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Abstract 

Background:  A growing body of evidence suggests that pyroptosis-related lncRNAs (PRncRNAs) are associated with 
the prognoses of tumor patients and their tumor immune microenvironments. However, the function of PRlncRNAs in 
lung squamous cell carcinoma (LUSC) remains unclear.

Methods:  We downloaded the transcriptome and clinical information of 551 LUSC samples from the The Cancer 
Genome Atlas (TCGA) database and randomly separated patients with complete information into two cohorts. Based 
on the training cohort, we developed a pyroptosis-related signature. We then examined the signature in the test 
cohort and all retained patients. We also clustered two risk groups in each cohort according to the signature and per-
formed survival analysis, functional analysis, tumor immune microenvironment analysis and drug sensitivity analysis.

Results:  A prognostic signature containing five PRlncRNAs (AP001189.1, PICART1, LINC02555, AC010422.4, and 
AL606469.1) was developed. A principal component analysis (PCA) indicated better differentiation between patients 
with different risk scores. Kaplan–Meier (K–M) analysis demonstrated poorer survival among patients with higher risk 
scores (P < 0.001). A receiver operating characteristic (ROC) curve analysis provided evidence confirming the accu-
racy of the signature, and univariate (p = 0.005) and multivariate (p = 0.008) Cox regression analyses confirmed the 
independent value of the risk score in prognoses. Clinical subgroup validation indicated that the signature was more 
suitable for patients with early-stage LUSC. We also created a nomogram to increase the accuracy of the prediction. 
Moreover, functional analysis revealed that pathways related to tumor development and pyroptosis were enriched 
in the high-risk group. Furthermore, the prognostic signature was proven to be a predictor of sensitivity to immuno-
therapy and chemotherapy.

Conclusions:  We developed a novel pyroptosis-associated signature with independent value for the prognosis of 
LUSC patients. PRlncRNAs are closely associated with the tumor immune microenvironment in LUSC and might offer 
new directions for immunotherapy.
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Introduction
Lung cancer (LC) continues to maintain high lethality 
and mortality rates, corresponding to approximately 
1.8  million deaths and 2.1  million emerging patients 
per year [1, 2]. As an important subtype of LC, lung 
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squamous cell carcinoma (LUSC) accounts for approxi-
mately 30% of LC cases and is thus second only to lung 
adenocarcinoma (LUAD) [3]. Over the past few years, 
emerging biomarkers have increased the effective-
ness of LUAD treatment, but little progress has been 
made regarding LUSC [4]. Even worse, the prognostic 
assessments of LUSC patients based on available clin-
icopathological risk factors remain unsatisfactory, and 
patients with identical clinicopathological character-
istics often have different prognostic outcomes, which 
makes the prediction of prognoses challenging [5]. 
Therefore, a novel prognostic signature is needed to 
increase the accuracy of the prediction of the progno-
ses of LUSC patients and to more feasibly provide tar-
geted therapy.

Pyroptosis, which is a novel form of programmed cell 
death, is characterized by inflammasome-dependent cell 
swelling and lysis [6]. Pyroptosis affects tumor develop-
ment through its close association with the tumor micro-
environment. For instance, natural killer (NK) cells and 
cytotoxic T lymphocytes promote pyroptosis by releasing 
granzyme to cleave GSDMB and GSDME, and thereby 
inhibiting tumor progression [7, 8]. Immune checkpoint 
inhibitors are an effective immunotherapy option due to 
regulating the immune microenvironment to maintain 
tumor growth but are applicable in only a few patients 
with LUSC [9]. The in-depth study of pyroptosis provides 
possible strategies to improve the immunotherapeutic 
efficacy by inducing pyroptosis and regulating the tumor 
immune microenvironment to convert some cold tumors 
into hot tumors [10]. However, the connection between 
the tumor immune microenvironment and pyroptosis in 
LUSC remains unclear.

