoplasms 112 (3.2)
Sarcoidosis 91 (2.6)
Breast neoplasms 67 (1.9)
Brain and spinal neoplasms 65 (1.9)
Others 279 (8.0)
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physicians each with more than 8years’ experience in
nuclear medicine.

Image acquisition and reconstruction

All clinical PET/CT studies were performed with either
Scanner 1 or Scanner 2. All patients fasted for >6 h before
the injection of FDG (approx. 4 MBq/kg), and the emis-
sion scanning was initiated 60 min post-injection. For
Scanner 1, the transaxial and axial fields of view were 68.4
cm and 21.6 cm, respectively. For Scanner 2, the transaxial
and axial fields of view were 57.6 cm and 18.0 cm, respect-
ively. Three-min emission scanning in 3D mode was per-
formed for each bed position. Attenuation was corrected
with X-CT images acquired without contrast media. Im-
ages were reconstructed with an iterative method inte-
grated with (Scanner 1) or without (Scanner 2) a point
spread function. For Scanner 2, image reconstruction was
reinforced with the time-of-flight algorithm.

Each reconstructed image had a matrix size of 168 x
168 with the voxel size of 4.1 x 4.1 x 2.0 mm for Scanner
1, and a matrix size of 144 x 144 with the voxel size of
4.0%x4.0x4.0mm for Scanner 2. MIP images (matrix
size 168 x 168) were generated by linear interpolation.
MIP images were created at increments of 10-degree ro-
tation for up to 180 or 360 degrees. Therefore, 18 or 36
angles of MIP images were generated per patient. In this
study, CT images were used only for attenuation correc-
tion, not for classification.

Convolutional neural network (CNN)

A neural network is a computational system that simu-
lates neurons of the brain. Every neural network has in-
put, hidden, and output layers. Each layer has a
structure in which multiple nodes are connected by
edges. A “deep neural network” is defined as the use of
multiple layers for the hidden layer. Machine learning
using a deep neural network is called “deep learning.” A
convolutional neural network (CNN) is a type of deep
neural network that has been proven to be highly effi-
cient in image recognition. CNN does not require prede-
fined image features. We propose the use of a CNN to
classify the images of the FDG PET examination.

Architectures

In this study, we used a network model with the same
configuration as ResNet [19]. In the original ResNet, the
output layer was classified into 1000 classes. We modi-
fied the number of classes to 3. We used this network
model to classify whole-body FDG PET images into 1)
benign, 2) malignant and 3) equivocal categories. Here
we provide details on CNN architectures with the tech-
niques used in this study. The detailed architecture is
shown in Fig. 1 and Table 2. Convolution layers create
feature-maps that extract image features. Pooling layers
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have the effect of reducing the amount of data and im-
proving the robustness against misregistration by down-
sampling the obtained feature-map. “Residual” is a block
that can be said to be a feature of ResNet that combines
several layers, thereby solving the conventional gradient
disappearance problem. Each neuron in a layer is con-
nected to the corresponding neurons in the previous
layer. The architecture of the CNN used in the present
study contained five convolutional layers. This network
also applied a rectified linear unit (ReLU) function, local
response normalization, and softmax layers. The softmax
function is defined as follows:

exp (%)

> ew(x)

J

Fx;) =

where x; is the output of the neuron i (i=1, 2, ..., n, with
n being the number of neurons belonging to the layer).
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Table 2 Details of architecture
Layer Filter Size Stride  Repeat count  Output Size
Input (224, 224, 3)
Convolutional (7,7) (2,2 1 (112, 112, 64)
Max pooling (3,3 2,2 1 (56, 56, 64)
Residual 1 (3x3,64) (1,1 3 (56, 56, 64)
(3% 3,64)
Residual 2 (3x3,128) (2,2 4 (28, 28, 128)
(3x3,128)
Residual 3 (3x3,256) (2,2 6 (14, 14, 256)
(3x3,256)
Residual 4 (3x3,512) (2,20 3 (7,7,512)
(3x3,512)
Average pooling  (7,7) (1,1 1 (1,1,1024)
Fully connected (3)

“Residual” contains the following structure. “1. Convolutional layer1, 2. Batch
normalization1, 3. Activation layer1 (ReLU), 4. Convolutional layer2, 5. Batch

normalization2, 6. Merge layer (Add), 7. Activation layer2 (ReLU)”

-

(A)

Convolutional | Residual 3
Input (112,112,64) || (14, 14 ,256)
(224,224,3) |
Max pooling ReS|duaI4 )
(56,56,64) | (77512) )
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Residual 1 ) Average pooling |
(56,56,64) (1,1 1024)
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(B)
L —

[ Residual ]

Batch Nor:palization
Activation (ReLU)
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)
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Fig. 1 The functional architecture of the CNN. a The detailed structure of the CNN used in this study. b An internal structure of the residual layer
J
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Patient-based classification

The patient-based classification was performed only in
the test phase. After test images were classified by CNN,
the patient was classified based on the 2 different algo-
rithms (A and B).

