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Abstract

Background: Next generation sequencing (NGS) has been a handy tool in clinical practice, mainly due to its
efficiency and cost-effectiveness. It has been widely used in genetic diagnosis of several inherited diseases, and, in
clinical oncology, it may enhance the discovery of new susceptibility genes and enable individualized care of
cancer patients. In this context, we explored a pan-cancer panel in the investigation of germline variants in Brazilian
patients presenting clinical criteria for hereditary cancer syndromes or familial history.

Methods: Seventy-one individuals diagnosed or with familial history of hereditary cancer syndromes were
submitted to custom pan-cancer panel including 16 high and moderate penetrance genes previously associated
with hereditary cancer syndromes (APC, BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1, RET,
TP53, VHL, XPA and XPC). All pathogenic variants were validated by Sanger sequencing.

Results: We identified a total of eight pathogenic variants among 12 of 71 individuals (16.9%). Among the
mutation-positive subjects, 50% were diagnosed with breast cancer and had mutations in BRCA1, CDH1 and MUTYH.
Notably, 33.3% were individuals diagnosed with polyposis or who had family cases and harbored pathogenic
mutations in APC and MUTYH. The remaining individuals (16.7%) were gastric cancer patients with pathogenic
variants in CDH1 and MSH2. Overall, 54 (76.05%) individuals presented at least one variant uncertain significance
(VUS), totalizing 81 VUS. Of these, seven were predicted to have disease-causing potential.
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Conclusion: Overall, analysis of all these genes in NGS-panel allowed the identification not only of pathogenic
variants related to hereditary cancer syndromes but also of some VUS that need further clinical and molecular
investigations. The results obtained in this study had a significant impact on patients and their relatives since it
allowed genetic counselling and personalized management decisions.
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Background
Hereditary cancer syndrome is a genetic predisposition
to several types of cancer caused by pathogenic germline
variants in one or more genes [1]. It corresponds to 5–
10% of all cancers and have peculiar clinical aspects,
such as the onset at an early age, high lifetime risk for
multiple primary tumors, and cancer occurring in suc-
cessive generations of the family [2, 3].
Most hereditary cancer syndromes display autosomal

dominant inheritance involving genes that are mainly
controlling cell cycle or DNA repair [4]. For example,
mutations in BRCA1 and BRCA2 confer 40–80% lifetime
risk of developing breast cancer, and 11–50% of develop-
ing ovarian cancer [5]; germline variants in at least one
of the DNA mismatch repair genes (eg. MSH2, MLH1,
MSH6, and PMS1) affect in up to 80% of the Lynch syn-
drome individuals [6]; and mutations in CDH1 gene are
detected in 30 to 40% of families with hereditary diffuse
gastric cancer (HDGC) [7].
For a long time, single-gene analyses were used for

detection of the genetic cause of hereditary cancers.
However, the recent advances in DNA sequencing
techniques have allowed the application of next gen-
eration sequencing (NGS) in clinical practice, includ-
ing in genetic diagnosis of inheritance disease. In
addition to its rapid, efficient and cost-effective ap-
proach for testing multiple cancer susceptibility genes,
it may enhance the discovery of new susceptibility
genes and enable individualized care of cancer pa-
tients [8, 9].
Most genomic cancer studies are carried out in North

America and Western Europe, which do not fully repre-
sent the admixed Brazilian genetic background [8]. Cur-
rently, Brazilian heritability of cancer risk has been
widely explored, so further studies might allow the de-
velopment of more reliable surveillance approaches and
medical guidelines for subjects carrying pathogenic
germline mutations. In this context, we built an NGS
custom pan-cancer panel containing 16 high and moder-
ate penetrance genes previously associated with heredi-
tary cancer syndromes (APC, BRCA1, BRCA2, CDH1,
CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1,
RET, TP53, VHL, XPA and XPC) [10, 11]. Here, we re-
port the application of this panel in the investigation of
such germline variants in patients from Northern Brazil

presenting clinical criteria for hereditary cancer syn-
dromes or familial history.