Long noncoding RNAs (lncRNAs), which lack the 
potential to encode proteins, are a type of RNA with a 
length of more than 200 nucleotide sequences. [11]. A 
growing body of evidence shows the important func-
tions of lncRNAs in tumorigenesis and metastasis [12, 
13]. Studies have demonstrated that lncRNAs are closely 
associated with pyroptosis mechanisms, which implies 
that lncRNAs can potentially be used as biomarkers for 
early prognoses and targeted treatments [14]. Increas-
ingly, prognostic signatures based on pyroptosis-related 
lncRNAs (PRlncRNAs) have been increasingly con-
structed for gliomas, colon cancer, and other cancers [15, 
16]. However, there remains lack of PRlncRNA signatures 
for LUSC.

In this study, we screened the most valuable PRlncR-
NAs to construct a prognostic signature for patients with 
LUSC and validated its predictive value. Additionally, we 
investigated the role of pyroptosis in the tumor immune 
microenvironment in LUSC, with the aim of providing 
new insights into LUSC immunotherapy.

Materials and methods
Data sources and processing methods
From The Cancer Genome Atlas (TCGA) database 
(https://​tcga-​data.​nci.​nih.​gov/​tcga/), we obtained the 
transcriptome and clinical data from 551 LUSC samples 
(502 cancer samples and 49 normal samples) on Novem-
ber 18, 2021. After excluding patients for whom there 
was no survival information, the remaining 495 patients 
with complete survival information comprised the 
TCGA-LUSC cohort and were equally randomized into 
two groups: a training cohort (n = 248) and a test cohort 
(n = 247). Based on the information of the patients in 
the training set, we screened the most valuable lncR-
NAs, constructed a prognostic signature, and then tested 
the prognostic signature using the information of the 
patients in the test set and the whole TCGA-LUSC set to 
assess the generalizability of the prognostic signature was 
generalizable. The information of the included patients 
is listed in Table 1. Fifty-two fever-related genes (PRGs) 
were obtained by searching the available review literature 
[17, 18]. All R packages used are based on version 4.1.2 of 
the R software.

Identification of differentially expressed PRlncRNAs
Based on PRGs, we performed a Pearson correlation 
analysis to identify PRlncRNAs, and results with a p 
value < 0.001 and a correlation coefficient |R2| > 0.3 were 
considered reliable. By comparing the differences in 
RNA expression levels between 49 normal samples and 
502 tumor samples, we identified differentially expressed 
PRGs (DE-PRGs) and differentially expressed PRlncR-
NAs (DE-PRlncRNAs) by using the “edgeR” package with 
the criteria of p < 0.05 and |log2FC|≥1.

Construction of the PRlncRNA prognostic signature
Using the “glmnet” package in R, we first screened PRl-
ncRNAs with potential predictive value by univari-
ate Cox regression. We then reduced overfitting and 
increased the signature stability by LASSO (least absolute 
shrinkage and selection operator) regression. Moreover, 
we identified PRlncRNAs by multivariate Cox regres-
sion to develop a signature and calculated risk scores by 
combining the expression of PRlncRNAs and their risk 
coefficients as follows: RiskScore = Xi× Yi(in the for-
mula, “Xi” denotes the expression of lncRNA “i”, and “Yi” 
denotes the coefficient of lncRNA “i”).

Evaluation of the prognostic value of the signature
We separated patients into high-risk and low-risk groups 
based on the median values of risk scores derived from 
the signature for all the patients in each cohort. Using 
the “survival” and “survminer” packages in R, the over-
all survival (OS) of the two risk groups was compared by 
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Kaplan–Meier (K-M) analysis. In addition, we obtained 
the corresponding curve by a receiver operating charac-
teristic (ROC) analysis and calculated the area under the 
curve (AUC) using the “time ROC” package [19].

