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Mutations of 1p genes do not consistently 
abrogate tumor suppressor functions 
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Abstract 

Background:  Deletion of 1p is associated with poor prognosis in neuroblastoma, however selected 1p-intact 
patients still experience poor outcomes. Since mutations of 1p genes may mimic the deleterious effects of chromo-
somal loss, we studied the incidence, spectrum and effects of mutational variants in 1p-intact neuroblastoma.

Methods:  We characterized the 1p status of 325 neuroblastoma patients, and correlated the mutational status of 
1p tumor suppressors and neuroblastoma candidate genes with survival outcomes among 100 1p-intact cases, then 
performed functional validation of selected novel variants of 1p36 genes identified from our patient cohort.

Results:  Among patients with adverse disease characteristics, those who additionally had 1p deletion had signifi-
cantly worse overall survival. Among 100 tumor-normal pairs sequenced, somatic mutations of 1p tumor suppressors 
KIF1Bβ and CHD5 were most frequent (2%) after ALK and ATRX (8%), and BARD1 (3%). Mutations of neuroblastoma 
candidate genes were associated with other synchronous mutations and concurrent 11q deletion (P = 0.045). In total, 
24 of 38 variants identified were novel and predicted to be deleterious or pathogenic. Functional validation identified 
novel KIF1Bβ I1355M variant as a gain-of-function mutation with increased expression and tumor suppressive activity, 
correlating with indolent clinical behavior; another novel variant CHD5 E43Q was a loss-of-function mutation with 
decreased expression and increased long-term cell viability, corresponding with aggressive disease characteristics.

Conclusions:  Our study showed that chromosome 1 gene mutations occurred frequently in 1p-intact neuroblas-
toma, but may not consistently abrogate the function of bonafide 1p tumor suppressors. These findings may aug-
ment the evolving model of compounding contributions of 1p gene aberrations toward tumor suppressor inactiva-
tion in neuroblastoma.
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Background
Molecular aberrations of the short arm of chromosome 
1 are common and consistent in neuroblastoma, and 
are well known to correlate with clinical risk, treatment 
outcomes, as well as other molecular risk markers such 
as MYCN amplification [1–3]. Inactivation of 1p tumor 
suppressors through chromosomal deletion is impli-
cated as the key pathogenic mechanism [4, 5]. However, 
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recurrent disease and poor outcome also occur in chil-
dren with tumors without 1p loss, suggesting that other 
molecular alterations of 1p candidate genes – particu-
larly tumor suppressors – may contribute to an aggres-
sive disease phenotype in 1p-intact neuroblastoma 
patients.

Gene mutations play important roles in neuroblas-
toma disease behavior, particularly involving tran-
scription factors responsible for neurodevelopmental 
regulation. Germline variants of ALK and PHOX2B 
are strongly associated with familial predisposition to 
neuroblastoma [6–8], the latter also associated with 
congenital central hypoventilation syndrome and 
Hirschsprung disease. In high-risk neuroblastoma, the 
commonest somatic variants encountered include ALK, 
PTPN11, and ATRX [9, 10]. Other mutational variants 
associated with increased tumor proliferation and poor 
outcome include LIN28B, BARD1 and LMO1 [10–12]. 
However, the effect of mutations in other genes like 
TP73, Let-7 and TIAM1 are less clear with mixed phe-
notypes observed [13–15]. Additionally, the low muta-
tional burden in neuroblastoma further decreases the 
opportunities to observe the clinical impact of these 
variants in patients.