Algorithm A:

1) If one or more images of the patient were judged as
malignant, the patient was judged as being
malignant.

2) If all the images of the patient were judged as
benign, the patient was judged as being benign.

3) If none of the above were satisfied, the patient was
judged as being equivocal.

Algorithm B:

1) If more than 1/3 of all the images of the patient
were judged as malignant, the patient was judged as
being malignant.

2) If less than 1/3 of all the images of the patient were
judged as malignant and more than 1/3 were judged
as equivocal, the patient was judged as being
equivocal.

3) If none of the above were satisfied, the patient was
judged as being benign.

Hardware and software environments
This experiment was performed under the following
environment:

Operating system, Windows 10 pro 64 bit; CPU, intel
Core i7-6700K; GPU, NVIDIA GeForce GTX 1070 8GB;
Framework, Keras 2.2.4 and TensorFlow 1.11.0; Lan-
guage, Python 3.6.7; CNN, the same configuration as
ResNet; Optimizer, Adam [20].
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Results

Figure 2 shows typical images of each category. A total of
76,785 maximum intensity projection (MIP) images were
investigated. The number of images of benign patients,
malignant patients, and equivocal patients was 28,688, 31,
751 and 16,346, respectively.

Experiment 1 (whole-body analysis)
In the image-based prediction, the model was trained for
30 epochs using an early stopping algorithm. The CNN
process spent 3.5h for training and <0.1s/ image for
prediction. When images of benign patients were given
to the learned model, the accuracy was 96.6%. Similarly,
the accuracies for images of malignant and equivocal pa-
tients were 97.3 and 77.8%, respectively. The results are
shown in Table 3 (a). In addition, Table 3 (b) shows the
results of recall, compatibility, and F-value calculations.
In the patient-based classification, we applied algo-
rithms A and B. When the algorithm A was applied,
91.0% of benign patients, 100% of malignant patients,
and 57.5% of equivocal patients were correctly predicted.
When the algorithm B was applied, 99.4% of benign pa-
tients, 99.4% of malignant patients, and 87.5% of equivo-
cal patients were correctly predicted (Table 3c and d).
The prediction showed a tendency to fail especially
when strong physiological accumulation (e.g., in the lar-
ynx) or mild malignant accumulation was present. Typ-
ical cases where the neural network failed to predict the
proper category are shown in Fig. 3.

Experiment 2 (region-based analysis)

The same population was used in this experiment as was
used in Experiment 1. The model was trained for 33-45
epochs for each dataset using an early stopping algo-
rithm. The CNN process spent 4-5 h for training and <
0.1 s/image for prediction.

(1) Benign

N=1,280

(2) Malignant

N=1,450

Fig. 2 Typical cases in this study. (1) benign patient with physiological uptake in the larynx, (2) malignant uptake patient with multiple metastases to
bones and other organs, and (3) equivocal patient with abdominal uptake that was indeterminant between malignant or inflammatory foci

(3) Equivocal

N=755
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Table 3 Details of Results of Experiments 1 and 2
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Table 3 Details of Results of Experiments 1 and 2 (Continued)