Assessment of the clinical significance of the signature
Through both univariate and multivariate Cox regres-
sion analyses, clinicopathological features and risk scores 
were tested with respect to their value as independent 
prognostic predictors for LUSC patients [20]. Decision 
curve analysis (DCA) and ROC analysis were performed 
to assess the risk signature and other risk indicators. The 
“scatterplot3D” package was used to evaluate the distri-
bution of patients with different risk scores by principal 

component analysis (PCA) [21]. We also derived risk 
scores for patients of various sexes (male and female), 
ages (65 and > 65), and stages (stages I-II and III-IV). 
We also created a prognostic nomogram by integrating 
all risk factors to provide the OS at 1, 3, and 5 years for 
LUSC cases.

Stratification analysis
Clinical information was obtained from the TCGA data-
base, and we then grouped the patients according to 
clinicopathological characteristics and compared the OS 
of patients in each group by stratification analysis, with 
the aim to determine the scope of the applicability of the 
signature.

Table 1  Clinical information of 495 LUSC samples in the TCGA database

Feature Train cohort (n = 248) Test cohort (n = 247) Entire TCGA-LUSC 
cohort (n = 495)

n % n % n %

Age
  <=65 88 35.48 101 40.89 189 38.18

  >65 158 63.71 142 57.49 300 60.61

  Unknow 2 0.81 4 1.62 6 1.21

Status
  Alive 140 56.45 145 58.70 285 57.58

  Dead 108 43.55 102 41.30 210 42.42

Gender 0.00

  Female 59 23.79 70 28.34 129 26.06

  Male 189 76.21 177 71.66 366 73.94

Stage 0.00

  Stage I 130 52.42 111 44.94 241 48.69

  Stage II 75 30.24 85 34.41 160 32.32

  Stage III 37 14.92 46 18.62 83 16.77

  Stage VI 4 1.61 3 1.21 7 1.41

  Unknow 2 0.81 2 0.81 4 0.81

T stage
  T1 57 22.98 57 23.08 114 23.03

  T2 146 58.87 142 57.49 288 58.18

  T3 33 13.31 37 14.98 70 14.14

  T4 12 4.84 11 4.45 23 4.65

M stage
  M0 206 83.06 201 81.38 407 82.22

  M1 4 1.61 3 1.21 7 1.41

  Unknow 38 15.32 43 17.41 81 16.36

N stage
  N0 168 67.74 148 59.92 316 63.84

  N1 55 22.18 73 29.55 128 25.86

  N2 20 8.06 20 8.10 40 8.08

  N3 1 0.40 4 1.62 5 1.01

  Unknow 4 1.61 2 0.81 6 1.21
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Functional analysis
We screened gene sets with variations between the 
two risk groups. Through a functional pathway enrich-
ment analysis on these gene sets, we then identified 
and reserved the pathways with NOM P < 0.05 and 
FDR < 0.25, which were considered meaningful [22].

Immune microenvironment analysis
We used seven different methods (TIMER, QUEN-
TISED, XCELL, CIBERSPOT, CIBERSPOT-ABS, MCP-
COUNTER, and EPIC) to calculate the levels of immune 
cell infiltration between the two risk groups in the tumor 
immune microenvironment, and the results are shown 
as heatmaps. We also explored the correlation between 
immune infiltrating cells and risk scores using the CIB-
ERSPOT method [23]. To further explore the roles of 
PRlncRNAs and immune function, we also selected 14 
immune function pathways and scored them according 
to the expression of genes involved in these pathways. 
Depending on these scores, the differences in immune 
function between the two risk groups were compared.

Correlation analysis of risk scores with immunotherapy 
and chemotherapy
To investigate the relationship between risk scores and 
immunotherapy, we assessed the likelihood of immu-
notherapy in the high- and low-risk groups based on 
the Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm [24]. In addition, we collected 48 immune 
checkpoint genes and compare their expression levels 
between the two risk groups, and P < 0.05 was consid-
ered to indicate reliability. In addition, we calculated 
the lower half inhibitory concentration (IC50) of widely 
used chemotherapeutic drugs using the pRRophetic 
package and thus compared the difference in sensitivity 
to different chemotherapeutic drugs between the two 
risk groups.