Mutations resulting in functional impairment of key 
1p genes may mimic the functional effects of 1p dele-
tion in neuroblastoma. Indeed the down-regulation of 
genes from this chromosomal region have been observed 
in familial and high-risk disease, but the mechanism 
by which this occurs is still not well understood [16, 
17]. Most commonly, the expression of genes in 1p are 
affected by segmental chromosomal aberrations which 
are common in neuroblastoma, however the incidence 
and effect of mutational variants affecting these genes is 
less well studied. Among 1p candidate genes, we previ-
ously described the mechanistic role of tumor suppres-
sor KIF1Bβ in the tumorigenesis of neuroblastoma, and 
its interaction with downstream partners XAF1 and RNA 
helicase A [18–20], as well as the effects of loss-of-func-
tion mutations on expression-mediated apoptosis [21]. 
Correspondingly, germline loss-of-function mutations 
of KIF1Bβ have also been implicated in familial predis-
position to neuroblastoma [22]. Thus, to understand the 
incidence, spectrum and effects of mutational variants 
in 1p-intact neuroblastoma, we developed a targeted 
sequencing panel of 21 candidate genes that were com-
monly mutated and prognostically significant in neuro-
blastoma, and used it to profile the mutational variants 
in a retrospective cohort of 1p-intact neuroblastoma 
tumors. We then correlated the identified variants with 
clinical, cytogenetic and pathological characteristics, and 
performed functional validation of selected novel vari-
ants of 1p36 genes identified from our patient cohort.

Methods
Patients and specimens
Neuroblastoma tumor specimens managed at the 
Department of Pathology and Laboratory Medicine, KK 
Women’s and Children’s Hospital were accrued. Data 
on patient demographics, clinical stage and tumor his-
tology were obtained from available clinical metadata. 
All specimens were evaluated by a consultant patholo-
gist to be representative lesional or normal tissue. Clin-
ical follow-up data was obtained from the Singapore 
Childhood Cancer Registry, clinical charts and hospital 
visit records. This study was granted waiver of informed 
consent by SingHealth Centralized Institutional Review 
Board (protocols 2012/450, 2014/2079).

FISH for evaluation of MYCN, 1p and 11q copy number
FISH assays were carried out on formalin-fixed, paraf-
fin-embedded tissue sections (FFPE) slides with MYCN 
SpectrumGreen and CEP2 SpectrumOrange DNA 
probes (Abbott Molecular), CHD5/CCP1 FISH probe 
(CytoTest), KMT2A/CCP11 (CytoTest) and MPO/
CEP17 (Kreatech). FFPE slides were baked at 56  °C 
overnight, and deparaffinized in xylene and 100% etha-
nol. Enzymatic digestion was carried out with Protease 
I Solution (Abbott Molecular), DNA probe mixture 
was applied to the target area and co-denatured, and 
hybridization carried out overnight at 37 °C. The slides 
were analyzed under an epifluorescence microscope 
and captured and processed using Isis software (Meta-
systems GmbH).

Targeted next‑generation sequencing
Based on literature search and previous experience, 21 
significant genes involved in neuroblastoma were iden-
tified that were regarded as leading candidate genes 
associated with worse clinical prognosis, that had been 
identified through prior clinical sequencing and expres-
sion profiling studies (see Additional File 1 (Supplemen-
tary Table 1)). Amplified exonic regions were sequenced 
on an Ion Proton (RRID:SCR_017982) platform to a 
depth of 500 × coverage. Sequences were aligned to a ref-
erence genome and variants called. First, common SNPs 
with an allele frequency of > 1% according to the 1000 
genomes project (1000G) found in local and international 
populations were filtered out. The remaining variants of 
the tumor sample were compared with those from nor-
mal sample and common variants between the two were 
regarded as germline. Variants were processed to retain 
only those that cause a missense codon, stop codon or a 
frameshift, or an indel. Reported variants were compared 
against those previously reported in neuroblastoma 
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samples from other populations, and selectively validated 
with Sanger sequencing.

Statistical analysis
Patient characteristics and sequencing results were tabu-
lated with means and proportions. Categorical variables 
were analyzed using chi-square test (asymptotic 2-sided), 
and survival analysis performed using Kaplan–meier 
method with log-rank test. P < 0.05 was considered sig-
nificant. Statistical analysis was performed using SPSS 
v.13.0 (Armonk, NY).