Experiment 1

Experiment 1

(a) Image-based

Prediction Benign
Malignant
Equivocal

(b) Image-based Evalu-

ation Measures

Prediction Benign
Malignant
Equivocal

(c) Patient-based Algorithm A

Prediction Benign
Malignant
Equivocal

(d) Patient -based

Algorithm A Evaluation

Measures

Prediction Benign
Malignant
Equivocal

(e) Patient-based Algorithm B

Prediction Benign
Malignant
Equivocal

(f) Patient -based
Algorithm B Evaluation

Measures

Prediction Benign
Malignant
Equivocal

Experiment 2
(g) Head and Neck

Prediction Benign
Malignant
Equivocal

(hd) Chest

Prediction Benign
Malignant
Equivocal

(i) Abdomen

Prediction Benign

Correct Label

Benign
96.6%
0.3%
3.2%

Recall
score

0.966
0973
0.778

Malignant
24%
97.3%
0.2%

Precision
score

0917
0.936
0.986

Correct Label

Benign
91.0%
9.0%
0.0%

Recall
score

0910
1.000
0.575

Malignant
0.0%
100.0%
0.0%

Precision
score

1.000
0.764
1.000

Correct Label

Benign
99.4%
0.6%
0.0%

Recall
score

0.994
0.994
0.875

Malignant
0.6%
99.4%
0.0%

Precision
score

0.975
0.951
1.000

Correct Label

Benign
97.8%
1.5%
0.7%

Malignant
1.7%
97.3%
1.1%

Correct Label

Benign
98.4%
0.6%
1.0%

Malignant
1.8%
96.6%
1.6%

Correct Label

Benign

94.9%

Malignant
5.7%

Equivocal
10.1%
12.1%
77.83%

F
measure

0.941
0.954
0.87

Equivocal
0.0%
42.5%
57.5%

F
measure

0953
0.866
0.730

Equivocal
3.8%
8.8%
87.5%

F
measure

0.984
0972
0933

Equivocal
3.0%
0.8%
96.2%

Equivocal
5.9%
1.6%
92.5%

Equivocal

7.0%

Malignant 1.1%  92.8% 2.0%
Equivocal 4.1%  1.5% 91.0%
(j) Pelvic region Correct Label

Benign Malignant Equivocal

Prediction Benign 99.7%  0.4% 2.8%
Malignant 0.1%  99.6% 1.9%
Equivocal  0.3% 0.0% 95.3%

In the experiment for the head-and-neck region, a new
labeling system was introduced to classify the images
into 3 categories: 1) benign in the head-and-neck region,
2) malignant in the head-and-neck region, and 3)
equivocal in the head-and-neck region. When images
from “malignant in the head-and-neck region” patients
were given to the learned model, the accuracy was
97.3%. The accuracy was 97.8 and 96.2% for “benign in
the head-and-neck region” patients and “equivocal in the
head-and-neck region” patients, respectively.

Similar experiments were performed for the chest, ab-
dominal, and pelvic regions. The details of the results
are shown in Table 3 (g)-(j). The accuracy was higher
for the pelvic region (95.3-99.7%) than for the abdom-
inal region (91.0-94.9%).

Experiment 3 (grad-CAM [18])

We employed Grad-CAM to identify the part of the image
from which the neural network extracted the largest
amount of information. Typical examples are shown in
Fig. 4. As a result, when the activated area was defined
with the cut-off of 70% maximum, 93% of patients had at
least one image that showed the activated area covering
any part of the tumor. Similarly, when the activated area
was defined with the cut-off of 90% maximum, 72% of pa-
tients had at least one image that showed the activated
area covering any part of the tumor.

Discussion

In patient-based classification, the neural network pre-
dicted correctly both the malignant and benign categor-
ies with 99.4% accuracy, although the accuracy for
equivocal patients was 87.5%. Therefore, an average
probability of 95.4% suggests that CNN may be useful to
predict 3-category classification from MIP images of
FDG PET. Furthermore, in the prediction of the malig-
nant uptake region, it was classified correctly with prob-
abilities of 97.3% (head-and-neck), 96.6% (chest), 92.8%
(abdomen) and 99.6% (pelvic region), respectively. These
results suggested that the system may have the potential
to help radiologists avoid oversight and misdiagnosis.
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(a) false positive case

Fig. 3 Typical cases whose category was incorrectly classified (a, false-positive case; b, false-negative case)
A

(b) false negative case

To clarify the reasons for the classification failure, we
investigated some cases that were incorrectly predicted
in Experiment 1. As expected, the most frequent pat-
terns we encountered were strong physiological uptake
and weak pathological uptake. In the case shown in Fig.
3a, the physiological accumulation in the oral region was

relatively high, which might have caused erroneous pre-
diction. In contrast, another case (Fig. 3b) showed many
small lesions with low-to-moderate intensity accumula-
tion, which was erroneously predicted as benign despite
the true label being malignant. The equivocal category
was more difficult for the neural network to predict; the

Fig. 4 Visualization of classification standard of CNN. a Examples of original images input to CNN. b Examples of images activated area with the
cut-off of 70% maximum by Grad-CAM, highlighting the area of malignant uptake. ¢ Examples of images activated area with the cut-off of 90%
maximum by Grad-CAM, highlighting the area of malignant uptake
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accuracy was lower than for the other categories. The re-
sults may be due to the definition; though common in
clinical settings, “equivocal” is a kind of catch-all or “gar-
bage” category for all images not clearly belonging to
“malignant” or “benign”; thus, a greater variety of images
was included in the equivocal category. We speculate
that such a wide range may have made it difficult for the
neural network to extract consistent features.

We also conducted patient-based predictions in this
study. In patient-based prediction, the accuracy was
higher than that in image-based prediction by an ensem-
ble effect. This approach takes advantage of MIP images
generated from various angles. More specifically, we ap-
plied 2 different algorithms: more sensitive Algorithm A
and more specific Algorithm B. The select of algorithm
may depend on the purpose of FDG PET/CT.