Results
Identification of PRlncRNAs with predictive value 
and construction of a signature
The overall idea of our study is shown in the flow chart (Fig. 
S1). First, 743 PRlncRNAs were screened through a Pear-
son correlation analysis based on the 52 identified PRGs. 
Among these lncRNAs, 277 DE-PRlncRNAs were identi-
fied by the “edgeR” package (Fig.  1A). To further explore 
the connection between each PRlncRNA and the OS sta-
tus of LUSC patients, we randomly divided the 495 sam-
ples equally into two cohorts. The expression levels of 21 
PRlncRNAs are shown in the heatmap (Fig. 1B). As illus-
trated in the forest plot, in the training cohort, 21 PRlncR-
NAs connected to the OS of LUSC patients were selected 
from among the DE-PRlncRNAs (Fig. 1C). Information on 

these PRlncRNAs is shown in Table S1. A LASSO analy-
sis screened 7 PRlncRNAs (AC010422.4, AC112722.1, 
AP001189.1, AC019080.1, LINC02555, PICART1, and 
AL606469.1) with stable prognostic value (Fig.  1D and 
E). Multivariate Cox regression, identified five PRlncR-
NAs (AP001189.1, PICART1, LINC02555, AC010422.4, 
and AL606469.1) were identified to establish a signa-
ture. The formula derived from the signature was as fol-
lows: risk score =​ (AC019080.1×-0.0877881329685924) 
+ ​(PICART1 × 0.660046397707493) + (LINC02555 × 
0.419674570168194) + (AC010422.4×-1.42076072723105) 
+(AL606469.1 × 0.737100982354032)​.

Assessment of the prognostic value of the prognostic 
signature
The patients in each cohort were ranked and then divided 
into two risk groups (high-risk group and low-risk group) 
based on the risk scores. The clinical information on the 
two risk groups is shown in Table 2. In the survival anal-
ysis of patients in the two risk groups, the K–M curves 
revealed a difference in survival between the two groups 
in the training cohort (Fig.  2A, p = 0.002), test cohort 
(Fig. 2B, p = 0.030), and entire cohort (Fig. 2 C, p < 0.001). 
In the three cohorts, the high-risk group in the three 
cohorts had poorer survival, and the risk scores showed 
positive correlations with their prognoses. Moreover, 
the results from the ROC curve analysis results showed 
that the areas under the curve (AUCs) at 1, 3, and 5 years 
were 0.600, 0.668, and 0.674, respectively, in the train-
ing cohort (Fig. 2D); 0.596, 0.621, and 0.565, respectively, 
in the test cohort (Fig. 2E); and 0.599, 0.647, and 0.622, 
respectively, in the TCGA-LUSC cohort (Fig. 2F), which 
implies that our signature has good value as a prognos-
tic predictor for LUSC patients. The expression of the 
five PRlncRNAs included in the signature is shown in 
the heatmap (Fig.  2G-I). The risk curves depicted the 
risk scores of the patients in the two risk groups (Fig. 2J-
L). The risk survival status plot also demonstrated that 
high-risk patients were mostly concentrated at the bot-
tom (Fig. 2M-O), which revealed the negative correlation 
of the risk score with the survival time of the patients. 
The PCA results revealed that using the whole gene, all 
PRGs, or all PRlncRNAs was not effective in distinguish-
ing patients with different prognoses (Fig. 3B C, and E), 
whereas using risk signature-related PRlncRNAs was 
effective for distinguishing patients with different prog-
noses (Fig. 3F).