Cell lines
Neuroblastoma cell lines SK-N-AS (RRID:CVCL_1700) 
and NLF (RRID: RRID:CVCL_E217) were obtained 
from American Type Culture Collection (ATCC), and 
were cultured in RPMI-1640 containing 10% FBS and 1% 
2.05  mM L-Glutamine (Hyclone). Both cell lines were 
maintained at 37  °C in a 5% CO2 humidified incubator. 
Cell line transfection, transduction and preparation of 
lentiviral-delivered shRNA are outlined in Additional File 
4 (Supplementary methods).

Immunoblotting
Cells were harvested and lysed with protease inhibitor-
containing EBC buffer (50  mM Tris pH 8.0, 120  mM 
NaCl, 0.5% NP-40). After lysing, cells were centrifuged 
at 4 ̊C. The resulting supernatant was removed prior to 
quantification of protein concentration using Bradford 
Assay. Laemmli buffer and β-Mercaptoethanol was added 
to equal amounts of protein in cell lysates. Protein sam-
ples of 100 – 200  μg were subsequently separated with 
12% and 8% Sodium Dodecyl Sulfate polyacrylamide gel 
electrophoresis before transfer to PVDF membrane (Bio-
Rad). Primary antibodies were added overnight follow-
ing blocking in 5% milk in PBS-T, and were as follows: 
rabbit His-tag antibody (Cell Signalling Technology, 
RRID:AB_2115720), mouse CHD antibody (Santa Cruz 
Biotechnology, RRID:AB_10610044), mouse monoclonal 
p16INK4a antibody (BD Pharmingen, RRID:AB_394077), 
mouse monoclonal β-actin (Santa Cruz Biotechnol-
ogy, RRID:AB_2833259), mouse FLAG-tag antibody 
(Sigma-Aldrich) and rabbit cleaved caspase-3 (CC3) 
antibody (Cell Signalling Technology). Visualisation was 
conducted using iBright1500 (Thermo Fisher). Bands 
were analysed using ImageJ software and normalized to 
β-actin.

Crystal violet colony formation assay
After 24 h transduction, cells were plated in 6-well plates 
and cultured in medium using puromycin (Gibco) con-
centrations as previously mentioned. Fresh medium was 
replenished every 3–4  days. After 1.5–2  weeks, wells 

were washed with phosphate-buffered saline (PBS) once 
before crystal violet staining for 30 min. Excess stain was 
removed via washing repeatedly using Milli-Q water. 
From scanned images of the wells, the percentage sur-
face area covered by crystal violet stained cell colonies, 
and their respective staining intensities (representing cell 
density) were quantified using the ColonyArea plugin on 
ImageJ, as described [23].

Results
Patient and disease characteristics
From 2007–2018, 325 neuroblastoma tumor specimens 
were managed at the Department of Pathology and Labo-
ratory Medicine, KK Women’s and Children’s Hospital, 

Fig. 1  CONSORT diagram of 325 tumor specimens and subgroups 
evaluated by FISH for 1p status and evaluated using targeted 
sequencing panel for mutational profile
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representing over 90% of all neuroblastoma tumor speci-
mens in Singapore (Fig.  1). Median age of patients was 
3.4 years (range: 0.0–13.58), 183 (56.3%) were male, 142 
(43.7%) were female. Disease was staged as INSS 1, 2, 3, 
4 and 4S in 17 (5.2%), 18 (5.5%), 59 (18.2%), 209 (64.3%) 
and 2 (0.6%) cases, respectively. Correspondingly, Chil-
dren’s Oncology Group (COG) risk was assigned as low 
in 27 (8.3%), intermediate in 38 (11.7%) and high in 241 
(74.2%) cases. MYCN was amplified in 75 (23.1%) and 
not amplified in 214 (65.9%) cases; 28 (8.6%) cases were 
indeterminate.