Methods
Participants
This study included 71 individuals diagnosed or with fa-
milial history of hereditary cancer syndromes (hereditary
breast and ovarian cancer – HBOC, hereditary diffuse
gastric cancer, Lynch syndrome, familial adenomatous
polyposis or MUTYH-associated polyposis), according to
National Comprehensive Cancer Network (NCCN) Clin-
ical Practice Guidelines in Oncology. They were re-
cruited from João de Barros Barreto University Hospital
(HUJBB, Belém, Pará, Brazil). The study was approved
by the Institutional Review Board from HUJBB (CAAE:
89363618.3.0000.5634), and all participants gave their
written informed consent. The patients were selected ac-
cording to the clinical criteria for hereditary syndrome
according to National Comprehensive Cancer Network
(NCCN) Clinical Practice Guidelines in Oncology. Indi-
viduals who did not meet the clinical criteria for heredi-
tary syndromes were excluded.

Next-generation sequencing
A custom pan-cancer panel was built containing 16
genes related to hereditary cancer syndromes (APC,
BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2,
MSH6, MUTYH, PTEN, RB1, RET, TP53, VHL, XPA and
XPC) [10]. Genomic DNA from the participants were
extracted from whole blood samples collected during
medical interview. DNA samples were quantified using
Qubit 2.0 Fluorometer (Thermo Fisher Scientific), nor-
malized to 25 ng/μL and custom pan-cancer library
preparation. Briefly, indexed paired-end libraries were
synthesized using TruSeq Custom Amplicon Library
Prep Kit v1.5 (Illumina) and sequenced on MiSeq se-
quencing systems (Illumina). The raw sequencing reads
of all libraries were deposited at the European Nucleo-
tide Archive [Accession number: PRJEB43823].
Raw sequencing data were first filtered to remove low-

quality reads and contaminants using Trimmomatic
v.0.36 [12]. Resulting reads were aligned to the human
genome (hg19) (http://hgdownload.soe.ucsc.edu/
goldenPath/hg19/bigZips/) using BWA (v.0.7, [13]), and
then sorted and indexed using sambamba [14] and
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samtools [15]. Small variants were identified using Gen-
ome Analysis Tool Kit (GATK) v3.8–0 [16] as follows.
Alignments were recalibrated using RealignerTarget-
Creator and IndelRealigner tools against Mills & 1000G
Gold Standard Indels (GATK resource bundle) (https://
console.cloud.google.com/storage/browser/gcp-public-
data%2D%2Dbroad-references/hg19/v0) [17]. Bases were
recalibrated using BaseRecalibrator and dbSNP Build
138 (https://www.ncbi.nlm.nih.gov/snp/) [18] and vari-
ants were called using HaplotypeCaller. Joint genotyping
was then performed using GenotypeGVCFs and the
resulting SNPs and INDELs were filtered with Variant-
Filtration (SNPFilter with filterExpression: “QD < 2.0 ||
FS > 60.0 || MQ < 40.0 || MQRankSum < -12.5 || Read-
PosRankSum < -8.0”; and INDELFilter with filterExpres-
sion: “QD < 2.0 || FS > 200.0 || ReadPosRankSum <
-20.0”). Finally, all variants were annotated with informa-
tion from the dbNSFP database v3.5a (https://sites.goo-
gle.com/site/jpopgen/dbNSFP) [19] using the snpEff v4.3
tool [20].
ClinVar database (https://www.ncbi.nlm.nih.gov/

clinvar/) was used to determine the clinical significance
of all reported variants, in which variants were classified
as pathogenic if they had a truncating effect. Pathogen-
icity of variants of uncertain significance (VUS) was in-
vestigated using ten different predictors: CADD [21],
FATHMM [22], LRT [23], MetaSVM [24], MutationAs-
sessor [25], MutationTaster [26], PROVEAN [27], Poly-
phen2 (HDIV and HVAR) [28] and SIFT [29], and those
predicted by at least five predictors as likely pathogenic
were considered to have a disease-causing potential.
Variants were named according to Human Genome
Variation Society nomenclature (HGVS, hpp://www.
hgvs.org).

Pathogenic variants validation
Pathogenic variants presence were validated by Sanger
sequencing in ABI 3130 (Applied Biosystems) as fol-
lows. The location of interest was amplified by PCR
using primers shown in Supplementary Table S1.
Sanger Sequencing was carried out with 1 μL of puri-
fied PCR product of each exon, 0.5 μL of the forward/
reverse specific primer, 0.5 μL of ABI Prism Bid Dye
Terminator Cycle Sequencing v3.1 Kit (Applied Bio-
systems, USA), 3 μL of SaveMoney buffer, and 10 μL
of water to a final volume of 15 μL. The thermocy-
cling reaction proceeded as follows: 96 °C for 1 min,
followed by 35 cycles of 96 °C for 15 s, 50 °C for 15 s
and 60 °C for 4 min. The sequence information was
interpreted by ABI Analysis Software™. The electro-
pherograms were analyzed using the Chromas 2.6.6
software and compared with the reference sequence
obtained from NCBI.