Correlation analysis of the prognostic signature 
and clinical features
Univariate and multivariate Cox regression analyses 
were performed using the entire TCGA cohort (Table 
S2), which revealed that the risk score (p = 0.005), 
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age (p = 0.022), and state (p = 0.002) affected the OS 
of LUSC patients (Fig. 3A). Moreover, the results also 
confirmed the independent predictive value of the risk 
score (p = 0.008), state (p = 0.007) and age (p = 0.044) 
(Fig.  3D). According to the correlations of the risk 
scores with other risk factors, age (p = 0.015) was sig-
nificantly correlated with the risk scores, whereas 
gender and stage were not significantly associated 
with risk scores (Fig.  3G-I). In addition, a nomogram 
of the risk scores and other valuable predictors was 
constructed to more accurately predict the 1-, 3- and 
5-year survival of the patients (Fig.  4A). The DCA 
curve indicated that the risk score had better predic-
tive value than other risk factors (Fig. 4B). ROC analy-
sis also demonstrated that the AUC for age (0.533), 
gender (0.553), and stage (0.586) was less than the 
AUC for the risk score (0.647) (Fig.  4C). The calibra-
tion curves showed good consistency between the 
predicted and observed OS at 1, 3, and 5 years, which 
proved the accuracy of the nomogram in predicting 
survival (Fig. 4D).

5‑PRlncRNAs signature is more suitable for early‑stage 
LUSC patients
The clinical features of the patients in the two risk groups 
and the five PRlncRNAs included in the signature are 
shown in the heatmap (Fig. S2A). To determine the scope 
of the applicability of the signature, we performed strati-
fication analysis of the patients according to the following 
subgroups: female and male; age ≤ 65 and age > 65; tumor 
stage I-II and stage III-IV; T1–2 and T3–4; M0 and M1; 
N0 and N1–3 (Fig. S2B-M). As the results revealed, the 
signature had good predictive power for men of all ages, 
particularly for patients with early-stage LUSC.

Functional pathway enrichment analysis of different gene 
sets in the high‑risk and low‑risk groups
To investigate the functional pathways related to differen-
tially expressed gene sets between the two risk groups, we 
applied GSEA, which showed that the main enriched path-
ways related to the set of genes more highly expressed in 
the high-risk group were as follows: “CYTOKINE receptor 

Fig. 1  Determining pyroptosis-related lncRNAs (PRlncRNAs) with predictive value. A Univariate Cox regression analysis of 21 PRlncRNAs connected 
with the OS. B Heatmap for expression levels of 21 PRlncRNAs associated with prognostic. C Volcano plot of DE-PRlncRNAs between normal 
samples and LUSC samples. D, E LASSO regression analysis
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interaction” (Fig. 5A, NOM P < 0.001, FDR = 0.001), “ECM 
receptor interaction” (Fig.  5B, NOM P < 0.001, 
FDR = 0.002) and “NOD-like signaling pathway” (Fig. 5C, 
NOM P = 0.017, FDR = 0.034). The main enriched path-
ways related to the set of genes more highly expressed in 
the low-risk group were as follows: “base excision repair” 
(Fig. 5D, NOM P = 0.047, FDR = 0.012), “mismatch repair” 
(Fig.  5E, NOM P = 0.063, FDR = 0.108) and “nucleotide 
excision repair” (Fig. 5 F, NOM P = 0.021, FDR = 0.087).

Landscape of the immune cell infiltration and immune 
functional pathways enrichment
The heatmap showed that most immune cells exhibited 
more significant infiltration in the high-risk group (Fig. 

S3). Negative connections between risk scores and the 
infiltration levels of naïve B cells (Fig.  6A, p = 0.0038) 
and follicular helper T cells (Fig.  6H, p = 0.00014) 
was revealed by the CIBERSORT method. Moreover, 
there was a connection was detected between the risk 
scores and the infiltration level of activated dendritic 
cells (Fig.  6B, p = 0.009), M2 macrophages (Fig.  6C, 
p = 0.0019), monocytes (Fig.  6D, p = 0.0022), neutro-
phils (Fig.  6E, p = 1.9e-0.9), activated NK cells (Fig.  6F, 
p = 0.0083) and resting memory CD4 + T cells (Fig.  6G, 
p = 0.0037). An immune function analysis suggested 
that higher risk scores were strongly correlated with 14 
immune function pathways (Fig. 6I).