Association of 1p copy number status with known 
prognostic variables indicates additional factors may be 
responsible for poor outcomes among 1p‑intact patients
Copy number status of 1p could be evaluated in 298 of 
325 patients: 1p was deleted in 34 (11.4%), intact in 171 
(57.4%) and indeterminate or aneuploid in 93 (31.2%) 
(Fig.  1). Comparing the 205 patients with evaluable 
1p status, cases with 1p deletion were associated with 
established prognostic factors MYCN amplification, 
metastatic disease and COG high risk status (P < 0.001, 
P = 0.065, and P = 0.012, respectively, Table  1). Dele-
tion of 1p was significantly associated with lower overall 
survival (OS) (mean survival 5.4 ± 1.0 y, P = 0.031), but 
not event-free survival (EFS) (mean survival 5.5 ± 1.0 y) 
(Fig. 2A). Among patients with MYCN amplification, 11q 
deletion, unfavorable histology and metastatic disease, 

those who additionally had 1p deletion were associated 
with significantly worse OS (P = 0.046, 0.032, and 0.011, 
respectively, Fig. 2B-D). However, 1p-intact patients still 
only had 56% EFS (mean survival 8.3 ± 0.8 y) and 60% OS 
(mean survival 9.0 ± 0.9 y) (Fig.  2A). While this verified 
the known phenomenon of poor survival in our patients 
with 1p deletion, yet the poor survival in those without 
this risk factor suggested a role of other variables contrib-
uting to disease outcomes in 1p-intact patients.

Profiling of mutations in neuroblastoma candidate 
genes demonstrates high frequency of variants 
among chromosome 1p genes
To first profile the mutational variants in our neuro-
blastoma patients, we evaluated pairs of tumor speci-
mens and adjacent normal tissue with a custom targeted 
sequencing panel covering neuroblastoma candidate 
genes located at 1p and at other chromosomal loci (see 
Supplementary Dataset File). In total, 100 tumor-nor-
mal pairs were suitable for sequencing analysis (Fig.  1). 
Among these, 104 non-synonymous variants were iden-
tified, the most frequent being ALK (n = 14), ATRX 
(n = 10), BARD1 and BRCA2 (n = 9 each) (Fig. 3A, Addi-
tional File 1 (Supplementary Table 1)). Variants were not 
detected in MIR34A, SDHB, LMO1, and Let7a-1 / 2 / 
3. Highest somatic mutation frequencies were observed 
in ALK (8%); ATRX and BARD1 (3%), and CHD5 and 
KIF1Bβ (2%) – both on chromosome 1. Despite filtering 

Table 1  Distribution of clinical and pathological variables among 205 neuroblastoma cases with and without 1p deletion

INPC International Neuroblastoma Pathology Classification, FH Favorable histology, UH Unfavorable histology, COG Children’s Oncology Group

Variable 1p deletion (n(%)) 1p intact (n(%)) Chi-square P-value

Gender (n = 205) Male 17 (50.0) 103 (60.2) 1.224 0.269

Female 17 (50.0) 68 (39.8)

INPC histology (n = 204) FH 11 (32.4) 82 (48.2) 2.881 0.090

UH 23 (67.6) 88 (51.8)

Treatment status (n = 204) Pre-chemotherapy 7 (20.6) 33 (19.4) 0.025 0.875

Post-chemotherapy / relapse 27 (79.4) 137 (80.6)

Specimen site (n = 205) Primary tumor 30 (88.2) 158 (92.4) 2.104 0.349

Metastatic tumor 4 (11.8) 10 (5.8)

Both - 3 (1.8)

MYCN (n = 205) Amplified 25 (73.5) 26 (15.2) 51.623  < 0.001

Non-amplified 9 (26.5) 145 (84.8)

11p (n = 160) Deleted 8 (36.4) 34 (24.6) 1.348 0.246

Not deleted 14 (63.6) 104 (75.4)

17q (n = 45) Gain 11 (91.7) 21 (63.6) 3.366 0.067

No gain 1 (8.3) 12 (36.4)

Metastatic status (n = 193) Metastatic 27 (79.4) 100 (62.9) 3.397 0.065

Localized 7 (20.6) 59 (82.4)

COG risk (n = 198) High 32 (94.1) 122 (74.4) 6.341 0.012

Low/intermediate 2 (5.9) 42 (25.6)
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for benign population SNPs in the variant calling pipe-
line, repetitive germline variants were identified: CASZ1 
T157M (n = 2), CHD5 T157M (n = 2), NTRK1 P407L 
(n = 2), TIAM1 S965C (n = 2), ATRX F847S (n = 4), 
however their pathogenicity had not been previously 
determined.