Results
Pan-cancer panel
We analyzed data from 71 individuals, including 60 can-
cer patients - breast cancer (68.3%), gastric cancer
(16.7%), and other types of cancer (15%) - and 11
cancer-free individuals with family history of cancer,
mainly familial adenomatous polyposis (FAP) (81.8%)
(Table 1).
A total of eight pathogenic (either pathogenic or likely

pathogenic) variants were identified in APC, BRCA1,
CDH1, MSH2 and MUTYH among 12 mutation-positive
individuals (16.9%). Insertions and deletions represented
50% (n = 4) of all pathogenic variants, whereas single nu-
cleotides variants (SNVs) accounted for the other half.
The functional consequences of the identified patho-
genic variants were primarily frameshift effects (50%),
followed by stop gained (37.5%) and missense (12.5%)
(Table 2), all of them were confirmed by Sanger sequen-
cing. No variants described as pathogenic were identified
in 11 genes (BRCA2, CDKN2A, CHEK2, MSH6, PTEN,
RB1, RET, TP53, VHL, XPA and XPC).
Most of these pathogenic mutations identified were

nonrecurrent (62.5%). Among the recurrent mutations,
MUTYH c.1187 G > A (p.Gly396Asp) was reported in
unrelated individuals, whereas BRCA1 c.1961delA
(p.Lys654fs) and APC c.2195dupA (p.Asn732fs) were re-
ported in related individuals.
Almost all probands with positive results for patho-

genic variants had only a single mutation (n = 11), with
the exception of one proband affected with colonic

Table 1 Clinical characteristics of the individuals tested by the
pan-cancer panel

Clinical Information

Number of patients

Affected patients 60 (84,5%)

Unaffected individuals with familial history of cancer 11 (15,5%)

Sex

Female 61 (85,9%)

Male 10 (14,1%)

Cancer types among affected patients

Breast cancer 41 (68,3%)

Gastric cancer 10 (16,7%)

Ovarian cancer 2 (3,3%)

Othersa 7 (11,7%)

Family history of unaffected individuals

FAP 9 (81,8%)

Breast cancer 1 (9,1%)

Adrenal cancer 1 (9,1%)
aOthers: colorectal cancer (1), familial adenomatous polyposis (FAP) (1), colonic
polyps (1), glioblastoma (1), kidney cancer (1), adrenal cancer (1) and both
kidney and prostate cancer (1)
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polyps who was compound heterozygous for MUTYH
(c.1187G > A and c.1147delC) in accordance with the re-
cessive pattern of MUTYH-associated polyposis.
Among the individuals with pathogenic variants, 50%

were diagnosed with breast cancer and had mutations in
BRCA1, CDH1 and MUTYH – gene not typically associ-
ated with this cancer. Notably, 33.3% were individuals
diagnosed with polyposis or who had family cases and
harbored pathogenic mutations in APC and MUTYH.
The remaining individuals (16.7%) were gastric cancer
patients with pathogenic variants in CDH1 and MSH2.
A total of 81 VUS were identified in APC, BRCA1,

CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH,
PTEN, RB1, RET, VHL and XPA. PTEN presented the
highest amount of VUS with 22 variants (Fig. 1). Among
all individuals tested, 54 (76.05%) presented at least one
VUS and 14 individuals had a negative result for both
pathogenic variants and VUS.
Most VUS were in intronic, intragenic or untranslated

regions (UTR) and, therefore, it was not possible to pre-
dict their pathogenicity (Supplementary Table S2). Only
12 variants were submitted to the prediction (Supple-
mentary Table S3), among these seven were predicted to
be deleterious by at least five predictors (six missense

variants and one structural interaction variant), suggest-
ing their disease-causing potential.