Risk scores serve as a predictor of sensitivity 
to immunotherapy and chemotherapy
According to the TIDE algorithm, patients in the high-
risk group are more prone to immune escape, whereas 
patients in the low-risk group may be more sensitive to 
immunotherapy, which indicates that the risk score can 
be used as a predictor of sensitivity to immunotherapy 
(Fig. S4A). The results from the immune checkpoint gene 
expression analysis showed that 23 immune checkpoint 
genes were highly expressed in the high-risk group and 
that 8 immune checkpoint genes were highly expressed 
in the low-risk group, and all these genes could be used 
as immunotherapy targets (Fig. S4B). The results from 
the drug sensitivity analysis showed that the low-risk 
group was more sensitive to A.443,654 and ATRA (Fig. 
S4C and D, p < 0.001), whereas the high-risk group was 
more sensitive to A.770,041, AMG.706, AP.24,534, A 
S601245, AUY922, AZ628 and AZD.0530 (Fig. S4E-K, 
p < 0.001), which suggested that the prognostic signature 
could predict sensitivity to chemotherapy.

Discussion
LUSC is a common tumor type and remains a challenge 
that remains to be overcome [25]. The lack of improved 
tools for the prediction of prognoses and better immu-
notherapy options makes the prognosis of LUSC patients 
poor [5]. Pyroptosis, as a novel form of programmed 
death closely related to inflammatory factors and gasder-
min (GSDM) proteins, provides the possibility of solving 
these challenges [26]. Pyroptosis is a double-edged sword 
for tumors. On the one hand, it has been shown that dif-
ferential expression of gasdermin (GSDM) proteins in 
cells can cause the hypermethylation of pyroptosis genes, 
and thus allowing the transformation of normal cells 
into tumor cells [27]. On the other hand, it has also been 
shown that the activation of gasdermin (GSDM) protein-
mediated pyroptosis could be a new target therapy for 
a variety of tumors, including LUSC [28]. lncRNAs, as 
important factors affecting the treatment and prognoses 

Table 2  Clinical features of LUSC patients in two risk groups

Feature High-risk group
(n = 251)

Low-risk group
(n = 244)

n % n %

Age
  <=65 86 34.26 103 42.21

  >65 163 64.94 137 56.15

  Unknow 2 0.80 4 1.64

Status
  Alive 128 51.00 157 64.34

  Dead 123 49.00 86 35.25

  Gender

   Female 71 28.29 58 23.77

   Male 180 71.71 186 76.23

Stage
  Stage I 127 50.60 114 46.72

  Stage II 75 29.88 85 34.84

  Stage III 42 16.73 41 16.80

  Stage VI 5 1.99 2 0.82

  Unknow 2 0.80 2 0.82

T stage
  T1 59 23.51 55 22.54

  T2 146 58.17 142 58.20

  T3 36 14.34 34 13.93

  T4 10 3.98 13 5.33

M stage
  M0 207 82.47 200 81.97

  M1 5 1.99 2 0.82

  Unknow 39 15.54 42 17.21

N stage
  N0 171 68.13 145 59.43

  N1 53 21.12 75 30.74

  N2 21 8.37 19 7.79

  N3 3 1.20 2 0.82

  Unknow 3 1.20 3 1.23
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of tumor patients, are considered new biomarkers and 
therapeutic targets for LUSC. Some studies have con-
firmed the connection between lncRNAs and pyroptosis, 

but their specific roles in pyroptosis remain unclear [14]. 
Therefore, there is an urgent need to investigate the rela-
tionships between PRlncRNAs and LUSC.