Among 22 patients with multiple synchronous muta-
tions, the most common involved ALK (n = 10), BRCA2 
(n = 8), and chromosome 1 genes PTPN14 (n = 7), 
KIF1Bβ (n = 7) and CHD5 (n = 6) (Fig.  3B). Together, 
the high somatic mutation frequencies and associations 
with other variants suggested a prominent role for muta-
tions of chromosome 1 genes in the clinical spectrum of 
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neuroblastoma, in addition to those of more established 
gene candidates like ALK and ATRX.

Cases of 1p‑intact neuroblastomas with candidate gene 
variants are associated with 11q deletion and synchronous 
mutations in other genes
We next focused on 1p-intact neuroblastomas and stud-
ied the mutational spectrum of neuroblastoma candi-
date genes (particularly chromosome 1 genes CASZ1, 
CHD5, PTPN14, KIF1Bβ, NTRK1, and TP73), and their 
association with clinical prognostic variables. Among 
78 1p-intact cases sequenced, neuroblastoma candidate 
gene variants were identified in 59 cases. The presence of 
neuroblastoma candidate gene variants was significantly 
associated with 11q deletion (P = 0.045, Table 2), but was 
not significantly associated with histology, treatment sta-
tus, metastatic disease status, and COG-risk status.

Among the chromosome 1 candidate genes stud-
ied, 38 variants were identified in 29 cases (Fig. 4), with 
a higher frequency of germline variants compared to 
other candidate genes. In general, patients with CHD5 
(n = 6) and PTPN14 (n = 8) mutations were older, aged 
median 4.7 years (range: 2.8–12.3), and 5.6 years (range: 
2.7–10.4), respectively, with all patients having meta-
static high-risk disease. In contrast, patients with other 
chromosome 1 gene variants were younger – CASZ1: 
3.7  years (range: 1.1–9.4), KIF1B: 3.4  years (range: 1.3–
9.4), NTRK1 3.9 years (range: 0.9–5.08), TP73 3.43 years. 
Synchronous mutations were identified in 6 of 7 patients 

with CHD5 variants (cases 797 T, 171 T, 2220 T, 1557 T, 
936 T, 1348 T), and 7 of 8 patients with PTPN14 variants 
(844 T, 558 T, 1415 T, 2063 T, 936 T, 2216 T, 1761 T), 7 of 
8 patients with KIF1Bβ mutations (797 T, 1371 T, 305 T, 
2707 T, 2106 T, 452 T, 422 T), 3 of 8 patients with CASZ1 
mutations (1415 T, 863 T, 422 T), and 2 of 5 patients with 
NTRK1 mutations (797  T, 37  T) Together, this pointed 
towards an association of adverse clinical characteristics 
in patients with chromosome 1 gene mutations, most 
of which were germline variants and tended to occur in 
association with other concurrent molecular aberrations.

Novel variants identified among 1p genes are predicted 
to be pathogenic, while functional validation suggests 
mixed responses
To understand the potential pathogenic roles of the 
novel variants we identified, we profiled their predicted 
variant effects in silico and performed selective func-
tional validation of germline single nucleotide polymor-
phisms (SNPs) in patients with unique clinical courses. 
In all, 24 novel variants were found that were not previ-
ously described in dbSNP, Clinvar, 1000G and COSMIC 
databases (Additional File 2 (Supplementary Table  2)). 
Novel variants predicted by SIFT to be deleterious or 
pathogenic were identified in PTPTN14 (single nucleo-
tide variant (SNV) A142T in the FERM central domain); 
CHD5 (SNV G1073S, helicase c-terminal, and SNV 
E43Q, 5’ UTR); KIF1Bβ (SNV I1335M, kinesin domain); 
and TIAM1 (SNV D1079N, DH domain). Novel ATRX, 