In general, CNN is said to classify images based on
some features of the images. Grad-CAM is a technology
that visualizes “the region of AI’s interest”. It could be
useful for building explainable AI instead of the black
box and thus for gaining the trust of the users. The re-
sults of Experiment 3 suggested that, in many cases,
CNN responded to the part of the malignant uptake if
existed. However, in quantitative assessment, when the
cut-off of 70% maximum was used to segment highlight
regions, the location of the actual tumor was covered in
only 93% cases. There were cases where the AI's diagno-
sis was correct although Grad-CAM highlighted non-
relevant areas of the images. More studies are needed to
clarify whether Grad-CAM or other methods are useful
for establishing explainable Al

The computational complexity becomes enormous
when CNN directly learns with 3D images [21-25]. Al-
though we employed MIP images in the current study, an
alternative approach may be to provide each slice to CNN.
However, even in the case of ‘malignant’ or ‘equivocal’, the
tumor is usually localized in some small area and thus
most of the slices do not contain abnormal findings. Con-
sequently, a positive vs. negative imbalance problem
would disturb efficient learning processes. In this context,
MIP seems to be advantageous for a CNN as most MIP
images of malignant patients contain accumulation in the
image somewhere unless a stronger physiological accumu-
lation (e.g., brain or bladder) hides the malignant uptake.
In contrast, in 2D axial images or 3D images, tumor up-
take is not hidden by physiological uptake. Therefore, we
speculate that the prediction accuracy could be improved
by using 2D axial images or 3D images if an appropriate
neural network architecture is used.

In this study, we used only 2 scanners, but further stud-
ies are needed to reveal what will happen when more
scanners are investigated. For instance, what if the num-
bers of examinations from various scanners are imbal-
anced? What if a particular disease is imaged by some
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scanners but not by the other scanners? There is a possi-
bility that the AI system cannot make a correct evaluation
in such cases. The AI system should be tested using “real-
world data” before using it in clinical settings.

Some approaches could further improve the accuracy.
In this research, in order to reduce the learning cost, we
used a network that is equivalent to ResNet-50 [19], which
is a relatively simple version of the “ResNet” family. In
fact, ResNet systems with deeper layers can be built tech-
nically. More recently, various networks based on ResNet
have been developed and demonstrated to have high per-
formance [26, 27]. From the viewpoint of big-data science,
it is also important to increase the number of images for
further improvement in diagnostic accuracy.

There are many other AI algorithms that can be used
for PET image classification and detection. In a recent
study by Zhao et al., they used the so-called 2.5D U-Net
to detect lesions on ®*Ga-PSMA-11 PET-CT images for
prostate cancer [28]. They trained the CNN using not
fully 3D images but axial, coronal, and sagittal images in
order to simulate the workflow of physicians and save
computational and memory resources. They reported
that the network achieved 99% precision, 99% recall, and
99% F1 score. Not only U-Net [29] as an image segmen-
tation method but also regional CNN (RCNN) and
M2Det [30] as object extraction methods, may be useful
to localize the lesion. In a study by Yan K et al, MR
image segmentation was performed using a deep
learning-based technology named the Propagation Deep
Neural Network (P-DNN). It has been reported that by
using P-DNN, the prostate was successfully extracted
from MR images with a similarity of 84.13 + 5.18% (dice
similarity coefficient) [31]. On the other hand, these
methods also have a problem that enormous time is re-
quired to create training data.

The oversight rate (i.e., the rate of misclassifying ma-
lignant images as benign ones) was 0.6%. We think that
the rate is small but not satisfactory. As we consider the
current system will contribute to radiologists as a
double-checking system, decreasing oversight is much
more important to decreasing the false-positive rate. We
are planning experiments to decrease the oversight rate
by adding the CT data to CNN.

This study has some limitations. First, this model can
only deal with FDG PET MIP images in the imaging range
from the head to the knees; correct prediction is much
more difficult when spot images or whole-body images
from the head to the toes are given. Future studies will
use RCNN to solve the problem. Second, less FDG-avid
lesions such as pancreatic cancer cannot be classified only
with MIP images, and there is a possibility that it cannot
be labeled correctly. Third, we applied patient-based label-
ing but not image-based labeling. Thus, some MIP images
of particular angles may be labeled as ‘malignant’ but do
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not visualize the tumor that is hidden by physiological up-
take. To improve the quality of training data, each image
within the patient should be labeled separately although it
takes plenty of time. Finally, the cases were classified by a
nuclear medicine physician but were not based on a
pathological diagnosis.

Conclusion

The CNN-based system successfully classified whole-
body FDG PET images into 3 categories in whole-body
and region-based analyses. These data suggested that
MIP images were useful for classifying PET images and
that the AI could be helpful for physicians as a double-
checking system to prevent oversight and misdiagnosis.
Before using Al in clinical settings, more advanced CNN
architectures and prospective studies are needed to im-
prove and validate the results.
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