Family screening
The pan-cancer panel allowed us to identify familial mu-
tation in affected patients, directing screening on family
members and, consequently, to provide a personalized
genetic counselling and management decisions. Exam-
ples of families that were benefited from the pan-cancer
panel results are depicted in Fig. 2 and Fig. 3.
Family A (Fig. 2) proband was submitted to genetic

testing due to colonic polyposis diagnosis. Two patho-
genic variants in MUTYH gene were identified,
c.1147delC and c.1187G > A. Nine unaffected family
members were investigated – of these, three men and
two women presented c.1147delC, two women presented
c.1187G > A, while one man was compound heterozy-
gous for these variants. Family B (Fig. 3) proband was
submitted to genetic testing since they met the clinical
criteria for HBOC. This individual presented BRCA1
c.1961delA. Sixteen family members were tested to this
variant, being seven mutation-positive (four men and
three women).
Therefore, as pathogenic variants were identified in

unaffected individuals with an affected family member, it
allowed the choosing of an appropriate surveillance ap-
proach and management decisions for the mutation-
negative subjects.

Discussion
Advances in NGS technologies and their cost-
effectiveness have made multigene panels a useful diag-
nostic tool in oncology clinic, particularly for offering an
increase in mutation detection rate, which benefits indi-
viduals without family history information or atypical
phenotype [30]. In the present study, a custom pan-
cancer panel was developed and applied for the detec-
tion of hereditary cancer-related pathogenic mutations.
Variant analysis revealed the presence of at least one

pathogenic variant in 16.9% of the analyzed individuals.

Table 2 Pathogenic variants identified in individuals affected with cancer and unaffected individuals with cancer familial history

Gene Exon rsID HGVS_DNA HGVS_
protein

Type of mutation Impact Cancer history
(n° probands)

APC 16 – c.2195dupA p.Asn732fs Frameshift High FAP (1) and family history of FAP (2)

BRCA1 10 rs80357296 c.3544C > T p.Gln1182* Stop gained High Breast cancer (1)

BRCA1 10 rs80357522 c.1961delA p.Lys654fs Frameshift High Breast cancer (2)

CDH1 7 rs587780784 c.1003C > T p.Arg335* Stop gained High Breast cancer (1)

CDH1 8 rs587776398 c.1023 T > G p.Tyr341* Stop gained High Gastric cancer (1)

MSH2 3 rs63750704 c.388_389delCA p.Gln130fs Frameshift High Gastric cancer(1)

MUTYH 13 rs36053993 c.1187G > A p.Gly396Asp Missense Moderate Breast cancer (2) and colonic polyps (1)

MUTYH 12 rs587778536 c.1147delC p.Ala385Profs Frameshift High Colonic polyps (1)

FAP familial adenomatous polyposis, Human Genome Variation Society (HGVS), rsID in dbSNP (rsID)

Fig. 1 Count of variants of uncertain significance (VUS) by gene
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Most of the individuals were breast cancer patients, be-
ing BRCA1 mutations responsible for 50% of the patho-
genic variants in these patients. In the example of a
family which was benefited from the multigene panel
analysis, BRCA1 c.1961delA was also reported in men,
demonstrating the importance of BRCA1 screening not
only in women, since men with pathogenic variants in
this gene have a slightly higher risk for prostate cancer
and male breast cancer [31, 32].
Germline mutations in BRCA1 and BRCA2 are very

relevant to the development of HBOC, however, they are
responsible for only 15–25% of such cases, which dem-
onstrates the significant contribution of other genes [33,

34]. In this study, the remaining pathogenic variants in
breast cancer occurred in CDH1 and MUTYH.
CDH1 encodes E-cadherin, a protein responsible for

calcium-dependent cell-to-cell adhesion. Germline mu-
tations in this gene have been reported to cause heredi-
tary diffuse gastric cancer (HDGC), a disorder that leads
to an increased risk for diffuse gastric cancer and lobular
breast cancer (LBC) [35]. However, substantial evidences
have demonstrated an increased risk for LBC among
CDH1 mutations carriers regarding their familial history
for diffuse gastric cancer (DGC) [36]. In this study,
CDH1 c.1003 C > T was reported in a breast cancer pa-
tient without familial history for DGC.