Table 2  Distribution of clinical pathological variables among 78 1p-intact neuroblastoma cases with and without mutational variants

INPC International Neuroblastoma Pathology Classification, FH Favorable histology, UH Unfavorable histology, COG Children’s Oncology Group

Variable Neuroblastoma candidate 
gene variant present (n (%))

Neuroblastoma candidate 
genes variant absent (n (%))

Chi-square P-value

Gender (n = 78) Male 26 (57.8) 18 (54.5) 0.081 0.776

Female 19 (42.2) 15 (45.5)

INPC histology (n = 78) FH 18 (40.0) 19 (57.6) 2.359 0.125

UH 27 (60.0) 14 (42.4)

Treatment status (n = 78) Pre-chemotherapy 4 (8.9) 5 (15.2) 0.732 0.392

Post-chemotherapy/ relapse 41 (91.1) 28 (84.8)

Specimen site (n = 78) Primary tumor 40 (88.9) 32 (97.0) 5.165 0.076

Metastatic tumor 5 (11.1) -

Both - 1 (3.0)

MYCN status (n = 78) Amplified 9 (20.0) 6 (18.2) 0.041 0.840

Non-amplified 36 (80.0) 27 (81.8)

11q status (n = 76) Deleted 7 (36.8) 12 (21.1) 4.017 0.045

Not deleted 12 (63.2) 45 (78.9)

Metastatic status (n = 76) Metastatic 34 (75.6) 19 (61.3) 1.770 0.183

Localized 11 (24.4) 12 (38.7)

COG risk (n = 75) High 40 (88.9) 22 (73.3) 3.040 0.081

Low/intermediate 5 (11.1) 8 (26.7)
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BRCA2, NTRK2, BARD1, CASZ1, PHOX2B variants all 
occurred in coding regions.

KIF1Bβ I1335M was identified in a stage 3 interme-
diate-risk patient with a surprisingly indolent disease 
course despite multiple synchronous pathogenic muta-
tions including the ALK F1174 hotspot and in BRCA2 
(Case 2707  T) (Fig.  5A, B). Overexpression of KIF1Bβ 
I1335M in SK-N-AS and CHP212 cells increased 
KIF1Bβ short-term expression, resulting in long-term 
tumor suppressive activity as indicated by decreased 
colony formation, compared to KIF1Bβ WT (Fig.  5C, 
D). A germline missense variant of CHD5 E43Q was 
identified in a patient with deletion of the WT allele 
demonstrated on FISH. The patient had multiple poor 
prognostic features including stage 4 high risk disease, 