Fig. 2  Assessment of the prognostic value of the signature in the training cohort, test cohort, and TCGA-LUSC cohort. A-C Kaplan–Meier (K-M) 
analysis and D-F Time-dependent ROC curves to compare the survival of high-risk group and low-risk group. G-I Heatmap for expression levels of 5 
PRlncRNAs involved in the signature. J-L Risk curve for risk scores and M-O Scatterplot for the survival status of each patient
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In this study, we divided 495 LUSC cases with complete 
information into two cohorts. By analyzing the train-
ing cohort, we identified five PRlncRNAs (AP001189.1, 
PICART1, LINC02555, AC010422.4, and AL606469.1) 
to develop a prognostic signature for patients with 
LUSC. Among the five PRlncRNAs included in the sig-
nature, the lncRNA PICART1 is closely associated with 
the suppression of lung cancer cell proliferation by tar-
geting the AKT1 and JAK2/STAT3 signaling pathways 
[29, 30]. LINC02555 has been confirmed to strongly 
affect the prognoses of patients with LUSC [31]. Details 
of the other three included PRlncRNAs are still lacking. 

In addition, we validated the predictive power and inde-
pendent predictive value of the five-PRlncRNA signature 
and constructed a nomogram.

To explore the enrichment of gene set functional path-
ways that differed between the two risk groups, a GSEA 
was performed between the two groups. According 
to the results, pathways associated with tumor devel-
opment and pyroptosis were mainly enriched in the 
high-risk group, whereas in the low-risk group, several 
pathways of molecular repair were mainly enriched 
in the low-risk group. As a group of receptors, the 
NOD-like receptor (NLR) family mediates cell injury 

Fig. 3  PCA and independent prognostic analysis of the signature. A Univariate and D multivariate Cox regression analysis to investigate the 
connection between OS and clinical factors including risk score. Principal component analysis (PCA) based on B all genes, C all lncRNAs, E 
pyroptosis-related lncRNAs, and F risk signature. Correlation analysis of risk signature with G age, H gender, and I state
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pattern recognition and is potentially associated with 
programmed death and immunity. Previous studies iden-
tified a multiprotein complex formed by NLR activated 
caspase-1 that cleaves cleaved gasdermin D and triggers 
pyroptosis [32]. Recently, Peng Liu et  al. revealed that 
NOD-like receptor signaling plays an important role in 
inflammation-related cancers, and this finding provides 
a new direction for immunotherapy development [33]. 
The “CYTOKINE receptor interaction” pathway, as well 
as the “ECM receptor interaction” pathway, have been 
shown to be closely linked to the processes of tumor cell 
growth and invasion [34, 35]. On the one hand, gene sets 
enriched in “repair pathways”, on the one hand, reduce 

the cell mutation rate and tumorigenesis, and on the 
other hand, these gene sets make it more difficult for 
tumor cells to be affected by therapeutic measures. For 
instance, Grundy et  al. revealed that the base excision 
repair system enhances tumor cell resistance to oxida-
tive stress and thus reduces the efficacy of tumor radio-
therapy and chemotherapy [36]. Anne et al. revealed that 
nucleotide excision repair (NER) activity significantly 
affects the sensitivity of DNA damage factors and thus 
affects the efficacy of platinum-based chemotherapeutic 
agents [37]. The mismatch repair system has also been 
shown to affect satellite instability and reduce the effec-
tiveness of immunotherapy [38].