Fig. 2 Pedigree of mutation-positive proband of family A. Black arrow indicates the proband with colonic polyps affected by two variants in
MUTYH gene (c.1147delC and c.1187G > A) (III8). Red arrow indicates family members tested for mutations. A small red square indicates
individuals carrying the mutation c.1147delC. A small blue square indicates individuals carrying the mutation c.1187G > A

Fig. 3 Pedigree of mutation-positive proband of family B. Black arrow indicates the proband carrying BRCA1 c.1961delA mutation (II6). Small red
square indicates individuals diagnosed with breast cancer. Small blue square indicates individuals diagnosed with bowel cancer. (+) represents
individuals tested for mutation with BRCA1 c.1961delA mutation. (−) represents individuals tested for mutation without BRCA1
c.1961delA mutation
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MUTYH mutations are the cause of MUTYH-
associated polyposis (MAP), a syndrome that predisposes
to colorectal polyposis and colorectal cancer [37]. Here,
MUTYH c.1187G > A was reported in two unrelated in-
dividuals with breast cancer. This variant is the most fre-
quent of all MUTYH mutations in various populations
[38], but the association between this variant and breast
cancer remains controversial. In Northern Israel, mono-
allelic inheritance was associated with an elevated risk of
breast cancer [39], while in Non-Hispanic individuals of
European ancestry there was no positive association
[40]. Thus, our preliminary finding in the Brazilian
population reinforces the need for further studies and
for genetic counseling for families that have this variant
segregating.
Here, one individual with colonic polyposis showed

compound heterozygous mutations in MUTYH
(c.1147delC and c.1187G > A). Genetic counselling was
essential to identify other biallelic carriers in the family,
in addition to monoallelic carriers (potential increased
breast cancer risk), since these individuals may have a 2-
fold increased risk for colorectal cancer and other can-
cers when compared to the general population [41].
Among the individuals with gastric cancer, one pre-

sented a mutation in CDH1 and, another, in MSH2.
CDH1 alterations underlie HDGC, conferring risk of
56–70% higher [42]. Gastric cancer occurrence has a fre-
quency of 1–6% in individuals with a Lynch syndrome-
associated mutation, and this risk increases by 9% for
those that present germline MSH2 mutations [43, 44]. In
this study, a mutation in this gene was identified in a
gastric cancer patient (c.388_389delCA) – until now, this
variant had been reported only in Brazilian Lynch syn-
drome patients [45, 46].
Multigene pan-cancer panels that include a variety

of cancer types might contribute to better under-
standing an individual’s risk for cancer, but it also
raises new challenges in genetic counselling [9]. These
challenges are even more complex in populations with
a broad lack of information, such as the Brazilian
one. Our population has several particular genomic
features resulting from a high degree of admixture
[47]. Most of the available genomic databases contain
data from ancestry populations that do not entirely
represent our genetic composition. It may explain the
low number of pathogenic variants found in this
study − it is possible that among the VUS and the
“not described” variants there are some pathogenic
variants that have not been associated with clinical
data yet due to the lack of studies and validation
[48]. Among the 81 VUS identified, seven were pre-
dicted with deleterious potential by at least five differ-
ent predictors, reinforcing the need for functional
studies that validate their pathogenicity.

Moreover, it is important to comprehend that most
studies on cancer genetics were carried out in North
America and Western Europe, thus reflecting the muta-
tion burden in subjects of European ancestry. It is
known that people of distinct ethnicities inherit a differ-
ent pattern of pathogenic mutations from their ances-
tors. For instance, BRCA1 and BRCA2 show significant
global variations according to contribution in regional
cancer incidence and to mutation spectrum [49]. Only a
minor part of the heritability of cancer risk has been elu-
cidated so far, and further whole exome sequencing
studies are needed to significantly increase the identifica-
tion of hereditary cancer genes [8].
Despite the small sample size, which may not fully

represent the Brazilian population, our results suggest
the existence of a unique genetic background which
needs to be more explored. Considering Brazil as a con-
tinental country submitted to different colonization pro-
cesses, further studies should include samples from the
different regions of the country.

Conclusions
In conclusion, our findings contributes to the descrip-
tion of pathogenic variants background in Northern
Brazil, as well as demonstrated the potential of a multi-
gene panel in identifying pathogenic variants in genes
not typically tested in hereditary cancer specific cases.
The results obtained in this study observed 81 VUS,
seven predicted with deleterious potential, reinforcing
the need to identify pathogenicity of these variants in
our population. These results had a great impact on the
patients and their relatives since it allowed genetic coun-
selling and personalized management decisions.
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