unfavorable histology, extensive lymphovascular inva-
sion and significant residual regional disease after neo-
adjuvant chemotherapy with 32 of 33 resected lymph 
nodes positive for metastatic neuroblastoma (Case 
1073  T) (Fig.  5E, F). Overexpression of CHD5 E43Q 
in SK-N-AS, CHP212 and NLF cells decreased CHD5 
short-term expression, compared to CHD5 WT 
(Fig.  5G). Decreased CHD5 expression due to E43Q 
corresponded to increased colony formation in SK-N-
AS cells, suggesting loss of long-term tumor suppres-
sive activity (Fig. 5H). The functional changes reflected 
the observed clinical phenotypes in both cases, and 
suggested that these novel 1p36 variants, while delete-
rious to tumor suppressors such as CHD5, may con-
tribute to gain-of-function in others such as KIF1Bβ.
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(See figure on next page.)
Fig. 5  Clinical phenotype and functional validation of novel mutations of KIF1Bβ and CHD5. Characterization of KIF1Bβ I1355M variant in case 
2707 T: A Sanger sequencing electropherogram, B contrast-enhanced CT scan demonstrating persistent but localized retroperitoneal tumor 
(asterisk), C immunoblot analysis and (D) crystal violet colony formation assay of wild type (WT) and I1335M mutant SK-N-AS and CHP212 
neuroblastoma cells. Characterization of CHD5 E43Q variant in case 1073 T: E Sanger sequencing electropherogram, (F) photomicrographs 
of patient tumor demonstrating poorly differentiated neuroblastoma (asterisk) and extensive lymphovascular invasion (arrow) (H&E, 200x), G 
immunoblot of WT and E43Q-transfected SK-N-AS, CHP212 and NLF cells, and (H) crystal violet colony formation assay of the former. Western blots 
cropped and adjusted equally for brightness; full length unadjusted blots are presented in Additional File 3
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Fig. 5  (See legend on previous page.)
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Discussion
Segmental loss of the short arm of chromosome 1p is 
associated with aggressive disease phenotypes in neuro-
blastoma. However, it is not known if mutational variants 
can also inactivate 1p tumor suppressor genes to cause 
equivalent effects or otherwise. By studying the associa-
tion of mutational variants of candidate neuroblastoma 
genes with clinical, cytogenetic and pathological charac-
teristics, and survival outcomes, we found 1p candidate 
genes CHD5 and KIF1Bβ to be most frequently mutated 
after ALK, ATRX, and BARD1. Among 78 1p-intact 
neuroblastoma patients, mutations in 1p genes were 
often associated with other synchronous mutations and 
other chromosomal aberrations like 11q deletion. While 
the novel 1p variants were predicted to be deleterious 
in silico, functional validation indicated that they did 
not consistently impair the effect of tumor suppressors 
KIF1Bβ and CHD5. Taken together, our data disfavors 
the hypothesis that isolated mutations of 1p candidate 
genes consistently contribute to loss of tumor suppres-
sor function in 1p-intact patients, but rather demonstrate 
their varied functional sequelae and propensity to occur 
in tandem with other molecular aberrations. Our find-
ings lend weight to the evolving idea that 1p tumor sup-
pressor genes may not be primarily inactivated by classic 
biallelic “two hit” mechanisms, but rather contribute to 
tumorigenesis via additive dosage-sensitive contributions 
which may affect multiple components of an antionco-
genic interaction cascade or pathway [24, 25]. However, 
further profiling of other genetic aberrations such as sub-
genic deletions and copy number variations in a larger 
cohort will be required to verify this.

The 1p36 region is thought to harbor potent mas-
ter tumor suppressor genes, that when inactivated by 
structural or single nucleotide variations, or by post-
transcriptional silencing, would lead to loss of replicative 
control. Chief candidates have centered on CHD5 and 
KIF1Bβ [16, 26–28], which we found in our series to be 
the most frequently mutated genes after ALK and ATRX. 
However, conflicting evidence argues against the singu-
lar role of either of these tumor suppressors. A consist-
ent single region of overlapping heterozygous deletions 
has not been identified in human cancers and the deleted 
intervals are often large, especially in advanced cancers 
[29]. In neuroblastoma, the smallest identifiable region 
of overlap still amounts to 2 Mb [30]. Thus, it has been 
proposed instead that combined loss of several 1p36 
tumor suppressors may be necessary for tumorigenesis 
[21], or that this region may be inherently unstable, pre-
disposing it to recurrent chromosomal rearrangements. 
We observed frequent occurrence of synchronous muta-
tions in patients with 1p gene variants, a phenomenon 
that has been observed in other cancers associated with 

mutations of CHD5 [31]. Synchronous mutations were 
identified in all patients with CASZ1 variants. Although 
overall mutational frequencies in neuroblastoma are low 
[32, 33], CASZ1 has not been previously noted to be 
associated with other gene mutations in neuroblastoma.