Fig. 4  Development of a nomogram by combining all risk factors. A Nomogram containing age, gender, stage, and risk score to predict survival. 
B DCA analysis of clinical features including risk signature. C ROC analysis of predicting prognosis based on different prognostic signatures. D 
Calibration curve to test the nomogram
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Changes in the tumor microenvironment affect the 
development of tumors, which manifesting both anti-
tumor and protumor properties [39]. Our findings sug-
gest that the majority of immune cell infiltration levels, 
including those of M2 macrophages, monocytes, and 
CD4 + T cells, increase with increases in the patient 
risk scores. It has been proven that tumor-associated 
macrophages are important protumor components of 
the tumor microenvironment [40]. Additionally, suf-
ficient studies have demonstrated that CD4 + T cell 
infiltration is related to the efficacy of tumor treatment 
with immunotherapy and that more abundant CD4 + T 
cell infiltration usually means that a tumor is “hot” to 
immunotherapy [41]. Immune checkpoint inhibitors can 
provide a direction idea for immunotherapy by consist-
ently causing tumor progression due to immune escape. 
Immune checkpoint inhibitors, as emerging chemo-
therapy agents, have been used to benefit patients with 
a variety of cancers [41]. There is growing evidence of 
the feasibility of immunotherapy in LUSC, but effec-
tive immune checkpoint-related genes in LUSC still lack 

sufficient studies [4]. This study demonstrated that the 
signature can be used as a factor to predict the sensitiv-
ity of LUSC patients to immunotherapy and chemother-
apy. We also identified 32 immune checkpoint genes that 
were differentially expressed in the high- and low-risk 
groups, which can suggest ideas for the study of new tar-
gets for immunotherapy.

To better evaluate the scientific nature of the signa-
ture, we collected other articles on constructing sig-
natures that can be compared with ours. Although no 
other study has constructed a PRlncRNA signature to 
predict the prognosis of LUSC patients, we noted that 
Huang et  al. constructed a PRlncRNA signature to pre-
dict the prognosis of LUAD patients [42]. Their processes 
for constructing and verifying the model, analyzing the 
immune microenvironment and evaluating the correla-
tion between the model and immunotherapy were simi-
lar to ours. However, we also integrated the signature and 
traditional risk factors and developed a nomogram to 
improve the intuitiveness and accuracy of the prediction. 
In addition, we noted that Weng et al. constructed a m6A 

Fig. 5  Functional analysis. Valuable functional pathways in A-C high-risk groups and D-F low-risk groups
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gene-related model to predict the prognosis of LUSC 
patients [43]. The utility of their signature was similar to 
ours, but in contrast, we performed internal validation 
during signature construction, and the AUC of our sig-
nature (AUC = 0.647) was higher than that constructed 
in the previous study (AUC = 0.572), which indicated 
that our signature was more feasible. In addition, we 
found some predictive signatures for other types of can-
cer that are important to us. Cao et al. introduced more 
risk factors, such as the smoking history, when evaluat-
ing the correlation between the model and traditional 

risk factors, which also had a significant impact on lung 
squamous cell carcinoma [44]. Some articles mentioned 
the significance of weighted gene coexpression network 
analysis (WGCNA) for the model, which has a significant 
impact on our subsequent research [45].

There are still some shortcomings in our work. First, 
experiments validating the expression and functions of 
PRlncRNAs involved in the signature are lacking but will 
be performed in the future by our laboratory. Second, the 
limited number of normal samples in the TCGA data-
base may have influenced the results of the differential 

Fig. 6  Correlation analysis of tumor immune microenvironment. A-H The relationship between 8 different types of immune cells and risk scores 
according to the results of CIBERSPOT. I Boxplots for immune functions scores between two risk groups
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analysis. Third, more work is needed to explore how 
pyroptosis regulates the tumor immune microenviron-
ment in LUSC. Fourth, most of the data in TCGA are 
from North America and are predominantly from white 
patients, which limits the applicability of the signature.

Conclusions
In conclusion, we first screened five PRlncRNAs and 
accordingly derived a prognostic signature suitable for 
patients with early-stage LUSC. We also tested the prog-
nostic and clinical value of the constructed signature and 
combined this signature with other clinicopathological 
features to create a nomogram that could more accu-
rately predict the survival status of patients. Furthermore, 
our study suggests that PRlncRNAs are closely associated 
with the LUSC tumor immune microenvironment and 
may be potential targets for immunotherapy.
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