CHD5 is preferentially expressed in the testis and 
nervous system, particularly the nucleus of mature neu-
rons [34], and functions as a transcriptional regulator 
via chromatin remodeling, binding the N terminus of 
H3 through its tandem plant homeodomains (PHDs) 
with dose-dependent effects [26]. CHD5 expression is 
significantly lower in high-risk neuroblastoma tumors 
[35], but the role of mutations in modulating its func-
tion is poorly understood. Mutations of the H3-binding 
domains impair the tumor suppressive activity of CHD5 
[36]. However, in patient tumors (of prostate and ovar-
ian cancer, and melanoma), prevalence of somatic CHD5 
mutations is low [4, 31, 37–39]. Likewise, few somatic 
CHD5 mutations have been reported in neuroblastoma 
patients, and only in the context of relapse [40]. Among 
neuroblastoma cell lines, in only 1 of 30 cell lines, was 
a V680L heterozygous missense mutation detected – a 
variant not affecting the H3-binding function of CHD5 
[30]. We too did not identify any mutations involving the 
CHD5 PHD domains in our cases. Instead, pathogenic 
effects are thought to arise from heterozygous deletion 
of one gene copy and silencing of the remaining allele or 
biallelic inactivation via promoter hypermethylation [30, 
41]. We illustrate such a patient with a loss-of-function 
mutation at the 5’ UTR region of the remaining allele and 
a corresponding aggressive disease course. This clinical 
case supports the role of CHD5 as a haploinsufficient 
tumor suppressor in neuroblastoma.

KIF1Bβ is an intracellular motor protein that regu-
lates neuronal differentiation and survival that was also 
identified as a key tumor suppressor in the 1p36 region 
[28]. In neuroblastoma, frequency of inactivation is cor-
related with aggressive disease behavior: hemizygous 
deletion has been detected in 18% of early-stage tumors, 
in 55% of patients with stage 3 and 4 disease, and in 84% 
of MYCN-amplified tumors [42]. Chromosomal deletion 
appears to be the main mechanism for its inactivation as 
promoter hypermethylation and somatic mutations of 
the coding region are infrequently encountered in patient 
samples and cell lines [5, 16, 42], as we have similarly 
observed. While loss of KIF1Bβ has been implicated in 
other neurogenic tumors like paragangliomas and phaeo-
chromocytomas, mutations have also been infrequently 
encountered in most clinical series of these cancers [22, 
43–45], although higher mutational frequencies have 
been observed in selected populations [46, 47].

In this first focused description of the mutational 
landscape of neuroblastoma in an Asian population, 
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prevalence of mutations resembled Western series, most 
commonly involving genes such as ALK and ATRX. The 
respective mutation frequencies were similar to that of 
North American neuroblastoma patient populations that 
were interrogated with whole exome sequencing (WES) 
(ALK, 8% versus 9.2%; ATRX, 3% vs 2.5%). However, few 
were recurrent, with only ALK variants R127Q, R1275Q, 
F1174C and F1174L previously reported in neuroblas-
toma [9]. Notably, recognized coding variants rs2070094, 
rs2229571, rs17489363 and rs1048108 were not identi-
fied in our cohort [48, 49], the latter specifically recog-
nized as a neuroblastoma susceptibility polymorphism 
in Han Chinese, which constitute the ethnic majority 
in Singapore [50]. The effect of such polymorphisms on 
modulation of disease phenotypes in different ethnic 
cohorts remains limited due to the scarcity of data from 
non-Western populations, and warrants further study. 
In our local population, we previously reported a par-
ticularly high incidence of germline variants of uncertain 
significance among neuroblastomas interrogated with 
WES. These involved DNA repair genes such as BRCA1, 
BRCA2, MLH1 and ATRX, but none involving chromo-
some 1p candidate genes in that smaller cohort [51]. 
Future studies could explore this group of DNA repair 
genes, as well as intronic and non-coding SNPs associ-
ated with neuroblastoma, which were not tested in this 
study [48, 50, 52, 53].

Conclusion
In this large cohort of neuroblastoma patients, CHD5 
and KIF1Bβ were the most frequently mutated 1p genes, 
and were associated with multiple other synchronous 
mutations. However, the functional effects of these muta-
tions were varied, and may not consistently lead to abro-
gation of tumor suppressor function akin to 1p deletion. 
Indeed, the overall tumor phenotype and outcome may 
be dependent on the balance of effects exerted by vari-
ants of respective tumor suppressor genes in 1p-intact 
neuroblastomas.
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